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CHAPTER 9 Systems of Equations and Inequalities 635

Chapter Overview

Many real-world situations have too many variables to be modeled by a single equa-
tion. For example, weather depends on many variables, including temperature, wind
speed, air pressure, humidity, and so on. So to model (and forecast) the weather,
scientists use many equations, each having many variables. Such systems of equations
work together to describe the weather. Systems of equations with hundreds or even
thousands of variables are also used extensively in the air travel and telecommunica-
tions industries to establish consistent airline schedules and to find efficient routing
for telephone calls. To understand how such systems arise, let’s consider the follow-
ing simple example.

A gas station sells regular gas for $2.20 per gallon and premium for $3.00 per 
gallon. At the end of a business day 280 gallons of gas were sold and receipts totaled
$680. How many gallons of each type of gas were sold? If we let x and y be the num-
ber of gallons of regular and premium gasoline sold, respectively, we get the follow-
ing system of two equations:

These equations work together to help us find x and y; neither equation alone can tell
us the value of x or y. The values x � 200 and y � 80 satisfy both equations, so they
form a solution of the system. Thus, the station sold 200 gallons of regular and 
80 gallons of premium.

We can also represent a linear system by a rectangular array of numbers called a
matrix. The augmented matrix of the above system is:

The augmented matrix contains the same information as the system, but in a simpler
form. One of the important ideas in this chapter is to think of a matrix as a single 
object, so we denote a matrix by a single letter, such as A, B, C, and so on. We can 
add, subtract, and multiply matrices, just as we do ordinary numbers. We will pay
special attention to matrix multiplication—it’s defined in a way (which may seem

c 1 1 280

2.20 3.00 680
d

Gallons equation
Dollars equation

e x � y � 280

2.20x � 3.00y � 680
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9.3 Systems of Linear Equations 
in Several Variables

9.4 Systems of Linear Equations: 
Matrices

9.5 The Algebra of Matrices

9.6 Inverses of Matrices and Matrix
Equations

9.7 Determinants and Cramer’s Rule

9.8 Partial Fractions

9.9 Systems of Inequalities

We can solve this system graphically.
The point lies on the graph 
of each equation, so it satisfies both
equations.

1200,  802

Gallons equation

Dollars equation

x y

(200, 80)

y

x
50

x+y=280

50

0

2.2x+3.0y=680
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636 CHAPTER 9 Systems of Equations and Inequalities

SUGGESTED TIME 

AND EMPHASIS

class.

Essential material. Can be
combined with Section 9.2.

DRILL QUESTION

Solve this system of equations.
x + y = 2

4x - 2y = -1

Answer

x =
1

2
, y =

3

2

1
2 -1

POINT TO STRESS

Solving systems of equations with two variables, using the methods of substitution, elimination, and
graphing.

complicated at first) that makes it possible to write a linear system as a single matrix
equation

where X is the unknown matrix. As you will see, solving this matrix equation for the
matrix X is analogous to solving the algebraic equation ax � b for the number x.

In this chapter we consider many uses of matrices, including applications to 
population growth (Will the Species Survive? page 688) and to computer graphics 
(Computer Graphics I, page 700).

9.1 Systems of Equations

In this section we study how to solve systems of two equations in two unknowns. We
learn three different methods of solving such systems: by substitution, by elimina-
tion, and graphically.

Systems of Equations and Their Solutions

A system of equations is a set of equations that involve the same variables. A solu-
tion of a system is an assignment of values for the variables that makes each equa-
tion in the system true. To solve a system means to find all solutions of the system.

Here is an example of a system of two equations in two variables:

We can check that x � 3 and y � 1 is a solution of this system.

Equation 1 Equation 2

The solution can also be written as the ordered pair .
Note that the graphs of Equations 1 and 2 are lines (see Figure 1). Since the solu-

tion satisfies each equation, the point lies on each line. So it is the point
of intersection of the two lines.

Figure 1

(3, 1)

1 3

2x-y=5

1

0

x+4y=7

y

x

13,  1 213,  1 2 13,  1 23 � 411 2 � 7213 2 � 1 � 5

x � 4y � 72x � y � 5

Equation 1
Equation 2

e2x � y � 5

x � 4y � 7

AX � B

636 CHAPTER 9 Systems of Equations and Inequalities
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CHAPTER 9 Systems of Equations and Inequalities 637

ALTERNATE EXAMPLE 1
Find all solutions of the system.

5x + y = 2
3x - 2y = 22

ANSWER
x = 2, y = -8

IN-CLASS MATERIALS

This may be a good time to point out that a system of equations can have zero, one, more than one, or infi-
nitely many solutions. The students will be able to solve systems that have one or more than one solution:

2x + y = 3 x2 = y y = x3 - x2 - 4x
-2x + 3y = 3 -x2 + 8 = y y = 4

When demonstrating these systems, it is important to show the graphical solution as well as an analytic
solution. Then have the students show, graphically, a system of equations with no solutions and then one
with infinitely many solutions.

Substitution Method

In the substitution method we start with one equation in the system and solve for one
variable in terms of the other variable. The following box describes the procedure.

SECTION 9.1 Systems of Equations 637

Substitution Method

1. Solve for One Variable. Choose one equation and solve for one variable
in terms of the other variable.

2. Substitute. Substitute the expression you found in Step 1 into the other
equation to get an equation in one variable, then solve for that variable.

3. Back-Substitute. Substitute the value you found in Step 2 back into the
expression found in Step 1 to solve for the remaining variable.

Example 1 Substitution Method

Find all solutions of the system.

Solution We solve for y in the first equation.

Solve for y in Equation 1

Now we substitute for y in the second equation and solve for x:

Substitute y � 1 � 2x into Equation 2

Expand

Simplify

Subtract 4

Solve for x

Next we back-substitute x � �2 into the equation y � 1 � 2x:

Back-substitute

Thus, x � �2 and y � 5, so the solution is the ordered pair . Figure 2 shows
that the graphs of the two equations intersect at the point .

Figure 2
■

(_2, 5)

y

x
1

2x+y=1

3x+4y=14

1

0

1�2,  5 21�2,  5 2y � 1 � 21�2 2 � 5

 x � �2

 �5x � 10

 �5x � 4 � 14

 3x � 4 � 8x � 14

 3x � 411 � 2x 2 � 14

y � 1 � 2x

Equation 1
Equation 2

e2x � y � 1

3x � 4y � 14

Check Your Answer

x � �2, y � 5:e21�22 � 5 � 1

31�22 � 4152 � 14

Solve for one variable

Substitute

Back-substitute

e e e

e
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638 CHAPTER 9 Systems of Equations and Inequalities

SAMPLE QUESTION

Text Question

The textbook says that given the system

3x + 2y = 14
x - 2y = 2

we can add the equations to eliminate y, obtaining 4x = 16, and thus determining x = 4 and y = 1. Could
this system be solved using the substitution method? If not, why not? If so, would the answers be the same?

Answer

It could, and the answers would be the same.

Example 2 Substitution Method

Find all solutions of the system.

Solution We start by solving for y in the second equation.

Solve for y in Equation 2

Next we substitute for y in the first equation and solve for x:

Expand

Simplify

Factor

Solve for x

Now we back-substitute these values of x into the equation y � 3x � 10.

Back-substitute

Back-substitute

So we have two solutions: and .
The graph of the first equation is a circle, and the graph of the second equation 

is a line; Figure 3 shows that the graphs intersect at the two points 
and .16,  8 2 10,  �10 216,  8 210,  �10 2For x � 6:  y � 316 2 � 10 � 8

For x � 0:  y � 310 2 � 10 � �10

 x � 0  or  x � 6

 10x1x � 6 2 � 0

 10x 
2 � 60x � 0

 x 
2 � 19x 

2 � 60x � 100 2 � 100

Substitute y � 3x � 10 
into Equation 1 x 

2 � 13x � 10 2 2 � 100

y � 3x � 10

Equation 1
Equation 2

e  x 
2 � y 

2 � 100

3x � y � 10

638 CHAPTER 9 Systems of Equations and Inequalities

Check Your Answers

x � 0, y � �10:

x � 6, y � 8:e  16 2 2 � 18 2 2 � 36 � 64 � 100

316 2 � 18 2 � 18 � 8 � 10

e  10 2 2 � 1�10 2 2 � 100

310 2 � 1�10 2 � 10

(6, 8)

(0, _10)

y

x60

6

≈+¥=100

3x-y=10
Figure 3

Solve for one variable

Substitute

Back-substitute

Elimination Method

To solve a system using the elimination method, we try to combine the equations 
using sums or differences so as to eliminate one of the variables.

■

ALTERNATE EXAMPLE 2
Find all solutions of the system. 

ANSWER
(0, 25), (-15, -20)

e   x2 + y2 = 625

3x - y = -25

e
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CHAPTER 9 Systems of Equations and Inequalities 639

ALTERNATE EXAMPLE 3 
Find all solutions of the system. 

ANSWER
(6, 6)

ALTERNATE EXAMPLE 4
Find all solutions of the system.

ANSWER
(3, -6), (-3, -6)

e3x2 + 5y = -3

4x2 + 3y =  18

e5x + 4y =    54

x - 4y = -18

IN-CLASS MATERIALS

Many students will want to just learn one method of solving systems of equations, and stick with it. It is important that they are familiar with all
three. One reason is that some systems are easier to solve with one method than another. Another reason is that if they take mathematics classes
in the future, their teachers will use their own favorite method in class.

Either have the students try to come up with three sample systems, each lending itself to a different method, or use these:

Example 3 Elimination Method

Find all solutions of the system.

Solution Since the coefficients of the y-terms are negatives of each other, we can
add the equations to eliminate y.

System

Add

Solve for x

Now we back-substitute x � 4 into one of the original equations and solve for y.
Let’s choose the second equation because it looks simpler.

Equation 2

Back-substitute x � 4 into Equation 2

Subtract 4

Solve for y

The solution is . Figure 4 shows that the graphs of the equations in the system
intersect at the point . ■

Example 4 Elimination Method

Find all solutions of the system.

Solution We choose to eliminate the x-term, so we multiply the first equation by
5 and the second equation by �3. Then we add the two equations and solve for y.

5 � Equation 1

(�3) � Equation 2

Add

Solve for y y � �11

 �11y � 121

e 15x 
2 � 10y � 130

�15x 
2 � 21y � �9

Equation 1
Equation 2

e3x 
2 � 2y � 26

5x 
2 � 7y � 3

14,  1 214,  1 2  y � 1

 �2y � �2

 4 � 2y � 2

 x � 2y � 2

 x � 4

 4x      � 16

e3x � 2y � 14
x � 2y � 2

Equation 1
Equation 2

e3x � 2y � 14

x � 2y � 2

SECTION 9.1 Systems of Equations 639

Elimination Method

1. Adjust the Coefficients. Multiply one or more of the equations by 
appropriate numbers so that the coefficient of one variable in one equation is
the negative of its coefficient in the other equation.

2. Add the Equations. Add the two equations to eliminate one variable,
then solve for the remaining variable.

3. Back-Substitute. Substitute the value you found in Step 2 back into one
of the original equations, and solve for the remaining variable.

(4, 1)

y

x
1

7

x-2y=2

3x+2y=14

1

0

Figure 4

y = 3x + 2
Substitution easiest

Elimination easiest

y = x3 - x Exact solution impossible—a
y = ex graph can give an approximation

-3x +
6

11
y = 3

3x +
5

11
y = 2

2y2 - 8x2 - 12x - 4 = 4
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640 CHAPTER 9 Systems of Equations and Inequalities

EXAMPLE
A non-linear system with an inte-
ger solution:

x3 - y2 = 23
2x - 3y = 0

ANSWER
x = 3, y = 2

EXAMPLE
A non-linear system with a

transcendental solution:
ex + 2y = 5

-ex + 5y = 2

ANSWER
x = ln3, y = 1

ALTERNATE EXAMPLE 5
Find all solutions of the system,
correct to one decimal place.

ANSWER
x � 1.2, y � 0.7 and x � -1.2, 
y � -0.7

x2 + y2 = 2
y = x3 - x

EXAMPLE
A straightforward (if contrived) word problem:

Retaining bricks for gardens are usually either 6 inches or 12 inches long. A 6-inch brick costs $0.80 and a
12-inch brick costs $1.20. Assume we have a garden with an 8-foot perimeter and we spend $10.80. How
many bricks of each type did we buy?

ANSWER
6 small bricks and 5 large ones

Now we back-substitute y � �11 into one of the original equations, say 
3x2 � 2y � 26, and solve for x:

Back-substitute y � �11 into Equation 1

Add 22

Divide by 3

Solve for x

So we have two solutions: and .
The graphs of both equations are parabolas; Figure 5 shows that the graphs inter-

sect at the two points and . ■

Check Your Answers

x � �4, y � �11: x � 4, y � �11:

Graphical Method

In the graphical method we use a graphing device to solve the system of equations.
Note that with many graphing devices, any equation must first be expressed in terms
of one or more functions of the form before we can use the calculator to
graph it. Not all equations can be readily expressed in this way, so not all systems can
be solved by this method.

y � f 1x 2

e31422 � 21�112 � 26

51422 � 71�112 � 3
e31�422 � 21�112 � 26

51�422 � 71�112 � 3

14,  �11 21�4,  �11 2 14,  �11 21�4,  �11 2x � �4  or  x � 4

 x 
2 � 16

 3x 
2 � 48

 3x 
2 � 21�11 2 � 26

640 CHAPTER 9 Systems of Equations and Inequalities

(4, _11)

y

x
2

3≈+2y=26

5

0

(_4, _11)

5≈+7y=3

Figure 5

The graphs of quadratic functions 
y � ax2 � bx � c are called parabolas;
see Section 2.5.

Graphical Method

1. Graph Each Equation. Express each equation in a form suitable for the
graphing calculator by solving for y as a function of x. Graph the equations
on the same screen.

2. Find the Intersection Points. The solutions are the x- and 
y-coordinates of the points of intersection.

It may be more convenient to solve for x in terms of y in the equations. In that case,
in Step 1 graph x as a function of y instead.

Example 5 Graphical Method

Find all solutions of the system.

Solution Solving for y in terms of x, we get the equivalent systeme y � x 
2 � 2

y � 2x � 1

e x 
2 � y � 2

2x � y � �1

e

e

e
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CHAPTER 9 Systems of Equations and Inequalities 641

ALTERNATE EXAMPLE 6
Find all solutions of the system.

ANSWER
(4, 15), (-1, 0)

e   x2 - y =   1

3x - y = -3

IN-CLASS MATERIALS

Populations with an initial popula-
tion P0 grow according to the 
logistic growth model

where A, K and c are constants.

and K is the 

“carrying capacity” of the
environment. Draw a few sample
graphs for the students:

A =
K - P0

P0

P =
K

1 + Ae-ct

Figure 6 shows that the graphs of these equations intersect at two points. Zooming
in, we see that the solutions are

■

Check Your Answers

x � �1, y � �1: x � 3, y � 7:

Example 6 Solving a System of Equations Graphically

Find all solutions of the system, correct to one decimal place.

Solution The graph of the first equation is a circle and the second a parabola. 
To graph the circle on a graphing calculator, we must first solve for y in terms 
of x (see Section 2.3).

Isolate y2 on LHS

Take square roots

To graph the circle, we must graph both functions:

In Figure 7 the graph of the circle is shown in red and the parabola in blue. The
graphs intersect in quadrants I and II. Zooming in, or using the Intersect com-
mand, we see that the intersection points are and .
There also appears to be an intersection point in quadrant IV. However, when we
zoom in, we see that the curves come close to each other but don’t intersect (see
Figure 8). Thus, the system has two solutions; correct to the nearest tenth, they are

Figure 7 Figure 8

x2 � y2 � 12, y � 2x2 � 5x Zooming in ■

0.5 2.0

_4

_25

_5

_7 7

(b)

Intersection
X=2.8467004  Y=1.973904

5

_5

_7 7

(a)

Intersection
X=-.5588296  Y=3.4187292

1�0.6,  3.4 2  and  12.8,  2.0 2
12.847,  1.974 21�0.559,  3.419 2

y � 212 � x 
2  and  y � �212 � x 

2

 y � �212 � x 
2

 y 
2 � 12 � x 

2

 x 
2 � y 

2 � 12

Equation 1
Equation 2

e x 
2 � y 

2 � 12

y � 2x 
2 � 5x

e 32 � 7 �   2

213 2 � 7 � �1
e 1�1 2 2 � 1�1 2 � 2

21�1 2 � 1�1 2 � �1

1�1,  �1 2  and  13,  7 2
SECTION 9.1 Systems of Equations 641

8

_3

_3 4
≈-y=2

(3, 7)

(_1, _1)

2x-y=_1

Figure 6

K � 100, c � 1, P0 � 50, 100, 150 K � 500, c � 0.2, P0 � 10

Assume that we want to find out the carrying capacity of an environment (“How many trout will Big Island Lake support?”). We can find (or
estimate) P0, and then measure the population at two times (say, at t = 1 and t = 6 months). Now we have a system of two equations with two
unknowns, and we are able to find K and c.

