Warm Up 2/12

Verify the identity.

$$\frac{\sec x}{\sec x - \tan x} = \sec x (\sec x + \tan x)$$

Lesson 7-2b $\Delta < 0$ Trigonometric Addition and Subtraction Formulas II

Objective

Students will...

 Be able to use addition and subtraction formulas to evaluate trig functions and to prove or verify identities.

Addition and Subtraction Formulas

Formulas for Sine: $\sin(s+t) = \sin s \cos t + \cos s \sin t$

 $\sin(s-t) = \sin s \cos t - \cos s \sin t$

Formulas for Cosine: $\cos(s+t) = \cos s \cos t - \sin s \sin t$

 $\cos(s-t) = \cos s \cos t + \sin s \sin t$

Formulas for Tangent: $\tan(s+t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}$

 $\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$

Guidelines for Proving Identities

Furthermore, we have some guidelines/tips for proving identities.

- 1. Focus on the fractions: More often than not, identity proofs are more easily done when you work with the side that involves a fraction.
- 2. <u>Pick the more "complicated" side</u>: It's easier to modify the sides that has less sines or cosines. Generally, rewriting everything as sine or cosine can help you when you are "stuck."
- 3. <u>Use the Known Identities!</u>: Use <u>algebra</u> and the identities are already known to you. Look to combine multiple fractions into one with a common denominator.

Using Addition and Subtraction Formulas

Prove the following identity: $\cos\left(\frac{\pi}{2} - u\right) = \sin u$ LHS: $\cos\left(\frac{\pi}{2} - u\right) = \sin u$ O

(1)

Prove the following identity:

19.
$$\sec\left(\frac{\pi}{2} - u\right) = \csc u$$

Lus:
$$\frac{1}{\cos\left(\frac{\pi}{2} - u\right)} = \frac{1}{\cos u}$$

$$\frac{1}{\cos u} = \frac{1}{\cos u}$$

Example

Verify the following identity:
$$\frac{1+\tan x}{1-\tan x} = \tan\left(\frac{\pi}{4} + x\right)$$

$$RHS: \frac{\tan^{3}4 + \tan x}{1-\tan x} = \frac{1+\tan x}{1-\tan x} = \frac{1+\tan x}{1-\tan x}$$

$$\frac{1+\tan x}{1-\tan x} = \frac{1+\tan x}{1-\tan x}$$

Verify the identity.

$$\mu_{S}$$
: 32. $\cos(x+y) + \cos(x-y) = 2\cos x \cos y$
 $\cos x \cos y + \sin x \sin y + \cos x \cos y + \sin x \sin y$

Verify the identity.

34.
$$\cot(x + y) = \frac{(\cot x \cot y) - 1}{\cot x + \cot y}$$

$$\frac{1}{\cot(x+y)} = \frac{1}{\cot(x+y)}$$

34. $\cot(x+y) = \frac{(\cot x \cot y)-1}{\cot x + \cot y}$ $\frac{1}{\cot(x+y)} - \frac{1}{\cot x + \cot y} - \frac{1-\cot x \cot y}{\cot x + \cot y}$ $\frac{1-\cot x \cot y}{\cot x \cot y} - \frac{1-\cot x}{\cot y} \cot x \cot y$

(0+x+(0+x

Cotxcoty-1

Cotxcoty

Cotx

Verify the identity.

38.
$$\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y$$

Homework 2/12

TB pg. 539-540 #19, 21, 27, 31, 32, 33, 34, 35, 37