Warm Up 1/29

Use the Law of Sines to solve the triangle.

$$a = 26, c = 15, \angle C = 29^{\circ}$$

$$5in \subset Sin A$$

$$C = 15, \angle C = 29^{\circ}$$

$$Sin 79 = Sin A$$

$$7 = 5in A$$

$$7 = 7 = 7$$

$$A_{1} \sim 57^{\circ} A_{2} \sim 123^{\circ}$$

$$B_{1} \sim 94^{\circ} B_{2} \sim 28^{\circ}$$

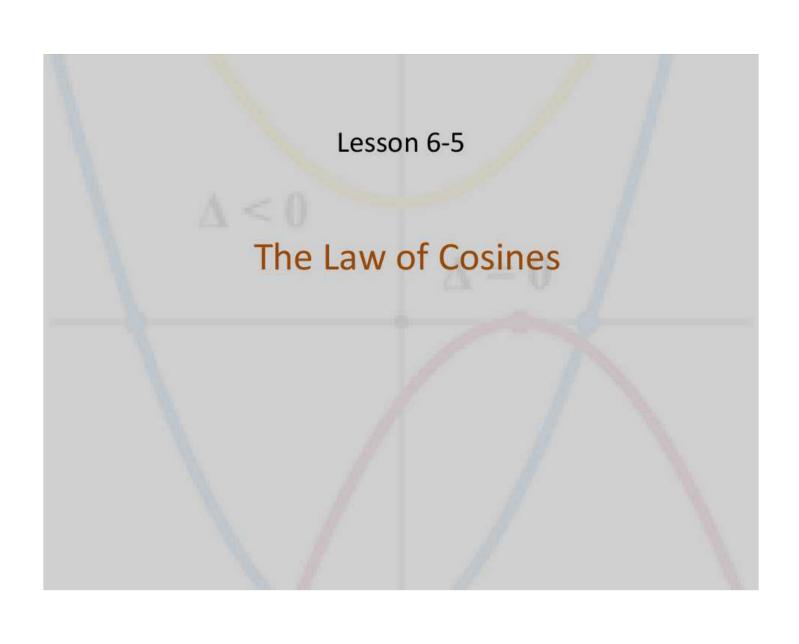
$$A_{2} \sim 71 = 76$$

$$\frac{C}{\sin C} = \frac{b_1}{\sin \beta} = \frac{b_1}{\sin 2\beta} = \frac{b_1}{\sin 94}$$

$$\Rightarrow b_1 \approx 31$$

$$= \frac{b_2}{\sin b_2} \approx 15$$

$$= 7 b_2 \approx 15$$



Objective

Students will...

- Be able to know what Law of Cosines is.
- Be able to apply the Law of Cosines to solve for missing sides or angles.

Triangles

We've been studying the trigonometric ratios involving right triangles. Trigonometry can also be used for **non**-right triangles. First thing we need to do is to be consistent with our notations.

Consider the triangle $\triangle ABC$ shown on the right.

The uppercase letters A, B, C represent the <u>vertices</u>,

or the <u>angles</u> of the triangle, while the lower case letters a, b, c represent the sides. For ease, the angles will always be labeled by uppercase letters, while the side <u>opposite</u> to each angle, will always be labeled with the lowercase letter of the opposite angle.

So, from our picture, we see that a is the side opposite to A, while b is the side opposite to B and c is the side opposite to C.

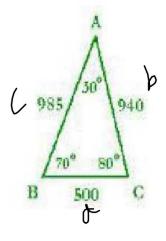
Law of Cosines

There exists another important law regarding triangles (not just right triangles).

Law of Cosines- In any triangle, say, $\triangle ABC$, we have:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

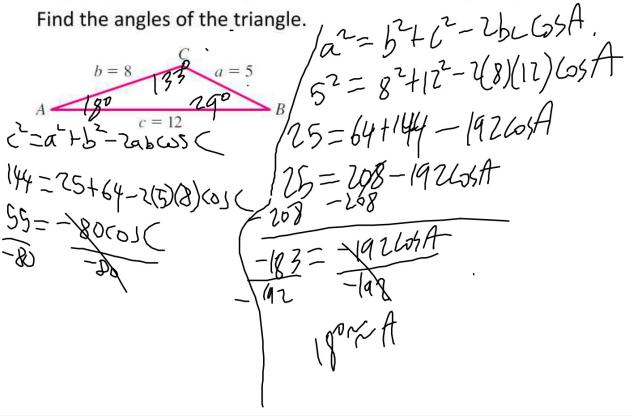


For the $\triangle ABC$ to the left, we have... $500^{2} - 940^{2} + 985^{2} - 2(945)(985)(653)$

Example

So we can apply the Law of Cosines to solve for missing sides or angles.

(Important: Make sure your calculator is in the right mode!)



Example

Heron's (Area) Formula

An interesting application of the Law of Cosines involves a formula for finding the area of a triangle from the lengths of its three sides. We won't derive the formula here for time's sake. (see textbook)

<u>Heron's Formula</u>- For $\triangle ABC$ the area $\mathcal{A} = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$, which is the <u>semiperimeter</u> (half perimeter).

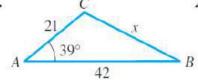
Ex. Find the area of a triangle with give side lengths:

$$S = \frac{280, b = 125, \text{ and } c = 315}{5}$$

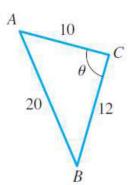
$$S = \frac{280}{125} + \frac{315}{125} - \frac{720}{2} = \frac{360}{2} + \frac{310}{125} +$$

Use the Law of Cosines to determine the indicated side \boldsymbol{x} or angle $\boldsymbol{\theta}$.

1.



8.



Solve the triangle.

11.
$$a = 3$$
, $b = 4$, $\angle C = 53^{\circ}$

Solve the triangle.

17.
$$a = 50$$
, $b = 65$, $\angle A = 55^{\circ}$

Find the area of the triangle.

27.
$$a = 9$$
, $b = 12$, $c = 15$

Homework 1/29

TB pg. 513 #1, 3, 5, 8, 11-17 (odd), 27, 29