160
140
120
100
80
60
40
20

0 1 2 3 4 5

P

t 0

100

200

300

400

500

10 20 30 40 50

P

t
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642 CHAPTER 9 Systems of Equations and Inequalities

1–8 ■ Use the substitution method to find all solutions of the
system of equations.

1. 2.

3. 4.

5. 6.

7. 8.

9–16 ■ Use the elimination method to find all solutions of the
system of equations.

9. 10.

11. 12.

13. 14.

15. 16.

17–22 ■ Two equations and their graphs are given. Find the 
intersection point(s) of the graphs by solving the system.

17. 18.

19. 20.

1
0 2

y

x
1
0 1

y

x

e x � y 
2 � �4

x � y � 2
e x 

2 � y � 8

x � 2y � �6

1

1

0

y

x

1

1

y

x0

e x � y � 2

2x � y � 5
e2x � y � �1

x � 2y � �8

e x 
2 � y 

2 � 1

2x 
2 � y 

2 � x � 3
e x � y 

2 � 3 � 0

2x 
2 � y 

2 � 4 � 0

e2x 
2 � 4y � 13

x 
2 � y 

2 � 7
2

e3x 
2 � y 

2 � 11

x 
2 � 4y 

2 � 8

e 3x 
2 � 4y � 17

2x 
2 � 5y � 2

e x 
2 � 2y � 1

x 
2 � 5y � 29

e4x � 3y � 11

8x � 4y � 12
e x � 2y � 5

2x � 3y � 8

e x 
2 � y � 1

2x 
2 � 3y � 17

e x � y 
2 � 0

2x � 5y 
2 � 75

e x 
2 � y � 9

x � y � 3 � 0
e x 

2 � y 
2 � 8

x � y � 0

e x 
2 � y 

2 � 25

y � 2x
e y � x 

2

y � x � 12

e2x � y � 7

x � 2y � 2
e x � y � 2

2x � 3y � 9

21. 22.

23–36 ■ Find all solutions of the system of equations.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–46 ■ Use the graphical method to find all solutions of the
system of equations, correct to two decimal places.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46. e y � e 
x � e 

�x

y � 5 � x 
2e x 

4 � 16y 
4 �    32

x 
2 � 2x � y � 0

e x 
2 � y 

2 � 3

y � x 
2 � 2x � 8• x 

2

9
�

y 
2

18
� 1

y � �x 
2 � 6x � 2

e x 
2 � y 

2 � 17

x 
2 � 2x � y 

2 � 13
e x 

2 � y 
2 � 25

x � 3y � 2

e y � x 
2 � 4x

2x � y � 2
e y � x 

2 � 8x

y � 2x � 16

e y � �2x � 12

y � x � 3
e y � 2x � 6

y � �x � 5

µ 4

x 
2 �

6

y 
4 �

7

2

1

x 
2 �

2

y 
4 � 0

µ 2
x

�
3
y

� 1

� 

4
x

�
7
y

� 1

e x 
4 � y 

3 � 17

3x 
4 � 5y 

3 � 53
e2x 

2 � 8y 
3 � 19

4x 
2 � 16y 

3 � 34

e x 
2 � 2y 

2 � 2

2x 
2 � 3y � 15

e x 
2 � y 

2 � 9

x 
2 � y 

2 � 1

e x � 1y � 0

y 
2 � 4x 

2 � 12
e x 

2y � 16

x 
2 � 4y � 16 � 0

e xy � 24

2x 
2 � y 

2 � 4 � 0
e x � y � 4

xy � 12

e y � 4 � x 
2

y � x 
2 � 4

e x � 2y � 2

y 
2 � x 

2 � 2x � 4

e x � y 
2 � 0

y � x 
2 � 0

e y � x 
2 � 4x

y � 4x � 16

0 1

1

y

x

0
11

y

x

e x 
2 � y 

2 � 4x

x � y 
2e x 

2 � y � 0

x 
3 � 2x � y � 0

9.1 Exercises
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SECTION 9.1 Systems of Equations 643

Applications

47. Dimensions of a Rectangle A rectangle has an area of
180 cm2 and a perimeter of 54 cm. What are its dimensions?

48. Legs of a Right Triangle A right triangle has an area of
84 ft2 and a hypotenuse 25 ft long. What are the lengths of
its other two sides?

49. Dimensions of a Rectangle The perimeter of a rect-
angle is 70 and its diagonal is 25. Find its length and width.

50. Dimensions of a Rectangle A circular piece of sheet
metal has a diameter of 20 in. The edges are to be cut off to
form a rectangle of area 160 in2 (see the figure). What are
the dimensions of the rectangle?

51. Flight of a Rocket A hill is inclined so that its “slope” is
, as shown in the figure. We introduce a coordinate system

with the origin at the base of the hill and with the scales on
the axes measured in meters. A rocket is fired from the base
of the hill in such a way that its trajectory is the parabola
y � �x2 � 401x. At what point does the rocket strike the
hillside? How far is this point from the base of the hill (to
the nearest cm)?

52. Making a Stovepipe A rectangular piece of sheet metal
with an area of 1200 in2 is to be bent into a cylindrical
length of stovepipe having a volume of 600 in3. What are
the dimensions of the sheet metal?

x

y

run
rise

=1
2

rise
runx

y

0

1
2

53. Global Positioning System (GPS) The Global 
Positioning System determines the location of an object
from its distances to satellites in orbit around the earth. 
In the simplified, two-dimensional situation shown in 
the figure, determine the coordinates of P from the fact 
that P is 26 units from satellite A and 20 units from 
satellite B.

Discovery • Discussion

54. Intersection of a Parabola and a Line On a sheet 
of graph paper, or using a graphing calculator, draw the
parabola y � x 2. Then draw the graphs of the linear equa-
tion y � x � k on the same coordinate plane for various 
values of k. Try to choose values of k so that the line and 
the parabola intersect at two points for some of your k’s,
and not for others. For what value of k is there exactly one
intersection point? Use the results of your experiment to
make a conjecture about the values of k for which the 
following system has two solutions, one solution, and no 
solution. Prove your conjecture.

55. Some Trickier Systems Follow the hints and solve the
systems.

(a) [Hint: Add the equations.]

(b)

(c)

(d)
[Hint: Add the equations 
and factor the result.]

e x 
2 � xy � 1

xy � y 
2 � 3

[Hint: Factor the left side 
of the second equation.]

e x � y � 3

x 
3 � y 

3 � 387

e2x � 2y � 10

4x � 4y � 68

e log x � log y � 3
2

2 log x � log y � 0

e y � x 
2

y � x � k

P(x, y)
20

26 B(28, 20)

A(22, 32)
y

x

Planet

[Hint: Note that 
.]4x � 22x � 12x 2 2
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SUGGESTED TIME 

AND EMPHASIS

class.

Essential material. Can be
combined with Section 9.1.

POINTS TO STRESS

1. Solving systems of linear
equations.

2. Inconsistent and dependent
systems.

3. Using the modeling process to
solve applied problems.

1
2 -1

9.2 Systems of Linear Equations 
in Two Variables

Recall that an equation of the form Ax � By � C is called linear because its graph is
a line (see Section 1.10). In this section we study systems of two linear equations in
two variables.

Systems of Linear Equations in Two Variables

A system of two linear equations in two variables has the form

We can use either the substitution method or the elimination method to solve such
systems algebraically. But since the elimination method is usually easier for linear
systems, we use elimination rather than substitution in our examples.

The graph of a linear system in two variables is a pair of lines, so to solve the sys-
tem graphically, we must find the intersection point(s) of the lines. Two lines may in-
tersect in a single point, they may be parallel, or they may coincide, as shown in
Figure 1. So there are three possible outcomes when solving such a system.

e a1x � b1y � c1

a2x � b2y � c2

644 CHAPTER 9 Systems of Equations and Inequalities

Number of Solutions of a Linear System in Two Variables

For a system of linear equations in two variables, exactly one of the following
is true. (See Figure 1.)

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system that has no solution is said to be inconsistent. A system with infinitely
many solutions is called dependent.

Figure 1

0 x

y

0 x

y

0 x

y

Linear system with one solution.
Lines intersect at a single point.

(a) Linear system with no solution.
Lines are parallel—they do
not intersect.

(b) Linear system with infinitely many
solutions. Lines coincide—equations
are for the same line.

(c)
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CHAPTER 9 Systems of Equations and Inequalities 645

ALTERNATE EXAMPLE 1
Solve the system.

If the system is inconsistent,
indicate this. 

ANSWER
(4, 16)

SAMPLE QUESTION

Text Question

Why does the dependent system 
x + y = 2, 2x + 2y = 4 have
infinitely many solutions?

Answer

For any given x, there is a y that
satisfies both equations.

ALTERNATE EXAMPLE 2
Solve the system. 

If the system is inconsistent,
indicate this.

ANSWER
Inconsistent 

ALTERNATE EXAMPLE 3 
Solve the system. 

If the system is inconsistent,
indicate this.

ANSWER

ax, 
1

3
 x - 4b

e2x - 6y = 24

3x - 9y = 36

e    12x - 3y = 7

-20x + 5y = 4

e  4x - y = 0

5x + 2y = 52

DRILL QUESTION

A woman rows a boat upstream from one point on a river to another point 4 mi away in 3 hours. The return
trip, traveling with the current, takes 2 hours. How fast does she row relative to the water, and at what
speed is the current flowing?

Answer

She rows at mi/h and the current flows at mi/h.
1

3

5

3

Example 1 A Linear System with One Solution

Solve the system and graph the lines.

Equation 1
Equation 2

Solution We eliminate y from the equations and solve for x.

Now we back-substitute into the first equation and solve for y:

Back-substitute x � 2

Subtract 6 � 2 � 12

Solve for y

The solution of the system is the ordered pair , that is,

The graph in Figure 2 shows that the lines in the system intersect at the 
point . ■

Example 2 A Linear System with No Solution

Solve the system.

Solution This time we try to find a suitable combination of the two equations 
to eliminate the variable y. Multiplying the first equation by 3 and the second by 
2 gives

Adding the two equations eliminates both x and y in this case, and we end up with 
0 � 29, which is obviously false. No matter what values we assign to x and y, we
cannot make this statement true, so the system has no solution. Figure 3 shows 
that the lines in the system are parallel and do not intersect. The system is 
inconsistent. ■

Example 3 A Linear System with Infinitely Many Solutions

Solve the system.

Equation 1
Equation 2

e3x � 6y � 12

4x � 8y � 16

3 � Equation 1
2 � Equation 2

Add

b 24x � 6y � 15

�24x � 6y � 14

0 � 29

Equation 1
Equation 2

e 8x � 2y � 5

�12x � 3y � 7

12,  6 2
x � 2,  y � 6

12,  6 2 y � 6

 �2y � �12

 612 2 � 2y � 0

2 � Equation 1

Add
Solve for x

e 6x � 2y � 0

5x � 2y � 22

11x � 22

x � 2

e3x � y � 0

5x � 2y � 22

SECTION 9.2 Systems of Linear Equations in Two Variables 645

3x-y=0y

x2

6

5x+2y=22

(2, 6)

Figure 2

Check Your Answer

:e312 2 � 16 2 � 0

512 2 � 216 2 � 22

x � 2, y � 6

8x-2y=5

1

1

_12x+3y=7

x0

y

Figure 3
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646 CHAPTER 9 Systems of Equations and Inequalities

IN-CLASS MATERIALS

Notice that some systems that
are not technically linear can be
solved by similar means. For
example, given

one can use elimination to obtain

EXAMPLE
A system of linear equations:

2x - 3y = 10
x - 5y = 12

ANSWER
x = 2, y = -2

2y = 8 Q x = 4, y = 3.2x = 2,

 52x - 3(2y
 ) = -14

 2x + 2y =     10

IN-CLASS MATERIALS

The text has shown examples of systems of linear equations with zero, one, and infinitely many solutions.
Ask the students to try to come up with an example of a system with a different outcome, or to explain why
it is not possible. Discussing graphical solutions to these systems will not only make the answer apparent,
but it will also reinforce the nomenclature “linear equation.”

Solution We multiply the first equation by 4 and the second by 3 to prepare for
subtracting the equations to eliminate x. The new equations are

We see that the two equations in the original system are simply different ways 
of expressing the equation of one single line. The coordinates of any point on this
line give a solution of the system. Writing the equation in slope-intercept form,
we have . So if we let t represent any real number, we can write the 
solution as

We can also write the solution in ordered-pair form as

where t is any real number. The system has infinitely many solutions (see Figure 4).
■

In Example 3, to get specific solutions we have to assign values to t. For instance,
if t � 1, we get the solution . If t � 4, we get the solution . For every
value of t we get a different solution. (See Figure 4.)

Modeling with Linear Systems

Frequently, when we use equations to solve problems in the sciences or in other ar-
eas, we obtain systems like the ones we’ve been considering. When modeling with
systems of equations, we use the following guidelines, similar to those in Section 1.6.

14,  0 2A1,  � 
3
2B

1t,  
1
2 t � 2 2

 y � 1
2 t � 2

 x � t

y � 1
2 x � 2

4 � Equation 1
3 � Equation 2

e12x � 24y � 48

12x � 24y � 48

646 CHAPTER 9 Systems of Equations and Inequalities

Guidelines for Modeling with Systems of Equations

1. Identify the Variables. Identify the quantities the problem asks you to
find. These are usually determined by a careful reading of the question posed
at the end of the problem. Introduce notation for the variables (call them x
and y or some other letters).

2. Express All Unknown Quantities in Terms of the Variables. Read
the problem again and express all the quantities mentioned in the problem in
terms of the variables you defined in Step 1.

3. Set Up a System of Equations. Find the crucial facts in the problem
that give the relationships between the expressions you found in Step 2. Set
up a system of equations (or a model) that expresses these relationships.

4. Solve the System and Interpret the Results. Solve the system you
found in Step 3, check your solutions, and state your final answer as a 
sentence that answers the question posed in the problem.

(t, t-2)
1

1

1
2

x0

y

t = 4

t = 1

Figure 4

The next two examples illustrate how to model with systems of equations.

e
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CHAPTER 9 Systems of Equations and Inequalities 647

ALTERNATE EXAMPLE 4
A woman rows a boat upstream
from one point on a river to
another point 7 mi away in 1
hours. The return trip, traveling
with the current, takes only 50 min.
How fast does she row relative to
the water (in mi/h), and at what
speed is the current flowing
(in mi/h)? 

ANSWER

7 mi/h, mi/h
7

5

1
4

IN-CLASS MATERIALS

Complex arithmetic can be reviewed at this time. Ask the students if this is a system of linear equations in
two variables and (if so) to solve it:

(2 - i) x + 4y = 5
(4 - 3i) x - 2y = 3 + i

Example 4 A Distance-Speed-Time Problem

A woman rows a boat upstream from one point on a river to another point 4 mi
away in hours. The return trip, traveling with the current, takes only 45 min. How
fast does she row relative to the water, and at what speed is the current flowing?

Solution We are asked to find the rowing speed and the speed of the current, so
we let

x � rowing speed (mi/h)

y � current speed (mi/h)

The woman’s speed when she rows upstream is her rowing speed minus the speed
of the current; her speed downstream is her rowing speed plus the speed of the 
current. Now we translate this information into the language of algebra.

In Words In Algebra

Rowing speed x
Current speed y
Speed upstream x � y
Speed downstream x � y

The distance upstream and downstream is 4 mi, so using the fact that
speed � time � distance for both legs of the trip, we get

� �

� �

In algebraic notation this translates into the following equations.

