

Objective

Students will...

- Be able to know the Fundamental Theorem of Calculus.
- Be able to use the FTC to find the area underneath the curve.

Fundamental Theorem of Calculus

<u>Fundamental Theorem of Calculus</u>- If a function f is continuous on the closed interval [a,b], then $\int_a^b f(x) dx = F(b) - F(a)$

Recall that F(x) is the **antiderivative** of f(x).

This is clearly the most important theorem of all of Calculus (hence the word "fundamental"). Provided you can find an antiderivative of f, you now have a way to evaluate the area underneath the curve (instead of approximating) using **definite integral**.

Example

Use five rectangles to find the area of the region bounded by $f(x) = x^2$, the x-axis and x = 0 and x = 10

the x-axis and x = 0 and x = 10.

Area = $\begin{cases} 10 \\ 10 \end{cases}$ Area = $\begin{cases} 10 \\ 10 \end{cases}$

 $\frac{10}{0} = \frac{1}{3}(10)^3 - \frac{1}{3}(0)^3$

Cet 240 Ryht: 440 M.M. 330 L. rul $=\frac{1000-333.353...}{-533.3}$

Example

Use five rectangles to find the area of the region bounded by f(x) =

$$= -\frac{1}{3} \times \frac{3}{5} \times \left|_{0}\right|$$

Example

Use six rectangles to find the area of the region bounded by

$$f(x) = \sin x$$
, the x-axis and $x = 0$ and $x = \pi$

$$\int_{0}^{\pi} \sin x \, dx = -\cos x \int_{0}^{\pi} = 1 - 1 = 12$$

Homework 1/17

Previous WKSHT use the definite integral to evaluate the actual area.