

Objective

Students will...

- Be able to find the area of a region between two curves using integration.
- Be able to find the area of a region between intersecting curves using integration.

Between. Area Underneath the Curve

One of the basic applications of integration deals with finding the area between two curves. Consider the following example. (b)

 $\frac{1}{\xi(x)}$

 $\int_{\alpha}^{\beta} f(x) dx - \int_{\alpha}^{\alpha} g(x) dx$

Area Underneath the Curve

We can then formalize this process.

<u>Area of a Region Between Two Curves</u>- If f and g are continuous on [a,b] and $g(x) \le f(x)$ for all x in [a,b], then the area of a the region bounded by the graphs of f and g and the vertical lines x=a and x=a

b is $A = \int_a^b [f(x) - g(x)] dx$ Uper law pation (X=--) right - left

Or harmontal. Order pation

Examples

Find the area of the region bounded by the graphs of $y = x^2 + 2$,

y = -x, x = 0, and x = 1.

 $A = \begin{cases} x^{2} + 2 - (-x) dx \\ 0 \\ -\frac{1}{3}x^{3} + 2x + \frac{1}{2}x^{2} \\ -\frac{1}{3}x^{3} + \frac{1}{3}x^{3} - 0 = 0 \end{cases}$

Examples

$$(x+5)(x-1)=0$$

bounded by the graphs of
$$f(x) = 2 - x^2$$
 and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - 1 \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x^2 - x \end{cases}$ and $\begin{cases} 2 - x^2 - x \\ 2 - x \end{cases}$ and $\begin{cases} 2 - x \\ 2 - x \end{cases}$ and

Examples + 992

Find the area of the region bounded by the graphs of $f(x) = 3x^3$ $x^2 - 10x$ and $g(x) = -x^2 + 2x$.

 $3x^{3}x^{2}-10x=-x^{2}+2xA=$ $3x^{3}-12x=0$

 $3x(x_5-4)=0$

X=0'=5

Examples

Find the area of the region bounded by the graphs of $x = 3 - y^2$ and x = y + 1.

$$A = \begin{pmatrix} 3 - y^2 - (y+1) & dy = \int_{-2}^{2} -y^2 - y \\ -2 & 1 \end{pmatrix}$$

$$= -\frac{1}{3}y^3 - \frac{1}{2}y^2 + \lambda y \begin{vmatrix} 3 - 2 & -4 \\ -\frac{1}{3}y^2 - \frac{1}{3}y^2 + \lambda y \end{vmatrix}$$

$$= -\frac{1}{3}y^3 - \frac{1}{2}y^2 + \lambda y \begin{vmatrix} 3 - 2 & -4 \\ -\frac{1}{3}y^2 - \frac{1}{3}y^2 + \lambda y \end{vmatrix}$$

$$= -\frac{1}{3}y^3 - \frac{1}{2}y^2 + \lambda y \begin{vmatrix} 3 - 2 & -4 \\ -\frac{1}{3}y^2 - \frac{1}{3}y^2 + \lambda y \end{vmatrix}$$

Homework 2/20

7.1 #1-6, 13, 14, 17-41 (e.o.o)