Equation 1

Equation 2

(The times have been converted to hours, since we are expressing the speeds in
miles per hour.) We multiply the equations by 2 and 4, respectively, to clear the 
denominators.

Add

Solve for x

Back-substituting this value of x into the first equation (the second works just as
well) and solving for y gives

Back-substitute x � 4

Subtract 12

Solve for y

The woman rows at 4 mi/h and the current flows at mi/h. ■1 
1
3

 y � 4
3

 �3y � 8 � 12

 314 2 � 3y � 8

x     � 4

6x     � 24

2 � Equation 1
4 � Equation 2

e3x � 3y � 8

3x � 3y � 16

 1x � y 2 34 � 4

 1x � y 2 32 � 4

distance traveledtime downstreamspeed downstream

distance traveledtime upstreamspeed upstream

1 
1
2

SECTION 9.2 Systems of Linear Equations in Two Variables 647

current

4 mi

Check Your Answer

Speed upstream is

mi/h

and this should equal

� 4 mi/h � mi/h � 2 mi/h
Speed downstream is

mi/h

and this should equal

rowing speed � current flow
� 4 mi/h � mi/h � 5 mi/h1

3
4
3

distance

time
�

4 mi
3
4 h

� 5 
1
3

2
3

4
3

rowing speed � current flow

distance

time
�

4 mi

1 
1
2 h

� 2 
2
3

Identify the variables

Express unknown quantities in
terms of the variable

Set up a system of equations

Solve the system
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648 CHAPTER 9 Systems of Equations and Inequalities

ALTERNATE EXAMPLE 5
A vintner fortifies wine that
contains 10% alcohol by adding a
60% alcohol solution to it. The
resulting mixture has an alcoholic
strength of 12% and fills 1100
one-liter bottles. How many
liters (L) of the wine and of the
alcohol solution does he use?

ANSWER
1056, 44

EXAMPLE
A “mixture problem”: Peanuts cost $4.00 per pound and cashews cost $7.50 per pound. If I buy a 5-pound
bag consisting of peanuts and cashews, and I pay $23.50 for the bag, how many pounds of cashews are in it?

ANSWER
1 lb cashews, 4 lb peanuts

Example 5 A Mixture Problem

A vintner fortifies wine that contains 10% alcohol by adding 70% alcohol 
solution to it. The resulting mixture has an alcoholic strength of 16% and fills 
1000 one-liter bottles. How many liters (L) of the wine and of the alcohol 
solution does he use?

Solution Since we are asked for the amounts of wine and alcohol, we let

From the fact that the wine contains 10% alcohol and the solution 70% alcohol, we
get the following.

In Words In Algebra

Amount of wine used (L) x
Amount of alcohol solution used (L) y
Amount of alcohol in wine (L) 0.10x
Amount of alcohol in solution (L) 0.70y

The volume of the mixture must be the total of the two volumes the vintner is adding
together, so

Also, the amount of alcohol in the mixture must be the total of the alcohol contributed
by the wine and by the alcohol solution, that is

Simplify

Multiply by 10 to clear decimals

Thus, we get the system

Subtracting the first equation from the second eliminates the variable x, and 
we get

Subtract Equation 1 from Equation 2

Solve for y

We now back-substitute y � 100 into the first equation and solve for x:

Back-substitute y � 100

Solve for x

The vintner uses 900 L of wine and 100 L of the alcohol solution. ■

 x � 900

 x � 100 � 1000

 y � 100

 6y � 600

Equation 1
Equation 2

e x � y � 1000

x � 7y � 1600

 x � 7y � 1600

 0.10x � 0.70y � 160

 0.10x � 0.70y � 10.16 21000

x � y � 1000

y � amount of alcohol solution used 1L 2x � amount of wine used 1L 2

648 CHAPTER 9 Systems of Equations and Inequalities

Identify the variables

Express all unknown quantities in
terms of the variable

Set up a system of equations

Solve the system
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SECTION 9.2 Systems of Linear Equations in Two Variables 649

1–6 ■ Graph each linear system, either by hand or using a
graphing device. Use the graph to determine if the system has
one solution, no solution, or infinitely many solutions. If there is
exactly one solution, use the graph to find it.

1. 2.

3. 4.

5. 6.

7–34 ■ Solve the system, or show that it has no solution. 
If the system has infinitely many solutions, express them in the
ordered-pair form given in Example 3.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. e 3
2 x � 1

3 y � 1
2

2x � 1
2 y � � 

1
2

e 1
2 x � 3

5 y � 3
5
3 x � 2y � 10

e u � 30√ � �5

�3u � 80√ � 5
e8s � 3t � �3

5s � 2t � �1

e 25x � 75y �   100

�10x � 30y � �40
e6x � 4y � 12

9x � 6y � 18

e 2x � 3y � �8

14x � 21y � 3
e 2x � 6y � 10

�3x � 9y � �15

e�3x � 5y � 2

9x � 15y � 6
e x � 4y � 8

3x � 12y � 2

e4x � 2y � 16

x � 5y � 70
e 3x � 2y � 8

�6x � 4y � 16

e 0.2x � 0.2y � �1.8

�0.3x � 0.5y � 3.3
e 1

2 x � 1
3 y � 2

1
5 x � 2

3 y � 8

e�4x � 12y � 0

12x � 4y � 160
e x � 2y � 7

5x � y � 2

e4x � 3y � 28

9x � y � �6
e�x � y � 2

4x � 3y � �3

e x � y � 7

2x � 3y � �1
e x � 3y � 5

2x � y � 3

e 3x � 2y � 0

�x � 2y � 8
e2x � 3y � 9

4x � 3y � 9

e x � y � 3

x � 3y � 7
e x � y � 4

�x � y � 0

e12x � 15y � �18

2x � 5
2 y � �3

e�x � 1
2 y � �5

2x � y �   10

e 2x � 6y � 0

�3x � 9y � 18
e 2x � 3y � 12

�x � 3
2 y � 4

e2x � y � 11

x � 2y � 4
e x � y � 4

2x � y � 2

31. 32.

33. 34.

35–38 ■ Use a graphing device to graph both lines in the same
viewing rectangle. (Note that you must solve for y in terms of x
before graphing if you are using a graphing calculator.) Solve
the system correct to two decimal places, either by zooming in
and using or by using Intersect.

35.

36.

37.

38.

39–42 ■ Find x and y in terms of a and b.

39.

40.

41.

42.

Applications

43. Number Problem Find two numbers whose sum is 34
and whose difference is 10.

44. Number Problem The sum of two numbers is twice their
difference. The larger number is 6 more than twice the
smaller. Find the numbers.

45. Value of Coins A man has 14 coins in his pocket, all of
which are dimes and quarters. If the total value of his
change is $2.75, how many dimes and how many quarters
does he have?

46. Admission Fees The admission fee at an amusement
park is $1.50 for children and $4.00 for adults. On a certain
day, 2200 people entered the park, and the admission fees

e ax � by � 0

a2x � b2y � 1
  1a � 0, b � 0, a � b 2

eax � by � 1

bx � ay � 1
  1a2 � b2 � 0 2

eax � by � 0

x � y � 1
  1a � b 2

e x � y � 0

x � ay � 1
  1a � 1 2

e�435x � 912y � 0

132x � 455y � 994

e2371x � 6552y � 13,591

9815x � 992y � 618,555

e18.72x � 14.91y � 12.33

6.21x � 12.92y � 17.82

e0.21x � 3.17y � 9.51

2.35x � 1.17y � 5.89

TRACE

e� 
1

10 x � 1
2 y � 4

2x � 10y � �80
e 1

3 x � 1
4 y � 2

�8x � 6y � 10

e 26x � 10y � �4

�0.6x � 1.2y � 3
e0.4x � 1.2y � 14

12x � 5y � 10

9.2 Exercises
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collected totaled $5050. How many children and how many
adults were admitted?

47. Airplane Speed A man flies a small airplane from Fargo
to Bismarck, North Dakota—a distance of 180 mi. Because
he is flying into a head wind, the trip takes him 2 hours. On
the way back, the wind is still blowing at the same speed, so
the return trip takes only 1 h 12 min. What is his speed in
still air, and how fast is the wind blowing?

48. Boat Speed A boat on a river travels downstream be-
tween two points, 20 mi apart, in one hour. The return trip
against the current takes hours. What is the boat’s speed,
and how fast does the current in the river flow?

49. Aerobic Exercise A woman keeps fit by bicycling and
running every day. On Monday she spends hour at each
activity, covering a total of mi. On Tuesday, she runs for
12 min and cycles for 45 min, covering a total of 16 mi. 
Assuming her running and cycling speeds don’t change
from day to day, find these speeds.

50. Mixture Problem A biologist has two brine solutions,
one containing 5% salt and another containing 20% salt.
How many milliliters of each solution should he mix to 
obtain 1 L of a solution that contains 14% salt?

51. Nutrition A researcher performs an experiment to test a
hypothesis that involves the nutrients niacin and retinol. She
feeds one group of laboratory rats a daily diet of precisely
32 units of niacin and 22,000 units of retinol. She uses two
types of commercial pellet foods. Food A contains 0.12 unit
of niacin and 100 units of retinol per gram. Food B contains
0.20 unit of niacin and 50 units of retinol per gram. How
many grams of each food does she feed this group of rats
each day?

12 
1
2

1
2

current

20 mi

2 
1
2

Bismarck
180 mi

Fargo

wind

52. Coffee Mixtures A customer in a coffee shop purchases 
a blend of two coffees: Kenyan, costing $3.50 a pound,
and Sri Lankan, costing $5.60 a pound. He buys 3 lb of the
blend, which costs him $11.55. How many pounds of each
kind went into the mixture?

53. Mixture Problem A chemist has two large containers 
of sulfuric acid solution, with different concentrations of
acid in each container. Blending 300 mL of the first solution
and 600 mL of the second gives a mixture that is 15% acid,
whereas 100 mL of the first mixed with 500 mL of the sec-
ond gives a acid mixture. What are the concentra-
tions of sulfuric acid in the original containers?

54. Investments A woman invests a total of $20,000 in two
accounts, one paying 5% and the other paying 8% simple
interest per year. Her annual interest is $1180. How much
did she invest at each rate?

55. Investments A man invests his savings in two accounts,
one paying 6% and the other paying 10% simple interest per
year. He puts twice as much in the lower-yielding account
because it is less risky. His annual interest is $3520. How
much did he invest at each rate?

56. Distance, Speed, and Time John and Mary leave their
house at the same time and drive in opposite directions.
John drives at 60 mi/h and travels 35 mi farther than Mary,
who drives at 40 mi/h. Mary’s trip takes 15 min longer than
John’s. For what length of time does each of them drive?

57. Number Problem The sum of the digits of a two-digit
number is 7. When the digits are reversed, the number is 
increased by 27. Find the number.

58. Area of a Triangle Find the area of the triangle that lies
in the first quadrant (with its base on the x-axis) and that is
bounded by the lines y � 2x � 4 and y � �4x � 20.

Discovery • Discussion

59. The Least Squares Line The least squares line or 
regression line is the line that best fits a set of points in the plane.
We studied this line in Focus on Modeling (see page 240). Using
calculus, it can be shown that the line that best fits the n data

y=2x-4

0 x

y

y=_4x+20

12 
1
2%
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SUGGESTED TIME

AND EMPHASIS

1 class. 
Essential material.

POINTS TO STRESS

1. Solving systems of linear
equations using Gaussian
elimination.

2. Using linear systems to solve
applied problems.

IN-CLASS MATERIALS

Have the students go over the applied problems from their homework for the previous section. Ask them
to try to come up with similar problems involving three or four variables. For example, Exercise 49 in
Section 9.2 can be expanded this way:

A woman keeps fit by bicycling, running, and swimming every day. On Monday she spends 1/2 hour
at each activity, covering a total of 14.25 mi. On Tuesday she runs for 12 min., cycles for 45 min., 
and swims for 30 min., covering a total of 15.45 mi. On Wednesday she runs for 30 min., cycles for
10 min., and swims for 30 min., covering a total of 9.25 mi. Assuming her running and cycling
speeds don’t change from day to day, find these speeds.

Make sure to point out that, for the problem to be solvable, they now need three pieces of information
instead of two (that is, if there is a Monday and a Tuesday in the problem, we now need a Wednesday).
Also, they need to make sure that their problem has a solution. In two dimensions, it is very easy to get a
consistent system, using random numbers. In three dimensions, it is a bit tougher.

SECTION 9.3 Systems of Linear Equations in Several Variables 651

points is the line y � ax � b, where
the coefficients a and b satisfy the following pair of linear equa-
tions. [The notation stands for the sum of all the x’s. See
Section 11.1 for a complete description of sigma notation.]

a an
k�1

 x2
k ba � a an

k�1
 xk bb � a

n

k�1
 xkyk

a an
k�1

 xkba � nb � a
n

k�1
 yk

1g 2g n
k�1 xk

1x1,  y1 2 , 1x2,  y2 2 , . . . ,1xn,  yn 2 Use these equations to find the least squares line for the follow-
ing data points.

Sketch the points and your line to confirm that the line fits these
points well. If your calculator computes regression lines, see
whether it gives you the same line as the formulas.

11,  32 , 12,  52 , 13,  62 , 15,  62 , 17,  92

9.3 Systems of Linear Equations 
in Several Variables

A linear equation in n variables is an equation that can be put in the form

where a1, a2, . . . , an and c are real numbers, and x1, x2, . . . , xn are the variables. If
we have only three or four variables, we generally use x, y, z, and „ instead of x1, x2,
x3, and x4. Such equations are called linear because if we have just two variables the
equation is a1x � a2y � c, which is the equation of a line. Here are some examples
of equations in three variables that illustrate the difference between linear and 
nonlinear equations.

Linear equations Nonlinear equations

In this section we study systems of linear equations in three or more variables.

Solving a Linear System

The following are two examples of systems of linear equations in three variables. The
second system is in triangular form; that is, the variable x doesn’t appear in the sec-
ond equation and the variables x and y do not appear in the third equation.

A system of linear equations A system in triangular form

It’s easy to solve a system that is in triangular form using back-substitution. So,
our goal in this section is to start with a system of linear equations and change it to a

• x � 2y � z � 1

y � 2z � 5

z � 3

• x � 2y � z � 1

�x � 3y � 3z � 4

2x � 3y � z � 10

x1x2 � 6x3 � �6x � y � z � 2„ � 1
2

x2 � 3y � 1z � 56x1 � 3x2 � 15x3 � 10

a1x1 � a2x2 � . . . � anxn � c

Not linear because it contains
the square and the square 
root of a variable.

Not linear because it contains
a product of variables.
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ALTERNATE EXAMPLE 1
Solve the system using back-
substitution. 

If the system is dependent or
inconsistent, indicate this. 

ANSWER
(5, -4, 3)

DRILL QUESTION

Solve this system using Gaussian
elimination.

Answer

x = -6, y = -5, z = -3

ALTERNATE EXAMPLE 2
Solve the system using Gaussian
elimination. 

If the system is dependent or
inconsistent, indicate this. 

ANSWER
(4, 6, 3)

L x - 2y + 3z = 1

x + 2y - z = 13

2x + 4y - 7z = 11

x - 2y + z = 1c  -x + y - z = 4

-x + 2y - 4z = 8

L x - 5y - z = 22

y + 4z = 8

z = 3

system in triangular form that has the same solutions as the original system. We be-
gin by showing how to use back-substitution to solve a system that is already in 
triangular form.

Example 1 Solving a Triangular System Using 

Back-Substitution

Solve the system using back-substitution:

Solution From the last equation we know that z � 3. We back-substitute this
into the second equation and solve for y.

Back-substitute z � 3 into Equation 2

Solve for y

Then we back-substitute y � �1 and z � 3 into the first equation and solve for x.

Back-substitute y � �1 and z � 3 into Equation 1

Solve for x

The solution of the system is x � 2, y � �1, z � 3. We can also write the solution
as the ordered triple . ■

To change a system of linear equations to an equivalent system (that is, a system
with the same solutions as the original system), we use the elimination method. This
means we can use the following operations.

12,  �1,  3 2
 x � 2

 x � 21�1 2 � 13 2 � 1

 y � �1

 y � 213 2 �   5

Equation 1
Equation 2
Equation 3

• x � 2y � z � 1

y � 2z � 5

z � 3

652 CHAPTER 9 Systems of Equations and Inequalities

Operations That Yield an Equivalent System

1. Add a nonzero multiple of one equation to another.

2. Multiply an equation by a nonzero constant.

3. Interchange the positions of two equations.

To solve a linear system, we use these operations to change the system to an equiv-
alent triangular system. Then we use back-substitution as in Example 1. This process
is called Gaussian elimination.

