Name:

Period: _____

Date: _____

PreCalculus Chapter 2 Practice Test

Answer the following questions. No work is necessary unless it is specified.

1. Define function.

A relation in which for every input there is exactly

2. For the following piecewise function, evaluate the function at the indicated values.

$$f(x) = \begin{cases} 5 & \text{if } x \le 2 \\ 2x - 3 & \text{if } x > 2 \end{cases} \qquad f(-3) = 5$$

$$f(-3), f(0), f(2), f(3), f(5) \qquad -(0) = 5 \qquad f(3) = 3$$

$$f(2) = 6 \qquad f(3) = 7$$

- 3. For the function $f(x) = 2x^2 + 8x 1$
 - a. Find its domain.

(2) 2 = (2) 2 = (2) 2 = 4 b. Complete the square and write it in the vertex form: f(x) = a(x-h) + k $f(x) = x^2 + 4x - \sqrt{2}$ $4 + f(x) = x^2 + 4x + 4 - \sqrt{2}$ $4 + f(x) = (x+2)^2 - \sqrt{2}$ $4 + f(x) = (x+2)^2 - \sqrt{2}$

c. Find its vertex and determine whether it's a maximum or a minimum point.

d. Describe the graph's change (shift, stretch, compress, etc.) from $f(x) = x^2$ and graph the function.

Left 2, down 9, vertical stretch by factor

4. Find the domain of the following functions.

5. Write the following equation for y in terms of x: 3x + 4y = 2

- 6. Write the following equation for x in terms of y: x 2y 3 = 0
- 7. Use the graph to state the intervals in which the function is increasing, and decreasing. Then, find the average rate of change between $x_1 = 150$ and $x_2 = 350$.

The: [0,150], [300,350]

$$ARC = \frac{40-90}{350+150} = \frac{-50}{200} = \frac{-1/4}{4}$$

- 8. For the function f(x) = 3x 2, determine the average rate of change between $x_1 = 2$, and $x_2 = 3$. $y_1 = 4$ $y_2 = 7$ $y_3 = 4$ $y_4 = 4$
- 9. Determine whether the following functions are one-to-one. If they are, find their inverse function.

a. f(x) = -2x + 4Thurse y = -2x + 4

x = -2y + 4=) $y = \frac{x-4}{-2}$

 $c. g(x) = x^2 - 2x$

(ever proved polymented)

D 1-1? f(x1)=f(x2)

 $f(x_1) = f(x_2)$ $(J_{X_1})^2 = (J_{X_2})$ $(J_{X_1})^2 = (J_{X_2})$

b. $f(x) = \sqrt{x}$ 2) Shierse

4 : \sqrt{x}

4 = 1x 4 = 1x

d. $h(x) = x^3 + 8$

h(x) = h(xz) $x^{3} + 8 = x^{3} + 8$ $x^{3} + x^{3} + x^{3} + x^{3}$

10. Let
$$f(x) = x - 3$$
 and $g(x) = 4x^2$. Find $f + g$, $f - g$, fg , $\frac{f}{g}$, $f \circ g$, $g \circ f$

$$f + g = (x - 3) + 4x^2 \qquad \qquad f = (x - 3) + (x$$

$$f = (x-3)(4x^2) = 4x^3 - 12x^2$$

11. Use f(x) = 3x - 5 and $g(x) = 2 - x^2$ to evaluate the following expressions.

a.
$$(f \circ g)(0)$$

b.
$$(f \circ g)(g)$$

a.
$$(f \circ g)(0)$$
 b. $(f \circ g)(2)$ c. $(f \circ f)(3)$ d. $(g \circ f)(1)$

$$2 - (-2)^2$$

= $F2$.

- $f(g(2)) \qquad f(f(3)) \qquad f(f($
 - 13. (T or F) If a graph stretches vertically, then it also stretches horizontally.
 - 14. (T) or F) The set of all inputs (domain) of a function becomes the set of all outputs (range) for the inverse function.
 - 15. (T or(F) You can test for one-to-one-ness of a function using the vertical line test.
 - 16. The effectiveness of a television commercial depends on how many times a viewer watches it. After some experiments an advertising agency found that if the effectiveness E is measured on a scale of 0 to 10, then $E(n) = \frac{2}{3}n - \frac{1}{90}n^2$, where n

17. A gardener has 240 feet of fencing to fence in a rectangular vegetable garden. Find the dimensions of the largest area she can fence. What is the maximum area?

24+24-240 A(x)=x(120-x)c(instead of xy).

Since P=240 and [x=60, y=60]

x+y=120 y=120-x $x=\frac{1}{20}=\frac{120}{20}$ $x=\frac{1}{20}=\frac{120}{20}$ $x=\frac{1}{20}=\frac{120}{20}$ $x=\frac{1}{20}=\frac{120}{20}$ $x=\frac{1}{20}=\frac{120}{20}$ $x=\frac{1}{20}=\frac{120}{20}$

18. A hockey team plays in an arena with a seating capacity of 10,500 spectators. With the ticket price set at \$10, average attendance at recent games has been 9000. A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000. R(x) -x ((100) + (100) - (100) x + (100) x +

attendance increases by 1000. $\mathbb{R}(X) = \mathbb{R}(x) + 9000 = \mathbb{R}(x) + 9000$

b. Find the price that maximizes revenue from ticket sales.

19. A rectangular building lot is three times as long as it is wide. Find a function that models its area A in terms of its width w.

20. Find a function that models the radius *r* of a circle in terms of its area *A*.

21. Find a function that models the area A of a circle in terms of its circumference C.

22. Two ships leave port at the same time. One sails south at 15mi/h and the other sails east at 20mi/h. Find a function that models the distance *D* between the ships in terms of the time *t* (in hours) elapsed since their departure.

