Warm Up 12/5

$$1.\sin\frac{2\pi}{3} = \frac{57}{2}$$

2.
$$\cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}$$

$$3. \sec \frac{\pi}{4}$$

$$= \frac{2}{\sqrt{2}} \cdot \sqrt{2}$$

$$(\frac{1}{2}, \frac{53}{3})$$
 $(\frac{1}{2}, \frac{53}{3})$
 $(\frac{1}{2}, \frac{4\pi}{3})$
 $(\frac{4\pi}{3}, \frac{4\pi}{3})$
 $(\frac{1}{2}, \frac{53}{3})$
 $(\frac{1}{2}, \frac{53}{3})$

Lesson 5-2c $\Delta < 0$ **Trigonometric Functions** of Real Numbers III

Objective

Students will...

- Be able to rewrite trigonometric functions using the fundamental identities.
- Find all trigonometric functions from the value of one using the fundamental identities.

Soh Cah Toa

Mnemonic.

Recall that given a right triangle...

$$\sin t = \frac{opposite}{}$$

$$\sin t = \frac{opposite}{hypotenuse}$$
 $\cos t = \frac{adjacent}{hypotenuse}$ $\tan t = \frac{opposite}{adjacent}$

$$\tan t = \frac{opposite}{adjacent}$$

$$\csc t = \frac{1}{\sin t} = \frac{hypotenuse}{opposite}$$

$$\sec t = \frac{1}{\cos t} = \frac{hypotenuse}{adjacent}$$

$$\cot t = \frac{1}{\tan t} = \frac{adjacent}{opposite}$$

We can use the properties of right triangles to figure out the rest of the trigonometric functions. $A^2 + b^2 = C^2$

$$\sin t = -\frac{4}{5}$$

$$\cos t = \frac{3}{5}$$

$$\tan t = \frac{1}{2}$$

$$\csc t = \frac{5}{4}$$

$$\sec t = \frac{5}{5}$$

$$\cot t = \frac{3}{4}$$

If $\cos t = -\frac{5}{13}$ and t is in quadrant II, find the values of all the

trigonometric functions at t.

Sin
$$t = \frac{12}{13}$$
 t and $t = \frac{12}{5}$ (SC $t = \frac{13}{12}$)

Sec $t = -\frac{13}{5}$ Cot $t = -\frac{5}{12}$

Trigonometric Functions

Recall from the definitions of trigonometric functions that...

$$\tan t = \frac{\sin t}{\cos t}$$

$$\cot t = \frac{1}{\tan t} = \frac{\cos t}{\sin t}$$

$$\sec t = \frac{1}{\cos t}$$

$$\csc t = \frac{1}{\sin t}$$

Coordinates on a Unit Circle

Now, also recall that on the unit circle, we defined the following:

$$\cos t = x$$
 $\sin t = y$ \rightarrow $(x, y) = (\cos t, \sin t)$

Now, let's see how this can be applied on a unit circle.

Pythagorean Identities

Hence, we can now conclude the following identities:

Pythagorean Identities: (Note: $sin^2 t = (\sin t)^2$)

$$\sin^2 t + \cos^2 t = 1$$
 $\tan^2 t + 1 = \sec^2 t$ $1 + \cot^2 t = \csc^2 t$

$$tan^2t + 1 = sec^2t$$

$$1 + \cot^2 t = \csc^2 t$$

Also, moving some of these around using algebra:

$$\sin t = \pm \sqrt{1 - \cos^2 t}$$

$$\cos t = \pm \sqrt{1 - \sin^2 t}$$

Rewriting Trigonometric Functions

We can also rewrite trigonometric functions using others.

Example: Write
$$t$$
 in terms of t os t , where t is in quadrant III.

$$t = \frac{sin + s}{cos + cos +$$

Examples

Write t in terms of t, where t is in quadrant I.

$$tant = \frac{Sint}{\sqrt{1-sin^2t}}$$

Write $\sec t$ in terms of $\tan t$, where t is in quadrant II

Selt=- Stan2+1

Homework 12/5

TB pg. 417 #53-61 (odd), 63, 64

Application of Pythagorean Identities

Although these identities will be used much more extensively in the future, we can still make use of them here.

Example: If $\cos t = \frac{3}{5}$ and t is in quadrant IV, find the values of all other trigonometric functions at t.

We need to first find $\sin t$. We use our identity: $\sin t = \pm \sqrt{1-\cos^2 t}$

$$\sin t = \pm \sqrt{1 - \cos^2 t} = \pm \sqrt{1 - \left(\frac{3}{5}\right)^2} = \pm \sqrt{1 - \left(\frac{9}{25}\right)} = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5}$$

However, since we are told that t is quadrant IV, $\sin t = -\frac{4}{5}$