Example 2 Solving a System of Three Equations  

in Three Variables

Solve the system using Gaussian elimination.

Equation 1
Equation 2
Equation 3

• x � 2y � 3z � 1

x � 2y � z � 13

3x � 2y � 5z � 3

Pierre de Fermat (1601–1665)
was a French lawyer who became
interested in mathematics at the
age of 30. Because of his job as a
magistrate, Fermat had little time
to write complete proofs of his 
discoveries and often wrote them
in the margin of whatever book he
was reading at the time. After his
death, his copy of Diophantus’
Arithmetica (see page 20) was
found to contain a particularly 
tantalizing comment. Where Dio-
phantus discusses the solutions of
x2 � y2 � z2 (for example, x � 3,
y � 4, z � 5), Fermat states in the
margin that for n � 3 there are no
natural number solutions to the
equation xn � yn � zn. In other
words, it’s impossible for a cube 
to equal the sum of two cubes, a
fourth power to equal the sum of
two fourth powers, and so on. 
Fermat writes “I have discovered a
truly wonderful proof for this but
the margin is too small to contain
it.” All the other margin comments
in Fermat’s copy of Arithmetica
have been proved. This one, how-
ever, remained unproved, and it
came to be known as “Fermat’s
Last Theorem.”

In 1994, Andrew Wiles of
Princeton University announced a
proof of Fermat’s Last Theorem,
an astounding 350 years after it
was conjectured. His proof is one
of the most widely reported mathe-
matical results in the popular press.
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SAMPLE QUESTION

Text Question

Consider this system of three
equations:

Is the following system equivalent
to the first one? Why or why not?

Answer

It is. The second equation was
simply multiplied by a nonzero
constant.

EXAMPLE
A consistent 3 * 3 system:

ANSWER
x = 1, y = 1, z = -1 

EXAMPLE
An inconsistent 3 * 3 system:

EXAMPLE
A dependent 3 * 3 system:c x + 5y - z = 4

2x + 3y + 4z = 0

3x + 8y + 3z = 4

c x - y + z = 3

2x - y + 2z = 4

3x - 2y + 3z = 8

c 3x + 2y + z = 4

x - y - z = 1

2x - 4y - z = -1

c x - 2y + 3z = 1

100x + 200y - 100z = 1300

3x + 2y - 5z = 3

c x - 2y + 3z = 1

x + 2y - z = 13

3x + 2y - 5z = 3

Solution We need to change this to a triangular system, so we begin by eliminat-
ing the x-term from the second equation.

This gives us a new, equivalent system that is one step closer to triangular form:

Now we eliminate the x-term from the third equation.

Equation 3 � (�3) � Equation 1 � new Equation 3

Then we eliminate the y-term from the third equation.

Equation 3 � (�2) � Equation 1 � new Equation 3

The system is now in triangular form, but it will be easier to work with if we divide
the second and third equations by the common factors of each term.

� Equation 2 � new Equation 2
� Equation 3 � new Equation 3

Now we use back-substitution to solve the system. From the third equation we get 
z � 4. We back-substitute this into the second equation and solve for y.

Back-substitute z � 4 into Equation 2

Solve for y

Then we back-substitute y � 7 and z � 4 into the first equation and solve for x.

Back-substitute y � 7 and z � 4 into Equation 1

Solve for x

The solution of the system is x � 3, y � 7, z � 4, which we can write as the 
ordered triple (3, 7, 4). ■

Check Your Answer

We must check that the answer satisfies all three equations, x � 3, y � 7, z � 4:

 313 2 � 217 2 � 514 2 � 3

13 2 � 217 2 � 14 2 � 13

 13 2 � 217 2 � 314 2 � 1

 x � 3

 x � 217 2 � 314 2 � 1

 y � 7

 y � 14 2 � 3

� 
1
6

1
4• x � 2y � 3z � 1

y � z � 3

z � 4

• x � 2y � 3z � 1

4y � 4z � 12

�6z � �24

• x � 2y � 3z � 1

4y � 4z � 12

8y � 14z � 0

Equation 1
Equation 2
Equation 3

• x � 2y � 3z � 1

4y � 4z � 12

3x � 2y � 5z � 3

Equation 2
Equation 1
Equation 2 � (�1) � Equation 1 � new Equation 2

x � 2y � z � 13

x � 2y � 3z � 1

4y � 4z � 12

SECTION 9.3 Systems of Linear Equations in Several Variables 653

8y � 14z � 0

�8y � 8z � �24

�6z � �24

3x � 2y � 5z � 3

�3x � 6y � 9z � �3

8y � 14z � 0
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ALTERNATE EXAMPLE 3 
Solve the following system.

If the system is dependent or
inconsistent, indicate this. 

ANSWER
Inconsistent

L x + 7y - 7z = 3

3x + 14y - 16z = 17

2x + 7y - 9z = 10

IN-CLASS MATERIALS

If students have learned to use their calculators to solve linear systems, they may not realize the calculator’s limitations. Have them attempt to
solve a 5 * 5 system using their calculators, and record the length of time that it takes. Then have them attempt a 10 * 10 system. It turns out
that the length of time required to solve an arbitrary linear system grows very quickly with the number of variables involved. When doing a
system by hand, it is possible to take advantage of properties of the particular system in question. For example, show them this system:

The Number of Solutions of a Linear System

Just as in the case of two variables, a system of equations in several variables may
have one solution, no solution, or infinitely many solutions. The graphical interpreta-
tion of the solutions of a linear system is analogous to that for systems of equations
in two variables (see the margin note).

654 CHAPTER 9 Systems of Equations and Inequalities

Number of Solutions of a Linear System

For a system of linear equations, exactly one of the following is true.

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system with no solutions is said to be inconsistent, and a system with infinitely
many solutions is said to be dependent. As we see in the next example, a linear sys-
tem has no solution if we end up with a false equation after applying Gaussian elim-
ination to the system.

Example 3 A System with No Solution

Solve the following system.

Solution To put this in triangular form, we begin by eliminating the x-terms
from the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�3) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation.

Equation 3 � (�1) � Equation 2 � new Equation 3

The system is now in triangular form, but the third equation says 0 � �2, which is
false. No matter what values we assign x, y, and z, the third equation will never be
true. This means the system has no solution. ■

• x � 2y � 2z � 1

�2y � 3z � 4

0 � �2

• x � 2y � 2z � 1

�2y � 3z � 4

�2y � 3z � 2

• x � 2y � 2z � 1

�2y � 3z � 4

3x � 4y � 3z � 5

Equation 1
Equation 2
Equation 3

• x � 2y � 2z � 1

2x � 2y � z � 6

3x � 4y � 3z � 5

Intersection of Three Planes

When you study calculus or linear 
algebra, you will learn that the graph of
a linear equation in three variables is a
plane in a three-dimensional coordinate
system. For a system of three equations
in three variables, the following situa-
tions arise:

1. The three planes intersect in a single
point.
The system has a unique solution.

2. The three planes intersect in more
than one point.
The system has infinitely many 
solutions.

3. The three planes have no point in
common.
The system has no solution.

-v - 2y + z = 1
v + 2y = 3
v + w - x + 2y = 2

-v + x - 2y = 7
v + w + x + y + z = 26

One can go through the traditional algorithm (or have a calculator do it), and it will take some time. (The time it takes to enter it into a calcula-
tor counts!) But, by looking at the individual equations, one can get w, x, and z instantly (add equations 1 and 2, 2 and 4, and 3 and 4) and then 
v and y come easily as well.

t
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ALTERNATE EXAMPLE 4
Solve the following system. 

If the system is dependent or
inconsistent, indicate this. 

ANSWER
(-2t, 3t + 2, t)

L x - y + 5z = -2

3x + y + 3z = 2

3x + 9y - 21z =   18

IN-CLASS MATERIALS

One can discuss the geometry of systems of three variables as an extension of the geometry of two
variables, replacing lines by planes. Ask the class how they could think of a four-variable system. This is
not a trivial question. We are looking at the intersection of three hyperplanes in four-dimensional space.
Even though you may not get a satisfactory answer (but then again, you may) there is value in trying to
come up with visual interpretations for complex, abstract mathematical concepts.

Example 4 A System with Infinitely Many Solutions

Solve the following system.

Solution To put this in triangular form, we begin by eliminating the x-terms
from the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�2) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation.

Equation 3 � (�2) � Equation 2 � new Equation 3

The new third equation is true, but it gives us no new information, so we can drop it
from the system. Only two equations are left. We can use them to solve for x and y
in terms of z, but z can take on any value, so there are infinitely many solutions.

To find the complete solution of the system we begin by solving for y in terms 
of z, using the new second equation.

Equation 2

Multiply by 

Solve for y

Then we solve for x in terms of z, using the first equation.

Substitute into Equation 1

Simplify

Solve for x

To describe the complete solution, we let t represent any real number. The 
solution is

We can also write this as the ordered triple . ■1�3t,  2t � 2,  t 2 z � t

 y � 2t � 2

 x � �3t

 x � �3z

 x � 3z � 2 � �2

y � 2z � 2x � 12z � 2 2 � 5z � �2

 y � 2z � 2

1
3 y � 2z � 2

 3y � 6z � 6

•x �   y � 5z � �2

  3y � 6z � 6

0 � 0

• x � y � 5z � �2

3y � 6z � 6

6y � 12z � 12

• x � y � 5z � �2

3y � 6z � 6

2x � 4y � 2z � 8

Equation 1
Equation 2
Equation 3

• x � y � 5z � �2

2x � y � 4z � 2

2x � 4y � 2z � 8

SECTION 9.3 Systems of Linear Equations in Several Variables 655
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ALTERNATE EXAMPLE 5
John receives an inheritance of
$55,000. His financial advisor
suggests that he invest this in three
mutual funds: a money-market
fund, a blue-chip stock fund, and a
high-tech stock fund. The advisor
estimates that the money-market
fund will return 5% over the next
year, the blue-chip fund 9%, and
the high-tech fund 18%. John
wants a total first-year return of
$4650. To avoid excessive risk, he
decides to invest three times as
much in the money-market fund
as in the high-tech stock fund.
How much should he invest in
each fund?

ANSWER
$30,000, $15,000, $10,000

In the solution of Example 4 the variable t is called a parameter. To get a specific
solution, we give a specific value to the parameter t. For instance, if we set t � 2,
we get

Thus, is a solution of the system. Here are some other solutions of the sys-
tem obtained by substituting other values for the parameter t.

Parameter t Solution 

�1
0
3

10

You should check that these points satisfy the original equations. There are 
infinitely many choices for the parameter t, so the system has infinitely many 
solutions.

Modeling Using Linear Systems

Linear systems are used to model situations that involve several varying quantities. In
the next example we consider an application of linear systems to finance.

Example 5 Modeling a Financial Problem 

Using a Linear System

John receives an inheritance of $50,000. His financial advisor suggests that he invest
this in three mutual funds: a money-market fund, a blue-chip stock fund, and a
high-tech stock fund. The advisor estimates that the money-market fund will return
5% over the next year, the blue-chip fund 9%, and the high-tech fund 16%. John
wants a total first-year return of $4000. To avoid excessive risk, he decides to invest
three times as much in the money-market fund as in the high-tech stock fund. 
How much should he invest in each fund?

Solution Let

x � amount invested in the money-market fund

y � amount invested in the blue-chip stock fund

z � amount invested in the high-tech stock fund

We convert each fact given in the problem into an equation.

Total amount invested is $50,000

Total investment return is $4000

Money-market amount is 3 � high-tech amount x � 3z

 0.05x � 0.09y � 0.16z � 4000

 x � y � z � 50,000

1�30,  22,  1021�9,  8,  3210,  2,  0213,  0,  �12 1�3t,  2t � 2,  t 2
1�6,  6,  2 2  z � 2

 y � 212 2 � 2 � 6

 x � �312 2 � �6

656 CHAPTER 9 Systems of Equations and Inequalities

Mathematics in 

the Modern World

Global Positioning System

(GPS)

On a cold, foggy day in 1707, a
British naval fleet was sailing home
at a fast clip. The fleet’s navigators
didn’t know it, but the fleet was
only a few yards from the rocky
shores of England. In the ensuing
disaster the fleet was totally de-
stroyed. This tragedy could have
been avoided had the navigators
known their positions. In those
days latitude was determined by
the position of the North Star (and
this could only be done at night in
good weather) and longitude by the
position of the sun relative to where
it would be in England at that same
time. So navigation required an ac-
curate method of telling time on
ships. (The invention of the spring-
loaded clock brought about the
eventual solution.)

Since then, several different
methods have been developed to
determine position, and all rely
heavily on mathematics (see 
LORAN, page 768). The latest
method, called the Global Posi-
tioning System, uses triangulation.
In this system 24 primary satellites
are strategically located above the
surface of the earth. A hand-held
GPS device measures distance
from a satellite using the travel 

(continued)
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Multiplying the second equation by 100 and rewriting the third gives the following
system, which we solve using Gaussian elimination.

100 � Equation 2

Subtract 3z

Equation 2 � (�5) � Equation 1 � new Equation 2

Equation 3 � (�1) � Equation 1 � new Equation 3

Equation 2 � 4 � Equation 3 � new Equation 2

(�1) � Equation 3

Interchange Equations 2 and 3

Now that the system is in triangular form, we use back-substitution to find that 
x � 30,000, y � 10,000, and z � 10,000. This means that John should invest

$30,000 in the money market fund

$10,000 in the blue-chip stock fund

$10,000 in the high-tech stock fund ■

9.3 Exercises

• x � y � z � 50,000

y � 4z � 50,000

z � 10,000

1� 
1
5 2 � Equation 2• x � y � z � 50,000

z � 10,000

y � 4z � 50,000

• x � y � z � 50,000

� 5z � �50,000

� y � 4z � �50,000

• x � y � z �    50,000

4y � 11z �    150,000

�y � 4z � �50,000

• x � y � z � 50,000

5x � 9y � 16z � 400,000

x � 3z � 0

SECTION 9.3 Systems of Linear Equations in Several Variables 657

time of radio signals emitted from
the satellite. Knowing the distance
to three different satellites tells us
that we are at the point of intersec-
tion of three different spheres. This
uniquely determines our position
(see Exercise 53, page 643).

1–4 ■ State whether the equation or system of equations is 
linear.

1.

2. x 2 � y 2 � z 2 � 4

3. 4.

5–10 ■ Use back-substitution to solve the triangular system.

5. 6. • x � y � 3z � 8

y � 3z � 5

z � �1

• x � 2y � 4z � 3

y � 2z � 7

z � 2

• x � 2y � 3z � 10

2x � 5y � 2

y � 2z � 4

• xy � 3y � z � 5

x � y 
2 � 5z � 0

2x � yz � 3

6x � 13y � 1
2 z � 0

7.

8.

9.

10. •4x � 3z � 10

2y � z � �6
1
2 z � 4

•2x � y � 6z � 5

y � 4z � 0

�2z � 1

• x � 2y � 3z � 10

2y � z � 2

3z � 12

• x � 2y � z � 7

�y � 3z � 9

2z � 6
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11–14 ■ Perform an operation on the given system that 
eliminates the indicated variable. Write the new equivalent 
system.

11.

12.

13.

14.

15–32 ■ Find the complete solution of the linear system, or
show that it is inconsistent.

15.

16.

17.

18.

19.

20.

