Warm Up 12/02

Identify the base of each log or exponential function.

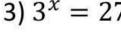
1)
$$2^x = 8$$

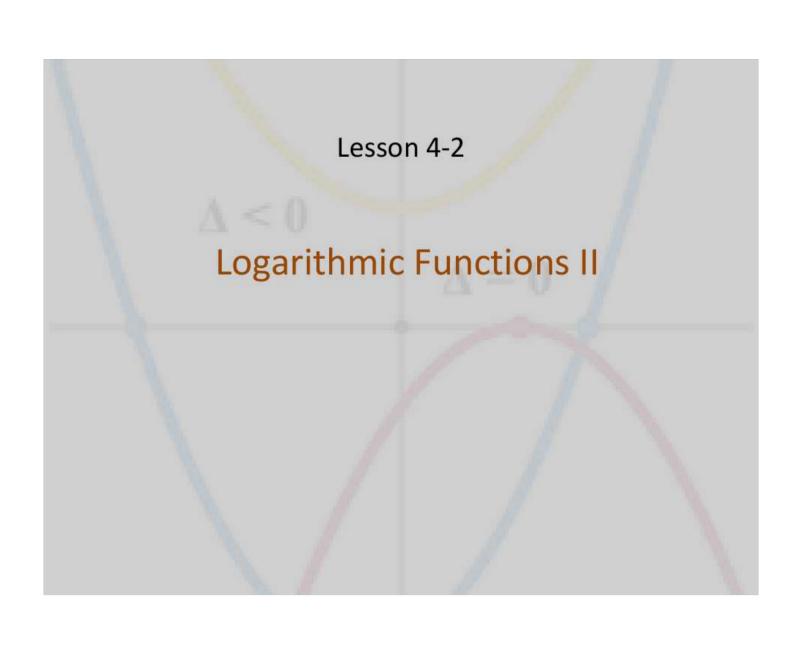
4) $log_9 x = 625$

2)
$$log_4 x = 2$$

2)
$$log_4 x = 2$$
 3) $3^x = 27$

$$5) e^x = 1$$





Objective

Students will...

- Be able to define natural logarithmic function.
- Be able to know and apply the properties of natural logarithms.
- Be able to use calculators to compute natural logarithms.

Natural Logarithms

We've learned that any logarithm with base 10 is known as the common logarithm, without the base written. In our previous section of exponential function, we learned about a very special number denoted, e. Naturally (no pun intended as we'll see), logarithms with base e is also considered special, and it is given a special name.

Natural Logarithm - The logarithm with base e is called the <u>natural</u> <u>logarithm</u> and is denoted by <u>ln</u>:

 $\ln x = log_e x$

The Inverse of Exponential Function

Like all other exponential and logarithmic functions, the natural logarithmic function $y = \ln x$ is the inverse function of the exponential function $y = e^x$. Hence, by definition we have

$$\ln x = y \leftrightarrow e^y = x$$

$$\log_e X = y$$

Example:

$$e^6 \approx 403.43 \rightarrow \ln 403.43 \approx 6$$

$$\ln 8 \approx 2.08 \rightarrow e^{2.08} \approx 8$$

Properties of Natural Logarithms

We have learned about some of the basic properties of logarithms. Always remember that, although it's given a special name, natural logarithms is still a logarithmic function! Thus, the properties of natural logarithm naturally (again, no pun intended 3) follow the properties of logarithms. Simply replace a with e and log_a with ln.

Property	Reason
$1.\ln 1 = 0$	Anything raised to the zero power is 1
$\frac{\log_{a}}{2 \ln e} = 1$	
$2 \frac{\ln e}{2} = 1$	Anything raised to the 1st power is itself
Logol	

 $3. \ln e^x = x$

4.
$$e^{\ln x} = x$$
 $\ln x$ is the power to which e must be raised to get x

e raised to the x power is e^x

Examples

For base 5...

By property 1:

$$ln 1 = 0$$

By property 2:

$$lne = 1$$

By property 3:

$$\ln e^{8} = 8$$

By property 4:

$$e^{\ln 12} = 12$$

You try

By property 1:

$$ln 1 = \bigcirc$$

By property 2:

By property 3:

$$\ln e^4 = 4$$

By property 4:
$$e^{\ln 19} = \bigcirc$$

Using a Calculator

For most logarithmic, as well as exponential functions, we've learned that having a calculator is a must. Computing natural logarithm on a calculator is easy. We simply need to find where the ln button is. Almost all calculators place e^x and ln together (usually "2nd" e^x).

Example:

To compute ln 5, we would input "2nd" ex, then "5".

The answer should read: $\ln 5 = 1.6094379124341$

In Closing

Compute the following natural logarithms using a calculator and check your answers with a partner.

1)
$$\ln 4 = \frac{38}{3}$$

1)
$$\ln 4 = \frac{1}{38}$$
 2) $2(\ln 9) = 4.394$ 3) $9(\ln 11) = 21.591$

Homework 12/02

TB pg. 349-350 #7, 8, 13, 14, 22a, 23b, 23c, 35, 36