Warm Up 1/29

Use the Law of Sines to solve the triangle.

$$\frac{a = 26, c = 15, 2C = 29^{\circ}}{5in 29} - \frac{5in A}{26} = 7 A_{1} \approx 57$$

$$\frac{6}{15} = \frac{5in A}{26} = 7 A_{1} \approx 123$$

$$\frac{6}{12} \approx 31$$

$$\frac{6}{12} \approx 15$$

$$B_1 \approx 94^{\circ}$$
 $B_2 \approx 38^{\circ}$
 $b_1 \approx 31$
 $b_1 \approx 15$

Objective

Students will...

- Be able to know what Law of Cosines is.
- Be able to apply the Law of Cosines to solve for missing sides or angles.

Triangles

We've been studying the trigonometric ratios involving right triangles. Trigonometry can also be used for **non**-right triangles. First thing we need to do is to be consistent with our notations.

Consider the triangle $\triangle ABC$ shown on the right.

The uppercase letters A, B, C represent the <u>vertices</u>,

or the <u>angles</u> of the triangle, while the lower case letters a, b, c represent the sides. For ease, the angles will always be labeled by uppercase letters, while the side <u>opposite</u> to each angle, will always be labeled with the lowercase letter of the opposite angle.

So, from our picture, we see that a is the side opposite to A, while b is the side opposite to B and c is the side opposite to C.

Law of Cosines

There exists another important law regarding triangles (not just right triangles).

Law of Cosines- In any triangle, say, $\triangle ABC$, we have:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

For the $\triangle ABC$ to the left, we have $(500)(985)(05.70^{\circ})$

Example

So we can apply the Law of Cosines to solve for missing sides or angles.

$$b = 8$$

$$A = 5$$

$$C = 12$$

$$C$$

Example

Solve $\triangle ABC$, where $\angle A = 46.5^{\circ}$, b = 10.5, and c = 18 $B \approx 48.5^{\circ}$.

a=(10.5)2+182-2(10.5)(18)(0546.5

Heron's (Area) Formula

An interesting application of the Law of Cosines involves a formula for finding the area of a triangle from the lengths of its three sides. We won't derive the formula here for time's sake. (see textbook)

Heron's Formula- For $\triangle ABC$ the area $\mathcal{A} = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$, which is the <u>semiperimeter</u> (half perimeter).

Ex. Find the area of a triangle with give side lengths:

$$a = 280$$
, $b = 125$, and $c = 315$

| lengths:
$$(360(360-280)(360-125)(360-315)(360-315)(360-125)(360-315)(360$$

Use the Law of Cosines to determine the indicated side \boldsymbol{x} or angle $\boldsymbol{\theta}.$

1.

8.

Solve the triangle.

11.
$$a = 3, b = 4, \angle C = 53^{\circ}$$

Solve the triangle.

17.
$$a = 50$$
, $b = 65$, $\angle A = 55^{\circ}$

Find the area of the triangle.

27.
$$a = 9$$
, $b = 12$, $c = 15$

Homework 1/29

TB pg. 513 #1, 3, 5, 8, 11-17 (odd), 27, 29