21. • y � 2z � 0

2x � 3y � 2

�x � 2y � z � �1

• 2x � y � z � �8

�x � y � z � 3

�2x � 4z � 18

•2x � 4y � z � 2

x � 2y � 3z � �4

3x � y � z � 1

• x � y � 2z � 2

3x � y � 5z � 8

2x � y � 2z � �7

• x � 4z � 1

2x � y � 6z � 4

2x � 3y � 2z � 8

• x � y � z � 0

�x � 2y � 5z � 3

3x � y � 6

• x � y � z � 4

x � 3y � 3z � 10

2x � y � z � 3

Eliminate the y-term 
from the third equation.• x � 4y � z � 3

y � 3z � 10

3y � 8z � 24

Eliminate the x-term 
from the third equation.• 2x � y � 3z � 2

x � 2y � z � 4

�4x � 5y � z � 10

Eliminate the x-term 
from the second equation.• x � y � 3z � 3

�2x � 3y � z � 2

x � y � 2z � 0

Eliminate the x-term 
from the second equation.• x � 2y � z � 4

x � y � 3z � 0

2x � y � z � 0

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32. d x � y � z � „ � 0

x � y � 2z � 2„ � 0

2x � 2y � 3z � 4„ � 1

2x � 3y � 4z � 5„ � 2

d x � z � 2„ � 6

y � 2z � �3

x � 2y � z � �2

2x � y � 3z � 2„ � 0

•2x � 4y � z � 3

x � 2y � 4z � 6

x � 2y � 2z � 0

• x � 3y � 2z � 0

2x � 4z � 4

4x � 6y � 4

• x � 2y � z � 3

2x � 5y � 6z � 7

2x � 3y � 2z � 5

• x � y � z � 0

x � 2y � 3z � �3

2x � 3y � 4z � �3

• x � 2y � 3z � 5

2x � y � z � 5

4x � 3y � 7z � 5

•2x � 3y � z � 1

x � 2y � 3

x � 3y � z � 4

•�x � 2y � 5z � 4

x � 2z � 0

4x � 2y � 11z � 2

• x � 2y � z � 1

2x � 3y � 4z � �3

3x � 6y � 3z � 4

• 2y � z � 3

5x � 4y � 3z � �1

x � 3y � �2
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SECTION 9.3 Systems of Linear Equations in Several Variables 659

Applications

33–34 ■ Finance An investor has $100,000 to invest in three
types of bonds: short-term, intermediate-term, and long-term.
How much should she invest in each type to satisfy the given
conditions?

33. Short-term bonds pay 4% annually, intermediate-term bonds
pay 5%, and long-term bonds pay 6%. The investor wishes
to realize a total annual income of 5.1%, with equal
amounts invested in short- and intermediate-term bonds.

34. Short-term bonds pay 4% annually, intermediate-term bonds
pay 6%, and long-term bonds pay 8%. The investor wishes
to have a total annual return of $6700 on her investment,
with equal amounts invested in intermediate- and long-term
bonds.

35. Nutrition A biologist is performing an experiment on the
effects of various combinations of vitamins. She wishes to
feed each of her laboratory rabbits a diet that contains exactly
9 mg of niacin, 14 mg of thiamin, and 32 mg of riboflavin.
She has available three different types of commercial rabbit
pellets; their vitamin content (per ounce) is given in the table.
How many ounces of each type of food should each rabbit be
given daily to satisfy the experiment requirements?

37. Agriculture A farmer has 1200 acres of land on which 
he grows corn, wheat, and soybeans. It costs $45 per acre to
grow corn, $60 for wheat, and $50 for soybeans. Because of
market demand he will grow twice as many acres of wheat
as of corn. He has allocated $63,750 for the cost of growing
his crops. How many acres of each crop should he plant?

38. Stock Portfolio An investor owns three stocks: A, B,
and C. The closing prices of the stocks on three successive
trading days are given in the table.

36. Electricity Using Kirchhoff’s Laws, it can be shown 
that the currents I1, I2, and I3 that pass through the three
branches of the circuit in the figure satisfy the given linear
system. Solve the system to find I1, I2, and I3.

16 �
4 V

8 �
5 V

4 �

I⁄

I¤

I‹

c I1 � I2 � I3 � 0

16I1 � 8I2 � 4

8I2 � 4I3 � 5

Type A Type B Type C

Niacin (mg) 2 3 1
Thiamin (mg) 3 1 3
Riboflavin (mg) 8 5 7

Stock A Stock B Stock C

Monday $10 $25 $29
Tuesday $12 $20 $32
Wednesday $16 $15 $32

Despite the volatility in the stock prices, the total value of
the investor’s stocks remained unchanged at $74,000 at the
end of each of these three days. How many shares of each
stock does the investor own?

Discovery • Discussion

39. Can a Linear System Have Exactly Two Solutions?

(a) Suppose that and are solutions of
the system

Show that is also a 

solution.

(b) Use the result of part (a) to prove that if the system has
two different solutions, then it has infinitely many 
solutions.

a x0 � x1

2
, 

y0 � y1

2
, 

z0 � z1

2
b

• a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

1x1, y1, z1 21x0, y0, z0 2
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Best Fit versus Exact Fit

Given several points in the plane, we can find the line that best fits them (see the
Focus on Modeling, page 239). Of course, not all the points will necessarily lie
on the line. We can also find the quadratic polynomial that best fits the points.
Again, not every point will necessarily lie on the graph of the polynomial.

However, if we are given just two points, we can find a line of exact fit, that
is, a line that actually passes through both points. Similarly, given three points
(not all on the same line), we can find the quadratic polynomial of exact fit. 
For example, suppose we are given the following three points:

From Figure 1 we see that the points do not lie on a line. Let’s find the quadratic
polynomial that fits these points exactly. The polynomial must have the form

We need to find values for a, b, and c so that the graph of the resulting polyno-
mial contains the given points. Substituting the given points into the equation,
we get the following.

Point Substitute Equation

x � �1, y � 6

x � 1, y � 2

x � 2, y � 3

These three equations simplify into the following system.

Using Gaussian elimination we obtain the solution a � 1, b � �2, and c � 3. 
So the required quadratic polynomial is

From Figure 2 we see that the graph of the polynomial passes through the given
points.

Figure 2

9

_1
_2 4

(_1, 6)
(1, 2)

(2, 3)

y � x 
2 � 2x � 3

• a � b � c � 6

a � b � c � 2

4a � 2b � c � 3

3 � a12 2 2 � b12 2 � c12,  32 2 � a11 2 2 � b11 2 � c11,  22 6 � a1�1 2 2 � b1�1 2 � c1�1,  62

y � ax 
2 � bx � c

1�1,  6 2 , 11,  2 2 , 12,  3 2

660 CHAPTER 9 Systems of Equations and Inequalities

D I S C O V E R Y
P R O J E C T

9

_1
_2 4

(_1, 6)

(1, 2)
(2, 3)

Figure 1
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SECTION 9.3 Systems of Linear Equations in Several Variables 661

1. Find the quadratic polynomial y � ax 2 � bx � c whose graph passes through
the given points.

(a)
(b)

2. Find the cubic polynomial y � ax 3 � bx 2 � cx � d whose graph passes
through the given points.

(a)
(b)

3. A stone is thrown upward with velocity √ from a height h. Its elevation d
above the ground at time t is given by

The elevation is measured at three different times as shown.

d � at 
2 � √t � h

1�2,  10 2 , 1�1,  1 2 , 11,  �1 2 , 13,  45 21�1,  �4 2 , 11,  2 2 , 12,  11 2 , 13,  32 2
1�1,  �3 2 , 12,  0 2 , 13,  �3 21�2,  3 2 , 1�1,  1 2 , 11,  9 2

(a) Find the constants a, √, and h.

(b) Find the elevation of the stone when t � 4 s.

4. (a) Find the quadratic function y � ax 2 � bx � c whose graph passes
through the given points. (This is the quadratic curve of exact fit.) 
Graph the points and the quadratic curve that you found.

(b) Now use the QuadReg command on your calculator to find the quadratic
curve that best fits the points in part (a). How does this compare to the
function you found in part (a)?

(c) Show that no quadratic function passes through the points

(d) Use the QuadReg command on your calculator to find the quadratic
curve that best fits the points in part (b). Graph the points and the quad-
ratic curve that you found.

(e) Explain how the curve of exact fit differs from the curve of best fit.

1�2,  11 2 , 11,  �6 2 , 12,  �5 2 , 14,  �1 2

1�2,  10 2 , 11,  �5 2 , 12,  �6 2 , 14,  �2 2

Time (s) 1.0 2.0 6.0

Elevation (ft) 144 192 64
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662 CHAPTER 9 Systems of Equations and Inequalities

SUGGESTED TIME 

AND EMPHASIS

2 classes.
Recommended material.

POINTS TO STRESS

1. Definitions: matrix, dimension, row, column, row-echelon form, reduced row-echelon form.
2. Finding the augmented matrix of a linear system, and manipulating it using row operations.
3. Gaussian and Gauss-Jordan elimination, including inconsistent and dependent systems.

9.4 Systems of Linear Equations: Matrices

In this section we express a linear system as a rectangular array of numbers, called a
matrix. Matrices* provide us with an efficient way of solving linear systems.

Matrices

We begin by defining the various elements that make up a matrix.

662 CHAPTER 9 Systems of Equations and Inequalities

Definition of Matrix

An m � n matrix is a rectangular array of numbers with m rows and n
columns.

� � � �

n columns

We say that the matrix has dimension m � n. The numbers aij are the entries
of the matrix. The subscript on the entry aij indicates that it is in the ith row
and the jth column.

Ea11 a12 a13
p a1n

a21 a22 a23
p a2n

a31 a32 a33
p a3n

o o o ∞ o
am1 am2 am3

p amn

U �

�

�

�

v m rowsx

Here are some examples of matrices.

Matrix Dimension

2 rows by 3 columns

1 row by 4 columns

The Augmented Matrix of a Linear System

We can write a system of linear equations as a matrix, called the augmented matrix
of the system, by writing only the coefficients and constants that appear in the equa-
tions. Here is an example.

Linear system Augmented matrix

£ 3 �2 1 5

1 3 �1 0

�1 0 4 11

§• 3x � 2y � z � 5

x � 3y � z � 0

�x � 4z � 11

36 �5 0 1 4    1 � 4

c1 3 0

2 4 �1
d       2 � 3

* The plural of matrix is matrices.

57050_09_ch09_p634-741.qxd  08/04/2008  11:22 AM  Page 662
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ALTERNATE EXAMPLE 1
Write the augmented matrix of the
system of equations.

ANSWER

J 7 -2 -1 4

1 0 3 6

0 4 1 7
K

L 7x - 2y - z = 4

x + 3z = 6

4y + z = 7

Notice that a missing variable in an equation corresponds to a 0 entry in the aug-
mented matrix.

Example 1 Finding the Augmented Matrix 

of a Linear System

Write the augmented matrix of the system of equations.

Solution First we write the linear system with the variables lined up in columns.

The augmented matrix is the matrix whose entries are the coefficients and the 
constants in this system.

■

Elementary Row Operations

The operations that we used in Section 9.3 to solve linear systems correspond to op-
erations on the rows of the augmented matrix of the system. For example, adding a
multiple of one equation to another corresponds to adding a multiple of one row to
another.

£6 �2 �1 4

1 0 3 1

0 7 1 5

§

•6x � 2y � z � 4

x � 3z � 1

7y � z � 5

•6x � 2y � z � 4

x � 3z � 1

7y � z � 5

SECTION 9.4 Systems of Linear Equations: Matrices 663

Elementary Row Operations

1. Add a multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.

Note that performing any of these operations on the augmented matrix of a system
does not change its solution. We use the following notation to describe the elemen-
tary row operations:

Symbol Description

Change the ith row by adding k times row j to it,
then put the result back in row i.

Multiply the ith row by k.

Interchange the ith and jth rows.Ri 4 Rj

kRi

Ri � kRj � Ri
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ALTERNATE EXAMPLE 2
Solve the system using its matrix
form. 

If the system is dependent or
inconsistent, indicate this. 

ANSWER
(3, 5, 1) 

L x - y + 5z = 3

x + 2y - 6z = 7

4x - y + 8z = 15

In the next example we compare the two ways of writing systems of linear 
equations.

Example 2 Using Elementary Row Operations 

to Solve a Linear System

Solve the system of linear equations.

Solution Our goal is to eliminate the x-term from the second equation and the 
x- and y-terms from the third equation. For comparison, we write both the system 
of equations and its augmented matrix.

System Augmented matrix

Now we use back-substitution to find that x � 2, y � 7, and z � 3. The solution 
is . ■

Gaussian Elimination

In general, to solve a system of linear equations using its augmented matrix, we use
elementary row operations to arrive at a matrix in a certain form. This form is 
described in the following box.

12,  7,  3 2
£1 �1 3 4

0 1 �2 1

0 0 1 3

§• x � y � 3z � 4

y � 2z � 1

z � 3

£1 �1 3 4

0 0 1 3

0 1 �2 1

§• x � y � 3z � 4

z � 3

y � 2z � 1

£1 �1 3 4

0 3 �5 6

0 1 �2 1

§• x � y � 3z � 4

3y � 5z � 6

y � 2z � 1

£1 �1 3 4

0 3 �5 6

0 2 �4 2

§• x � y � 3z � 4

3y � 5z � 6

2y � 4z � 2

£1 �1 3 4

1 2 �2 10

3 �1 5 14

§• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14

• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14

664 CHAPTER 9 Systems of Equations and Inequalities

R2 � R1 � R2
SSSSSSSO
R3 � 3R1 � R3

R3

SSSO

1
2

R2 � 3R3 � R2
SSSSSSSO

R2 PRRO R3
SSSSO

Add Equation 1 to Equation 2.
Add Equation 1 to Equation 3.1�3 2 �

1�1 2 �

Interchange Equations 2 and 3.

Multiply Equation 3 by .1
2

Add Equation 3 to Equation 2
(to eliminate y from Equation 2).

1�3 2 �
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DRILL QUESTION

Consider this system of equations:

(a) Find the augmented matrix of
this system.

(b) Put the matrix in reduced
row-echelon form.

Answers

c1 1 -1

2 -3 8
d , c1 0 1

0 1 -2
d

e x + y = -1

2x - 3y = 8

IN-CLASS MATERIALS

Point out that as noted in the text, the row-echelon form of a given matrix is not unique, but the reduced
row-echelon form is unique. In fact, it can be shown that if two matrices have the same reduced 
row-echelon form, you can transform one into the other via elementary row operations.

In the following matrices the first matrix is in reduced row-echelon form, but the
second one is just in row-echelon form. The third matrix is not in row-echelon form.
The entries in red are the leading entries.

Reduced row-echelon form Row-echelon form Not in row-echelon form

Here is a systematic way to put a matrix in row-echelon form using elementary
row operations:

■ Start by obtaining 1 in the top left corner. Then obtain zeros below that 1 by
adding appropriate multiples of the first row to the rows below it.

■ Next, obtain a leading 1 in the next row, and then obtain zeros below that 1.
■ At each stage make sure that every leading entry is to the right of the leading 

entry in the row above it—rearrange the rows if necessary.
■ Continue this process until you arrive at a matrix in row-echelon form.

This is how the process might work for a 3 � 4 matrix:

� �

Once an augmented matrix is in row-echelon form, we can solve the corresponding
linear system using back-substitution. This technique is called Gaussian elimina-
tion, in honor of its inventor, the German mathematician C. F. Gauss (see page 294).

£1 � � �

0 1 � �

0 0 1 �

§£1 � � �

0 1 � �

0 0 � �

§£10
0 � � �

§

≥ 0 1 � 
1
2 0 7

1 0 3 4 �5

0 0 0 1 0.4

0 1 1 0 0

¥≥ 1 3 �6 10 0

0 0 1 4 �3

0 0 0 1 1
2

0 0 0 0 0

¥≥ 1 3 0 0 0

0 0 1 0 �3

0 0 0 1 1
2

0 0 0 0 0

¥

SECTION 9.4 Systems of Linear Equations: Matrices 665

Row-Echelon Form and Reduced Row-Echelon 

Form of a Matrix

A matrix is in row-echelon form if it satisfies the following conditions.

1. The first nonzero number in each row (reading from left to right) is 1. This
is called the leading entry.

2. The leading entry in each row is to the right of the leading entry in the row
immediately above it.

3. All rows consisting entirely of zeros are at the bottom of the matrix.

A matrix is in reduced row-echelon form if it is in row-echelon form and also
satisfies the following condition.

4. Every number above and below each leading entry is a 0.

Leading 1’s have
0’s above and 
below them.

Leading 1’s shift to
the right in 
successive rows.

Leading 1’s do not
shift to the right
in successive rows.
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ALTERNATE EXAMPLE 3 
Solve the system of linear
equations using Gaussian
elimination.

If the system is dependent or
inconsistent, indicate this.

ANSWER
(-10, 5, -2)

L   11x + 22y - 11z = 22

7x + 14y + 5z = -10

-6x + y + 58z = -51

SAMPLE QUESTIONS

Text Questions

Which of the following matrices are in row-echelon form? Which are in reduced row-echelon form? 

(a) (b) (c) 

Answers

(a) and (c) are in row-echelon form; (a) is in reduced row-echelon form.

≥
1 4 3 0 5

0 0 1 2 -5

0 0 0 1 p

0 0 0 0 0

¥≥
1 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 0 1

¥≥
1 4 0 0 0

0 0 1 0 -5

0 0 0 1 p

0 0 0 0 0

¥

Example 3 Solving a System Using Row-Echelon Form

Solve the system of linear equations using Gaussian elimination.

Solution We first write the augmented matrix of the system, and then use ele-
mentary row operations to put it in row-echelon form.

£1 2 �1 1

0 1 4 �7

0 0 1 �2

§
£1 2 �1 1

0 1 4 �7

0 0 �10 20

§R3 � 5R2 SO R3
SSSSSSSSO

£1 2 �1 1

0 1 4 �7

0 5 10 �15

§
£1 2 �1 1

0 2 8 �14

0 5 10 �15

§R2 � 3R1 � R2
SSSSSSSO
R3 � 2R1 � R3

£ 1 2 �1 1

3 8 5 �11

�2 1 12 �17

§
£ 4 8 �4 4

3 8 5 �11

�2 1 12 �17

§

•  4x � 8y � 4z � 4

3x � 8y � 5z � �11

�2x � y � 12z � �17

666 CHAPTER 9 Systems of Equations and Inequalities

Solving a System Using Gaussian Elimination

1. Augmented Matrix. Write the augmented matrix of the system.

2. Row-Echelon Form. Use elementary row operations to change the 
augmented matrix to row-echelon form.

3. Back-Substitution. Write the new system of equations that corresponds 
to the row-echelon form of the augmented matrix and solve by back-
substitution.

Need a 1 here.

Need a 1 here.

Need 0’s here.
R1

SSSO

1
4

Need a 0 here.

Need a 1 here.

R2

SSSO

1
2

R3

SSSO
� 1

10
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ALTERNATE EXAMPLE 4
Solve the system of linear
equations, using Gauss-Jordan
elimination.

If the system is dependent or
inconsistent, indicate this. 

ANSWER
(-37, 12, -5) 

L 6x + 18y - 6z = 24

5x + 15y + 3z = -20

-3x + y + 33z = -42

We now have an equivalent matrix in row-echelon form, and the corresponding
system of equations is

We use back-substitution to solve the system.

Back-substitute z � �2 into Equation 2

Solve for y

Back-substitute y � 1 and z � �2 into Equation 1

Solve for x

So the solution of the system is   . ■

Graphing calculators have a “row-echelon form” command that puts a matrix in
row-echelon form. (On the TI-83 this command is ref.) For the augmented matrix in
Example 3, the refcommand gives the output shown in Figure 1. Notice that the row-
echelon form obtained by the calculator differs from the one we got in Example 3.
This is because the calculator used different row operations than we did. You should
check that your calculator’s row-echelon form leads to the same solution as ours.

Gauss-Jordan Elimination

If we put the augmented matrix of a linear system in reduced row-echelon form, then
we don’t need to back-substitute to solve the system. To put a matrix in reduced row-
echelon form, we use the following steps.

■ Use the elementary row operations to put the matrix in row-echelon form.
■ Obtain zeros above each leading entry by adding multiples of the row containing

that entry to the rows above it. Begin with the last leading entry and work up.

Here is how the process works for a 3 � 4 matrix:

Using the reduced row-echelon form to solve a system is called Gauss-Jordan elim-
ination. We illustrate this process in the next example.

Example 4 Solving a System Using Reduced 

Row-Echelon Form

Solve the system of linear equations, using Gauss-Jordan elimination.

Solution In Example 3 we used Gaussian elimination on the augmented matrix
of this system to arrive at an equivalent matrix in row-echelon form. We continue

• 4x � 8y � 4z � 4

3x � 8y � 5z � �11

�2x � y � 12z � �17

£1 � � �

0 1 � �

0 0 1 �

§ � £1 � 0 �

0 1 0 �

0 0 1 �

§ � £1 0 0 �

0 1 0 �

0 0 1 �

§

1�3,  1,  �2 2 x � �3

 x � 211 2 � 1�2 2 � 1

 y � 1

 y � 41�2 2 � �7

• x � 2y � z � 1

y � 4z � �7

z � �2

SECTION 9.4 Systems of Linear Equations: Matrices 667

ref([A])
   [[1 2 -1 1 ]
    [0 1 2  -3]
    [0 0 1  -2]]

Figure 1
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IN-CLASS MATERIALS

It is possible to introduce the 
concept of homogeneous systems
as a way of getting the students to
think about dependent and incon-
sistent systems. Define a homoge-
nous system as one where the
equations are all equal to zero:

Start by asking the class some sim-
ple questions: Are homogeneous

c 3x - 2y - z = 0

4x + 5y - 4z = 0

2x - 8y - z = 0

systems easier or harder to solve than arbitrary systems? If so, why? Then ask them to find and solve a dependent homogenous system, a homoge-
neous system with a unique solution, and finally, one with no solution. (Give them some time to do this—a lot of learning will take place while
they go through the process of creating and solving problems both forward and backward.) When students or groups of students finish early, ask
them to articulate why there cannot be an inconsistent homogeneous system.

After the students have thought about this type of system, bring them all together. Point out that it is clear that x = 0, y = 0, z = 0 is always a
solution to a homogeneous system, and so there cannot be an inconsistent one. The only possible solutions sets are (0, 0, 0) and a set with
infinitely many points, one of which is (0, 0, 0).

using elementary row operations on the last matrix in Example 3 to arrive at an
equivalent matrix in reduced row-echelon form.

We now have an equivalent matrix in reduced row-echelon form, and the 
corresponding system of equations is

Hence we immediately arrive at the solution . ■

Graphing calculators also have a command that puts a matrix in reduced 
row-echelon form. (On the TI-83 this command is rref.) For the augmented 
matrix in Example 4, the rref command gives the output shown in Figure 2. 
The calculator gives the same reduced row-echelon form as the one we got in 
Example 4. This is because every matrix has a unique reduced row-echelon 
form.

Inconsistent and Dependent Systems

The systems of linear equations that we considered in Examples 1–4 had exactly one
solution. But as we know from Section 9.3 a linear system may have one solution,
no solution, or infinitely many solutions. Fortunately, the row-echelon form of a 
system allows us to determine which of these cases applies, as described in the fol-
lowing box.

First we need some terminology. A leading variable in a linear system is one that
corresponds to a leading entry in the row-echelon form of the augmented matrix of
the system.

1�3,  1,  �2 2
• x � �3

y � 1

z � �2

£1 0 0 �3

0 1 0 1

0 0 1 �2

§
£1 2 0 �1

0 1 0 1

0 0 1 �2

§

£1 2 �1 1

0 1 4 �7

0 0 1 �2

§

668 CHAPTER 9 Systems of Equations and Inequalities

Need a 0 here.

Need 0’s here.

R2 � 4R3 � R2
SSSSSSSO

R1 � R3 � R1

R1 � 2R2 � R1
SSSSSSSO

Since the system is in reduced 
row-echelon form, back-substitution 
is not required to get the solution.

rref([A])
    [[1 0 0 -3]
     [0 1 0 1 ]
     [0 0 1 -2]]

Figure 2
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ALTERNATE EXAMPLE 5
Solve the system.

If the system is dependent or
inconsistent, indicate this. 

ANSWER
Inconsistent

L x - 8y + 4z = 11

2x - 12y + 12z = 17

x - 4y + 8z = 22

The matrices below, all in row-echelon form, illustrate the three cases described in
the box.

No solution One solution Infinitely many solutions

Example 5 A System with No Solution

Solve the system.

Solution We transform the system into row-echelon form.

SSO £1 �3 2 12

0 1 1 �10

0 0 0 1

§R3
1
18£1 �3 2 12

0 1 1 �10

0 0 0 18

§R3 � R2 � R3
SSSSSSSO

£1 �3 2 12

0 1 1 �10

0 1 1 8

§R2 � 2R1 � R2
SSSSSSSO

R3 � R1 � R3

£1 �3 2 12

2 �5 5 14

1 �2 3 20

§
• x � 3y � 2z � 12

2x � 5y � 5z � 14

x � 2y � 3z � 20

£1 2 �3 1

0 1 5 �2

0 0 0 0

§£1 6 �1 3

0 1 2 �2

0 0 1 8

§£1 2 5 7

0 1 3 4

0 0 0 1

§

SECTION 9.4 Systems of Linear Equations: Matrices 669

The Solutions of a Linear System in Row-Echelon Form

Suppose the augmented matrix of a system of linear equations has been 
transformed by Gaussian elimination into row-echelon form. Then exactly 
one of the following is true.

1. No solution. If the row-echelon form contains a row that represents 
the equation 0 � c where c is not zero, then the system has no solution. 
A system with no solution is called inconsistent.

2. One solution. If each variable in the row-echelon form is a leading 
variable, then the system has exactly one solution, which we find using 
back-substitution or Gauss-Jordan elimination.

3. Infinitely many solutions. If the variables in the row-echelon form are 
not all leading variables, and if the system is not inconsistent, then it has 
infinitely many solutions. In this case, the system is called dependent. We
solve the system by putting the matrix in reduced row-echelon form and then
expressing the leading variables in terms of the nonleading variables. The
nonleading variables may take on any real numbers as their values.

Each variable is a
leading variable.

z is not a leading
variable.

Last equation
says 0 � 1.
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ALTERNATE EXAMPLE 6
Find the complete solution of the
system.

ANSWER
(7k - 4, 4k + 1, k)

EXAMPLE
A system with infinitely many
solutions:

ANSWER

Note: The representation of this
set of solutions is not unique.

z = t

y =
2

5
t +

26

5
,x =

11

5
t +

8

5
,

c x + 2y - 3z = 12

-2x + y + 4z = 2

x + 7y - 5z = 38

c -5x - 10y + 75z =  10

-x + 7z =  4

x + y - 11z = -3

IN-CLASS MATERIALS

Point out that the techniques in this section are extensible in a way that some ad hoc techniques are not.
One can solve an 8 * 8 or even a 100 * 100 system (in theory) using this method. If you want to pursue
this line earlier, it is interesting to estimate the complexity of using this technique. Have the students solve
a 2 * 2 system, keeping track of every multiplication they do, and every addition, then have them do the
same for a 3 * 3. They can then do the same for a 4 * 4—not necessarily bothering to actually do all the
additions and multiplications, just doing the count. Notice that the increase in complexity grows faster than
a linear function.

This last matrix is in row-echelon form, so we can stop the Gaussian elimination
process. Now if we translate the last row back into equation form, we get 
0x � 0y � 0z � 1, or 0 � 1, which is false. No matter what values we pick for 
x, y, and z, the last equation will never be a true statement. This means the system
has no solution. ■

Figure 3 shows the row-echelon form produced by a TI-83 calculator for the 
augmented matrix in Example 5. You should check that this gives the same 
solution.

Example 6 A System with Infinitely Many Solutions

Find the complete solution of the system.

Solution We transform the system into reduced row-echelon form.

The third row corresponds to the equation 0 � 0. This equation is always true,
no matter what values are used for x, y, and z. Since the equation adds no new 
information about the variables, we can drop it from the system. So the last matrix
corresponds to the system

Now we solve for the leading variables x and y in terms of the nonleading 
variable z:

Solve for x in Equation 1

Solve for y in Equation 2 y � 3z � 1

 x � 7z � 5

Equation 1
Equation 2

bx    � 7z � �5

y � 3z � 1

£1 0 �7 �5

0 1 �3 1

0 0 0 0

§R1 � R2 � R1
SSSSSSSO

£1 1 �10 �4

0 1 �3 1

0 0 0 0

§R3 � 2R2 � R3
SSSSSSSSO£1 1 �10 �4

0 1 �3 1

0 �2 6 �2

§R2 � R1 � R2
SSSSSSSO
R3 � 3R1 � R3

£ 1 1 �10 �4

�1 0 7 5

�3 �5 36 10

§R1 PRRO R3
SSSSSO£�3 �5 36 10

�1 0 7 5

1 1 �10 �4

§

c�3x � 5y � 36z �   10

�x � 7z � 5

x � y � 10z � �4

670 CHAPTER 9 Systems of Equations and Inequalities

ref([A])
[[1 -2.5 2.5 7  ]
 [0 1    1   -10]
 [0 0    0   1  ]]

Figure 3

Reduced row-echelon form on 
the TI-83 calculator:

rref([A])
   [[1 0 -7 -5]
    [0 1 -3 1 ]
    [0 0 0  0 ]]

Leading variables
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ALTERNATE EXAMPLE 7
Find the complete solution of the
system.

ANSWER
(4m + 5n, 7, m, n)

L x + 2y - 4z - 5w = 14

x + 3y - 4z - 5w = 21

2x + 2y - 8z - 10w = 14

EXAMPLE
A pet shop has 100 puppies, kittens, and turtles. A puppy costs $30, a kitten costs $20, and a turtle costs
$5. If there are twice as many kittens as puppies, and if the stock is worth $1050, how many of each type 
of animal is there?

ANSWER
p + k + t = 100

30p + 20k + 5t = 1050
2p - k + 0t = 0

10 puppies, 20 kittens, 70 turtles

To obtain the complete solution, we let t represent any real number, and we express
x, y, and z in terms of t:

We can also write the solution as the ordered triple , where t is
any real number. ■

In Example 6, to get specific solutions we give a specific value to t. For example,
if t � 1, then

Here are some other solutions of the system obtained by substituting other val-
ues for the parameter t.

Parameter t Solution

�1
0
2
5

Example 7 A System with Infinitely Many Solutions

Find the complete solution of the system.

Solution We transform the system into reduced row-echelon form.

This is in reduced row-echelon form. Since the last row represents the equation 
0 � 0, we may discard it. So the last matrix corresponds to the systemb 

x �3z � 4„ � 0

y � 5

 £1 2 �3 �4 10

0 1 0 0 5

0 0 0 0 0

§              £1 0 �3 �4 0

0 1 0 0 5

0 0 0 0 0

§R3 � 2R2 � R3
SSSSSSSSO

£1 2 �3 �4 10

1 3 �3 �4 15

2 2 �6 �8 10

§              £1 2 �3 �4 10

0 1 0 0 5

0 �2 0 0 �10

§
c x � 2y � 3z � 4„ � 10

x � 3y � 3z � 4„ � 15

2x � 2y � 6z � 8„ � 10

130,  16,  5219,  7,  221�5,  1,  021�12,  �2,  �1217t � 5,  3t � 1,  t 2
 z � 1

 y � 311 2 � 1 � 4

 x � 711 2 � 5 � 2

17t � 5,  3t � 1,  t 2 z � t

 y � 3t � 1

 x � 7t � 5

SECTION 9.4 Systems of Linear Equations: Matrices 671

R2 � R1 � R2
SSSSSSSO
R3 � 2R1 � R3

R1 � 2R2 � R1
SSSSSSSSO

Leading variables
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ALTERNATE EXAMPLE 8
A nutritionist is performing an
experiment on student volunteers.
He wishes to feed one of his
subjects a daily diet that consists
of a combination of three
commercial diet foods: MiniCal,
SloStarve, and SlimQuick. For the
experiment it’s important that the
subject consume exactly 310 mg
of potassium, 77 g of protein, and
1520 units of vitamin D every day.
The amounts of these nutrients in
one ounce of each food are given
in the table. How many ounces of
each food should the subject eat
every day to satisfy the nutrient
requirements exactly?

ANSWER
(5, 1, 11)

EXAMPLE
I have $6.50 in nickels, dimes, and quarters. I have twice as many nickels as dimes. That’s a lot of nickels.
In fact, if you add the number of dimes I have to twice the number of quarters I have, you get the number
of nickels I have. How many nickels do I have?

ANSWER
5n + 10d + 25q = 650
n - 2d + 0q = 0

-n + d + 2q = 0
40 nickels, 20 dimes, 10 quarters

To obtain the complete solution, we solve for the leading variables x and y in terms
of the nonleading variables z and „, and we let z and „ be any real numbers. Thus,
the complete solution is

where s and t are any real numbers.
We can also express the answer as the ordered quadruple (3s � 4t, 5, s, t). ■

Note that s and t do not have to be the same real number in the solution for 
Example 7. We can choose arbitrary values for each if we wish to construct a specific
solution to the system. For example, if we let s � 1 and t � 2, then we get the solu-
tion . You should check that this does indeed satisfy all three of the origi-
nal equations in Example 7.

Examples 6 and 7 illustrate this general fact: If a system in row-echelon form has
n nonzero equations in m variables , then the complete solution will have 
m � n nonleading variables. For instance, in Example 6 we arrived at two nonzero
equations in the three variables x, y, and z, which gave us 3 � 2 � 1 nonleading 
variable.

Modeling with Linear Systems

Linear equations, often containing hundreds or even thousands of variables, occur
frequently in the applications of algebra to the sciences and to other fields. For now,
let’s consider an example that involves only three variables.

Example 8 Nutritional Analysis Using a System 

of Linear Equations

A nutritionist is performing an experiment on student volunteers. He wishes to feed
one of his subjects a daily diet that consists of a combination of three commercial
diet foods: MiniCal, LiquiFast, and SlimQuick. For the experiment it’s important
that the subject consume exactly 500 mg of potassium, 75 g of protein, and 1150
units of vitamin D every day. The amounts of these nutrients in one ounce of each
food are given in the table. How many ounces of each food should the subject eat
every day to satisfy the nutrient requirements exactly?

1m 	 n 2
111,  5,  1,  2 2

 „ � t

 z � s

 y � 5

 x � 3s � 4t

672 CHAPTER 9 Systems of Equations and Inequalities

MiniCal LiquiFast SlimQuick

Potassium (mg) 50 75 10
Protein (g) 5 10 3
Vitamin D (units) 90 100 50

Solution Let x, y, and z represent the number of ounces of MiniCal, LiquiFast,
and SlimQuick, respectively, that the subject should eat every day. This means that
he will get 50x mg of potassium from MiniCal, 75y mg from LiquiFast, and 10z mg
from SlimQuick, for a total of 50x � 75y � 10z mg potassium in all. Since the

Olga Taussky-Todd (1906–1995)
was instrumental in developing ap-
plications of Matrix Theory. De-
scribed as “in love with anything
matrices can do,” she successfully
applied matrices to aerodynamics,
a field used in the design of air-
planes and rockets. Taussky-Todd
was also famous for her work in
Number Theory, which deals with
prime numbers and divisibility. Al-
though Number Theory was once
considered the least applicable
branch of mathematics, it is now
used in significant ways through-
out the computer industry.

Taussky-Todd studied mathe-
matics at a time when young
women rarely aspired to be mathe-
maticians. She said, “When I en-
tered university I had no idea what
it meant to study mathematics.”
One of the most respected mathe-
maticians of her day, she was for
many years a professor of mathe-
matics at Caltech in Pasadena.

C
ou

rt
es

y 
of

 C
al

te
ch

Mini Slo Slim
Cal Starve Quick

Potassium (mg) 25 75 10
Protein (g) 8 15 2
Vitamin D 130 100 70 
(units)
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potassium requirement is 500 mg, we get the first equation below. Similar 
reasoning for the protein and vitamin D requirements leads to the system

Dividing the first equation by 5 and the third one by 10 gives the system

We can solve this system using Gaussian elimination, or we can use a graphing 
calculator to find the reduced row-echelon form of the augmented matrix of the 
system. Using the rref command on the TI-83, we get the output in Figure 4. From
the reduced row-echelon form we see that x � 5, y � 2, z � 10. The subject should
be fed 5 oz of MiniCal, 2 oz of LiquiFast, and 10 oz of SlimQuick every day. ■

A more practical application might involve dozens of foods and nutrients rather
than just three. Such problems lead to systems with large numbers of variables and
equations. Computers or graphing calculators are essential for solving such large 
systems.

9.4 Exercises

•10x � 15y � 2z � 100

5x � 10y � 3z � 75

9x � 10y � 5z � 115

Potassium
Protein
Vitamin D

•50x � 75y � 10z � 500

5x � 10y � 3z � 75

90x � 100y � 50z � 1150

SECTION 9.4 Systems of Linear Equations: Matrices 673

rref([A])
   [[1 0 0 5 ]
    [0 1 0 2 ]
    [0 0 1 10]]

Figure 4

Check Your Answer

x � 5, y � 2, z � 10:

•1015 2 � 1512 2 � 2110 2 � 100

515 2 � 1012 2 � 3110 2 � 75

915 2 � 1012 2 � 5110 2 � 115

1–6 ■ State the dimension of the matrix.

1. 2. 3.

4. 5. 6.

7–14 ■ A matrix is given.

(a) Determine whether the matrix is in row-echelon form.

(b) Determine whether the matrix is in reduced row-echelon
form.

(c) Write the system of equations for which the given matrix is
the augmented matrix.

7. 8.

9. 10.

11. 12. £1 0 0 1

0 1 0 2

0 0 1 3

§£1 0 0 0

0 0 0 0

0 1 5 1

§
£1 0 �7 0

0 1 3 0

0 0 0 1

§£1 2 8 0

0 1 3 2

0 0 0 0

§
c1 3 �3

0 1 5
dc1 0 �3

0 1 5
d

c1 0

0 1
d31 4 7 4£�3

0

1

§
c12

35
dc�1 5 4 0

0 2 11 3
d£2 7

0 �1

5 �3

§ 13. 14.

15–24 ■ The system of linear equations has a unique solution.
Find the solution using Gaussian elimination or Gauss-Jordan
elimination.

15. 16.

17. 18.

19. 20.

21. 22. •2x1 � x2 � 7

2x1 � x2 � x3 � 6

3x1 � 2x2 � 4x3 � 11

• x1 � 2x2 � x3 � 9

2x1 � x3 � �2

3x1 � 5x2 � 2x3 � 22

• 2y � z � 4

x � y � 4

3x � 3y � z � 10

• x � 2y � z � �2

x � z � 0

2x � y � z � �3

• x � y � z � 4

�x � 2y � 3z � 17

2x � y � �7

• x � y � z � 2

2x � 3y � 2z � 4

4x � y � 3z � 1

• x � y � 6z � 3

x � y � 3z � 3

x � 2y � 4z � 7

• x � 2y � z � 1

y � 2z � 5

x � y � 3z � 8

≥ 1 3 0 1 0 0

0 1 0 4 0 0

0 0 0 1 1 2

0 0 0 1 0 0

¥≥ 1 3 0 �1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

¥
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674 CHAPTER 9 Systems of Equations and Inequalities

23.

24.

25–34 ■ Determine whether the system of linear equations is
inconsistent or dependent. If it is dependent, find the complete
solution.

25. 26.

27.

28.

29. 30.

31. 32.

33. 34.

35–46 ■ Solve the system of linear equations.

35. 36.

37. 38.

39.

40. d x � y � z � „ � 6

2x � z � 3„ � 8

x � y � 4„ � �10

3x � 5y � z � „ � 20

d�x � 2y � z � 3„ � 3

3x � 4y � z � „ � 9

�x � y � z � „ � 0

2x � y � 4z � 2„ � 3

• 3x � y � 2z � �1

4x � 2y � z � �7

�x � 3y � 2z � �1

• x � 2y � 3z � �5

�2x � 4y � 6z � 10

3x � 7y � 2z � �13

• 2x � 3y � 5z � 14

4x � y � 2z � �17

�x � y � z � 3

• 4x � 3y � z � �8

�2x � y � 3z � �4

x � y � 2z � 3

• y � 5z � 7

3x � 2y � 12

3x � 10z � 80

• 2x � y � 2z � 12   

�x � 1
2 y � z � �6

3x � 3
2 y � 3z � 18   

•3r � 2s � 3t � 10

r � s � t � �5

r � 4s � t � 20

• x � 4y � 2z � �3

2x � y � 5z � 12

8x � 5y � 11z � 30

•�2x � 6y � 2z � �12

x � 3y � 2z � 10

�x � 3y � 2z � 6

• x � y � 3z � 3

4x � 8y � 32z � 24

2x � 3y � 11z � 4

• x � 2y � 5z � 3

�2x � 6y � 11z � 1

3x � 16y � 20z � �26

• 2x � 3y � 9z � �5

x � 3z � 2

�3x � y � 4z � �3

• x � 3z � 3

2x � y � 2z � 5

�y � 8z � 8

• x � y � z � 2

y � 3z � 1

2x � y � 5z � 0

• 10x � 10y � 20z � 60

15x � 20y � 30z � �25

�5x � 30y � 10z � 45

• 2x � 3y � z � 13

�x � 2y � 5z � 6

5x � y � z � 49
41.

42.

43.

44.

45. 46.

Applications

47. Nutrition A doctor recommends that a patient take 
50 mg each of niacin, riboflavin, and thiamin daily to 
alleviate a vitamin deficiency. In his medicine chest at
home, the patient finds three brands of vitamin pills. The
amounts of the relevant vitamins per pill are given in the
table. How many pills of each type should he take every 
day to get 50 mg of each vitamin?

c 2x � y � 2z � „ � 5

�x � y � 4z � „ � 3

3x � 2y � z � 0

c x � y � „ � 0

3x � z � 2„ � 0

x � 4y � z � 2„ � 0

d y � z � 2„ � 0

3x � 2y � „ � 0

2x � 4„ � 12

�2x � 2z � 5„ � 6

d x � z � „ � 4

y � z � �4

x � 2y � 3z � „ � 12

2x � 2z � 5„ � �1

d x � 3y � 2z � „ � �2

x � 2y � 2„ � �10

z � 5„ � 15

3x � 2z � „ �   �3

d x � y � 2z � „ � �2

3y � z � 2„ � 2

x � y � 3„ � 2

�3x � z � 2„ � 5

VitaMax Vitron VitaPlus

Niacin (mg) 5 10 15
Riboflavin (mg) 15 20 0
Thiamin (mg) 10 10 10

48. Mixtures A chemist has three acid solutions at various
concentrations. The first is 10% acid, the second is 20%,
and the third is 40%. How many milliliters of each should
he use to make 100 mL of 18% solution, if he has to use
four times as much of the 10% solution as the 40% 
solution?

49. Distance, Speed, and Time Amanda, Bryce, and Corey
enter a race in which they have to run, swim, and cycle over
a marked course. Their average speeds are given in the
table. Corey finishes first with a total time of 1 h 45 min.
Amanda comes in second with a time of 2 h 30 min. Bryce
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SUGGESTED TIME 

AND EMPHASIS

1 class. 
Recommended material.

POINTS TO STRESS

1. Matrix addition.
2. Scalar and matrix multiplication.

SECTION 9.5 The Algebra of Matrices 675

finishes last with a time of 3 h. Find the distance (in miles)
for each part of the race.

travel along the portions of First, Second, Avocado, and
Birch Streets during this period. Find x, y, z, and „, assuming
that none of the cars stop or park on any of the streets
shown.

Discovery • Discussion

53. Polynomials Determined by a Set of Points We all
know that two points uniquely determine a line y � ax � b
in the coordinate plane. Similarly, three points uniquely 
determine a quadratic (second-degree) polynomial

four points uniquely determine a cubic (third-degree)
polynomial

and so on. (Some exceptions to this rule are if the three points
actually lie on a line, or the four points lie on a quadratic or
line, and so on.) For the following set of five points, find the
line that contains the first two points, the quadratic that 
contains the first three points, the cubic that contains 
the first four points, and the fourth-degree polynomial that
contains all five points.

Graph the points and functions in the same viewing 
rectangle using a graphing device.

10,  02 , 11,  122 , 12,  402 , 13,  62 , 1�1,  �142

y � ax3 � bx2 � cx � d

y � ax2 � bx � c

180 70

20

200

30200

400

200
FIRST STREET

SECOND STREET

AVOCADO
STREET

BIRCH
STREET

x

y

z „

Average speed (mi /h)
Running Swimming Cycling

Amanda 10 4 20
Bryce 7 6 15
Corey 15 3 40

1
2

50. Classroom Use A small school has 100 students who 
occupy three classrooms: A, B, and C. After the first period
of the school day, half the students in room A move to room
B, one-fifth of the students in room B move to room C,
and one-third of the students in room C move to room A. 
Nevertheless, the total number of students in each room is
the same for both periods. How many students occupy each
room?

51. Manufacturing Furniture A furniture factory makes
wooden tables, chairs, and armoires. Each piece of furniture
requires three operations: cutting the wood, assembling, and
finishing. Each operation requires the number of hours (h)
given in the table. The workers in the factory can provide
300 hours of cutting, 400 hours of assembling, and 590
hours of finishing each work week. How many tables,
chairs, and armoires should be produced so that all available
labor-hours are used? Or is this impossible?

Table Chair Armoire

Cutting (h) 1 1

Assembling (h) 1

Finishing (h) 1 211
2

11
2

1
2

1
2

52. Traffic Flow A section of a city’s street network is shown
in the figure. The arrows indicate one-way streets, and the
numbers show how many cars enter or leave this section of
the city via the indicated street in a certain one-hour period.
The variables x, y, z, and „ represent the number of cars that

9.5 The Algebra of Matrices

Thus far we’ve used matrices simply for notational convenience when solving linear
systems. Matrices have many other uses in mathematics and the sciences, and for
most of these applications a knowledge of matrix algebra is essential. Like numbers,
matrices can be added, subtracted, multiplied, and divided. In this section we learn
how to perform these algebraic operations on matrices.

57050_09_ch09_p634-741.qxd  08/04/2008  11:22 AM  Page 675



676 CHAPTER 9 Systems of Equations and Inequalities

ALTERNATE EXAMPLE 1 
Find a, b, c, and d if

=

ANSWER 
a = 4, b = 2, c = 2, d = 3

c4 c

d 2
dca 2

3 b
d

SAMPLE QUESTIONS

Text Questions

True or false:

(a) =

(b) + =

Answers

(a) False
(b) True

c2 9

2 2
dc -1 5

1 0
dc3 4

1 2
d

c -3 20

1 0
dc -1 5

1 0
dc3 4

1 2
d

Equality of Matrices

Two matrices are equal if they have the same entries in the same positions.

676 CHAPTER 9 Systems of Equations and Inequalities

Equality of Matrices

The matrices A � [aij] and B � [bij] are equal if and only if they have the
same dimension m � n, and corresponding entries are equal, that is,

for i � 1, 2, . . . , m and j � 1, 2, . . . , n.

aij � bij

Example 1 Equal Matrices

Find a, b, c, and d, if

Solution Since the two matrices are equal, corresponding entries must be the
same. So we must have a � 1, b � 3, c � 5, and d � 2. ■

Addition, Subtraction, and Scalar Multiplication 

of Matrices

Two matrices can be added or subtracted if they have the same dimension. (Other-
wise, their sum or difference is undefined.) We add or subtract the matrices by adding
or subtracting corresponding entries. To multiply a matrix by a number, we multiply
every element of the matrix by that number. This is called the scalar product.

ca b

c d
d � c1 3

5 2
d

Equal Matrices

Unequal Matrices

£1 2

3 4

5 6

§ � c1 3 5

2 4 6
d

c14 22 e0

0.5 1 1 � 1
d � c2 4 1

1
2

2
2 0

d

Sum, Difference, and Scalar Product of Matrices

Let A � [aij] and B � [bij] be matrices of the same dimension m � n, and 
let c be any real number.

1. The sum A � B is the m � n matrix obtained by adding corresponding 
entries of A and B.

2. The difference A � B is the m � n matrix obtained by subtracting corre-
sponding entries of A and B.

3. The scalar product cA is the m � n matrix obtained by multiplying each
entry of A by c.

cA � 3caij 4
A � B � 3aij � bij 4
A � B � 3aij � bij 4
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CHAPTER 9 Systems of Equations and Inequalities 677

ALTERNATE EXAMPLE 2 

Let

Carry out each indicated operation
or explain why it can’t be
performed
(a) C + D
(b) B - C
(c) A + 2B
(d) 3B

ANSWERS

(a)

(b) Not possible; the dimensions
are not the same.

(c) 

(d) 

ALTERNATE EXAMPLE 3

Solve the matrix equation 
3X - 4A = B
for the unknown matrix X where

and 

ANSWER

.X = c1 -1

3 2
d

B = c -13 1

-3 -2
d .

A = c4 -1

3 2
d

3B = J 12 6

0 0

36 -6 K
A + 2B = J  14 4

-2 4

 25 -2
K

C + D = c -2 6 6

2 -4 11
d

D = c -5 4 1

1 -6 2
d

C = c3 2 5

1 2 9
d

B = J 4 2

0 0

12 -2
K

A = J 6 0

-2 4

1 2
K

IN-CLASS MATERIALS

The text describes which properties of real number addition and multiplication carry over to matrix
addition, matrix multiplication, and scalar multiplication. Discuss how some of their consequences 
carry over as well. Ask the students if they believe that (A + B)(A + B) = AA + 2AB + BB. Let them 
discuss and argue. It turns out that this is false, because of commutativity. It is true that (A + B)(A + B) =
AA + AB + BA + BB. Have the class look at (A + B)(A - B) next.

Example 2 Performing Algebraic Operations

on Matrices

Let

Carry out each indicated operation, or explain why it cannot be performed.

(a) A � B (b) C � D (c) C � A (d) 5A

Solution

(a)

(b)

(c) C � A is undefined because we can’t add matrices of different dimensions.

(d) ■

The properties in the box follow from the definitions of matrix addition and scalar
multiplication, and the corresponding properties of real numbers.

5A � 5 £2 �3

0 5

7 � 
1
2

§ � £10 �15

0 25

35 � 
5
2

§
C � D � c7 �3 0

0 1 5
d � c6 0 �6

8 1 9
d � c 1 �3 6

�8 0 �4
d

A � B � £2 �3

0 5

7 � 
1
2

§ � £ 1 0

�3 1

2 2

§ � £ 3 �3

�3 6

9 3
2

§

 C � c7 �3 0

0 1 5
d       D � c6 0 �6

8 1 9
d

 A � £2 �3

0 5

7 � 
1
2

§    B � £ 1 0

�3 1

2 2

§

SECTION 9.5 The Algebra of Matrices 677

Properties of Addition and Scalar Multiplication of Matrices

Let A, B, and C be m � n matrices and let c and d be scalars.

A � B � B � A Commutative Property of Matrix Addition

Associative Property of Matrix Addition

Associative Property of Scalar 
Multiplication

Distributive Properties of Scalar 

Multiplication c1A � B 2 � cA � cB

 1c � d 2A � cA � dA

c1dA2 � 1cd 2A1A � B 2 � C � A � 1B � C 2

Example 3 Solving a Matrix Equation

Solve the matrix equation

for the unknown matrix X, where

A � c 2 3

�5 1
d       B � c4 �1

1 3
d

2X � A � B
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678 CHAPTER 9 Systems of Equations and Inequalities

IN-CLASS MATERIALS

Let A and B be 2 * 2 matrices. Although AB may not be equal to BA, there are special matrices for which
AB = BA. One necessary (but not sufficient) condition for this to happen is that a12b21 = a21b12. It is
relatively simple to show this condition, by explicitly multiplying out AB and BA. After demonstrating
this condition, challenge the students to find a pair of distinct matrices, without zero elements, such that
AB = BA. The process of searching for them will give students good practice multiplying matrices. One
example that works is 

B = c -1 2

3 2
dA = c1 2

3 4
d ,

Solution We use the properties of matrices to solve for X.

Given equation

Add the matrix A to each side

Multiply each side by the scalar 

So Substitute the matrices A and B

Add matrices

Multiply by the scalar ■

Multiplication of Matrices

Multiplying two matrices is more difficult to describe than other matrix operations.
In later examples we will see why taking the matrix product involves a rather com-
plex procedure, which we now describe.

First, the product of two matrices A and B is defined only when the
number of columns in A is equal to the number of rows in B. This means that if we
write their dimensions side by side, the two inner numbers must match:

Matrices A B

Dimensions m � n n � k

If the dimensions of A and B match in this fashion, then the product AB is a matrix of
dimension m � k. Before describing the procedure for obtaining the elements of AB,
we define the inner product of a row of A and a column of B.

If is a row of A, and if is a column of B, then

their inner product is the number a1b1 � a2b2 � . . . � anbn. For example, taking

the inner product of and gives

2 # 5 � 1�1 2 # 4 � 0 # 1�3 2 � 4 # 12 � 8

≥   5

  4

�3

  1
2

¥32 �1 0 4 4

≥ b1

b2

o
bn

¥3a1 a2 p an 4

AB 1or A # B 2

1
2 � c 3 1

�2 2
d

 � 
1

2
c 6 2

�4 4
d

 X �
1

2
a c4 �1

1 3
d � c 2 3

�5 1
d b

1
2 X � 1

2 1B � A 2 2X � B � A

 2X � A � B

678 CHAPTER 9 Systems of Equations and Inequalities

Columns in A Rows in B

Julia Robinson (1919–1985) was
born in St. Louis, Missouri, and
grew up at Point Loma, California.
Due to an illness, Robinson missed
two years of school but later, with
the aid of a tutor, she completed
fifth, sixth, seventh, and eighth
grades, all in one year. Later at 
San Diego State University, read-
ing biographies of mathematicians
in E. T. Bell’s Men of Mathematics
awakened in her what became a
lifelong passion for mathematics.
She said, “I cannot overemphasize
the importance of such books . . . in
the intellectual life of a student.”
Robinson is famous for her work
on Hilbert’s tenth problem (page
708), which asks for a general pro-
cedure for determining whether an
equation has integer solutions. Her
ideas led to a complete answer to
the problem. Interestingly, the an-
swer involved certain properties of
the Fibonacci numbers (page 826)
discovered by the then 22-year-old
Russian mathematician Yuri Mati-
jasevič. As a result of her brilliant
work on Hilbert’s tenth problem,
Robinson was offered a professor-
ship at the University of California,
Berkeley, and became the first
woman mathematician elected to
the National Academy of Sciences.
She also served as president of the
American Mathematical Society.

Th
e 

N
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y 
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CHAPTER 9 Systems of Equations and Inequalities 679

ALTERNATE EXAMPLE 4

Let and 

Calculate, if possible, the products
AB and BA.

ANSWER
AB has dimension 3 * 2.

BA is not defined.

AB = C -1 9

3 -6

-5 3

S

B = c -1 2

3 1
d .

A = C 4 1

-3 0

2 -1

S

IN-CLASS MATERIALS

This is a good time to discuss permutation matrices. A permutation matrix is a matrix that is all zeros
except for a single 1 in each row and each column.

This definition of matrix product says that each entry in the matrix AB is 
obtained from a row of A and a column of B as follows: The entry cij in the ith row
and jth column of the matrix AB is obtained by multiplying the entries in the ith 
row of A with the corresponding entries in the jth column of B and adding the 
results.

Example 4 Multiplying Matrices

Let

Calculate, if possible, the products AB and BA.

Solution Since A has dimension 2 � 2 and B has dimension 2 � 3, the product
AB is defined and has dimension 2 � 3. We can thus write

where the question marks must be filled in using the rule defining the product of
two matrices. If we define C � AB � [cij], then the entry c11 is the inner product 
of the first row of A and the first column of B:

c 1 3

�1 0
d c�1 5 2

0 4 7
d  1 # 1�1 2 � 3 # 0 � �1

AB � c 1 3

�1 0
d c�1 5 2

0 4 7
d � c         d

A � c 1 3

�1 0
d  and  B � c�1 5 2

0 4 7
d

£ §     £ § � £ cij §

? ? ?
? ? ?

SECTION 9.5 The Algebra of Matrices 679

Matrix Multiplication

If A � [aij] is an m � n matrix and B � [bij] an n � k matrix, then their 
product is the m � k matrix

where cij is the inner product of the ith row of A and the jth column of B. We
write the product as

C � AB

C � 3cij 4

ith row of A
jth column of B Entry in ith row and

jth column of AB

2 � 2 2 � 3

Inner numbers match,
so product is defined.

Outer numbers give dimension
of product: 2 � 3.

We now define the product AB of two matrices.

E0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

U
Have the class figure out if the sum of two permutation matrices must always be a permutation matrix (no) and
if the product of two permutation matrices must always be a permutation matrix (yes). Finally, have the stu-
dents multiply arbitrary matrices by permutation matrices, to see what happens to them (the rows or columns
get rearranged, depending on whether the permutation matrix was multiplied on the left or on the right).
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680 CHAPTER 9 Systems of Equations and Inequalities

DRILL QUESTION

Compute .

Answer

c18

28
d

J 5

-1

1
Kc5 9 2

6 5 3
d

IN-CLASS MATERIALS

Foreshadow the next section by having students compute

.J xyz KJ 2 5 1

4 2 1

5 3 1
K

Similarly, we calculate the remaining entries of the product as follows.

Entry Inner product of: Value Product matrix

c12 1 � 5 � 3 � 4 � 17

c13 1 � 2 � 3 � 7 � 23

c21

c22

c23

Thus, we have

The product BA is not defined, however, because the dimensions of B and A are

The inner two numbers are not the same, so the rows and columns won’t match up
when we try to calculate the product. ■

Graphing calculators and computers are capable of performing matrix algebra. 
For instance, if we enter the matrices in Example 4 into the matrix variables [A]
and [B] on a TI-83 calculator, then the calculator finds their product as shown in 
Figure 1.

Properties of Matrix Multiplication

Although matrix multiplication is not commutative, it does obey the Associative and
Distributive Properties.

2 � 3  and  2 � 2

AB � c�1 17 23

1 �5 �2
d

c�1 17 23

1 �5 �2
d1�1 2 # 2 � 0 # 7 � �2c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23

1 �5
d1�1 2 # 5 � 0 # 4 � �5c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23

1
d1�1 2 # 1�1 2 � 0 # 0 � 1c 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 23 dc 1 3

�1 0
d c�1 5 2

0 4 7
d

c�1 17 dc 1 3

�1 0
d c�1 5 2

0 4 7
d

680 CHAPTER 9 Systems of Equations and Inequalities

Not equal, so product
not defined.

2 � 3 2 � 2

Properties of Matrix Multiplication

Let A, B, and C be matrices for which the following products are defined.
Then

Associative Property

Distributive Property1B � C 2A � BA � CA

A1B � C 2 � AB � AC

A1BC 2 � 1AB 2C

[A]*[B]
    [[-1 17 23]
     [1  -5 -2]]

Figure 1
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ALTERNATE EXAMPLE 5

Let and

. Calculate the

products AB and BA. Does 
AB = BA?

ANSWER

They are not equal.

BA = c 6 12

-1 16
d

AB = c10 6

2 12
d

B = c6 0

2 3
d

A = c 1 2

-1 4
d

EXAMPLES

Let , , and .

If using these examples, occasionally throw in an undefined operation such as A + C or AB.

(A + B)C = C 28 18

4 10

-7 2

SBC = C 17 10

7 11

-20 -11

SAC = C 11 8

-3 -1

13 13

SB - A = C 2 0

2 2

-9 -3

SA + B = C 8 2

0 2

-3 1

S
C = c3 1

2 5
dB = C 5 1

1 2

-6 -1

SA = C 3 1

-1 0

3 2

S

ALTERNATE EXAMPLE 6
Find a system of equations that is
equivalent to the following matrix
equation:

ANSWER
x + y + z = 1

2x - 3y = 2
2x + 6y + 2z = 5

= C1

2

5

SC x

y

z

SC1 1 1

2 -3 0

2 6 2

S

The next example shows that even when both AB and BA are defined, they aren’t
necessarily equal. This result proves that matrix multiplication is not commutative.

Example 5 Matrix Multiplication Is Not Commutative

Let and

Calculate the products AB and BA.

Solution Since both matrices A and B have dimension 2 � 2, both products AB
and BA are defined, and each product is also a 2 � 2 matrix.

This shows that, in general, AB � BA. In fact, in this example AB and BA don’t
even have an entry in common. ■

Applications of Matrix Multiplication

We now consider some applied examples that give some indication of why mathe-
maticians chose to define the matrix product in such an apparently bizarre fashion.
Example 6 shows how our definition of matrix product allows us to express a system
of linear equations as a single matrix equation.

Example 6 Writing a Linear System as a Matrix Equation

Show that the following matrix equation is equivalent to the system of equations in
Example 2 of Section 9.4.

Solution If we perform matrix multiplication on the left side of the equation,
we get

£ x � y � 3z
x � 2y � 2z

3x � y � 5z
§ � £ 4

10

14

§

£1 �1 3

1 2 �2

3 �1 5

§  £ xy
z
§ � £ 4

10

14

§

� c�1 7

48 63
d

BA � c1 2

9 �1
d  c 5 7

�3 0
d � c 1 # 5 � 2 # 1�3 2 1 # 7 � 2 # 0

9 # 5 � 1�1 2 # 1�3 2 9 # 7 � 1�1 2 # 0 d
� c 68 3

�3 �6
d

AB � c 5 7

�3 0
d  c1 2

9 �1
d � c 5 # 1 � 7 # 9 5 # 2 � 7 # 1�1 21�3 2 # 1 � 0 # 9 1�3 2 # 2 � 0 # 1�1 2 d

B � c1 2

9 �1
dA � c 5 7

�3 0
d

SECTION 9.5 The Algebra of Matrices 681

Matrix equations like this one are 
described in more detail on page 694.
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ALTERNATE EXAMPLE 7
In a certain city the proportion 
of voters in each age group who
are registered as Democrats,
Republicans, or Independents is
given by the following matrix.

Age

18–30 31–50 Over 50

The next matrix gives the
distribution, by age and sex, of the
voting population of this city.

Male Female

For this problem, let’s make the
assumption that within each age
group, political preference is not
related to gender. That is, the
percentage of Democratic males
in the 18–30 group, for example,
is the same as the percentage of
Democratic females in this group.
Find how many females are
registered as Independents in this
city.

ANSWER
10,450

C 7,000 8,000

15,000 18,000

18,000 19,000

S = BAge †   
18–30

31–50

Over 50

Democrat 

Republican 

Independent 

 C 0.35 0.55 0.50

0.50 0.20 0.25

0.15 0.25 0.25

S = A

Because two matrices are equal only if their corresponding entries are equal, we
equate entries to get

This is exactly the system of equations in Example 2 of Section 9.4. ■

• x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14

682 CHAPTER 9 Systems of Equations and Inequalities

Age

18–30 31–50 Over 50

Democrat

Republican

Independent

£ 0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

§ � A

Example 7 Representing Demographic Data by Matrices

In a certain city the proportion of voters in each age group who are registered as
Democrats, Republicans, or Independents is given by the following matrix.

The next matrix gives the distribution, by age and sex, of the voting population of
this city.

For this problem, let’s make the (highly unrealistic) assumption that within each
age group, political preference is not related to gender. That is, the percentage of
Democrat males in the 18–30 group, for example, is the same as the percentage of
Democrat females in this group.

(a) Calculate the product AB.

(b) How many males are registered as Democrats in this city?

(c) How many females are registered as Republicans?

Solution

(a)

(b) When we take the inner product of a row in A with a column in B, we are
adding the number of people in each age group who belong to the category in
question. For example, the entry c21 of AB (the 9000) is obtained by taking the
inner product of the Republican row in A with the Male column in B. This

AB � £0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

§  £ 5,000 6,000

10,000 12,000

12,000 15,000

§ � £13,500 16,500

9,000 10,950

4,500 5,550

§

Male Female

18–30
Age 31–50

Over 50

£ 5,000 6,000

10,000 12,000

12,000 15,000

§ � B

Mathematics in 

the Modern World

Fair Voting Methods

The methods of mathematics have
recently been applied to problems
in the social sciences. For example,
how do we find fair voting meth-
ods? You may ask, what is the
problem with how we vote in elec-
tions? Well, suppose candidates A,
B, and C are running for president.
The final vote tally is as follows: A
gets 40%, B gets 39%, and C gets
21%. So candidate A wins. But
60% of the voters didn’t want A.
Moreover, you voted for C, but you
dislike A so much that you would
have been willing to change your
vote to B to avoid having A win.
Most of the voters who voted for C
feel the same way you do, so we
have a situation where most of the
voters prefer B over A, but A wins.
So is that fair?

In the 1950s Kenneth Arrow
showed mathematically that no
democratic method of voting can
be completely fair, and later won a
Nobel Prize for his work. Mathe-
maticians continue to work on
finding fairer voting systems. The
system most often used in federal,
state, and local elections is called
plurality voting (the candidate with
the most votes wins). Other sys-
tems include majority voting (if no
candidate gets a majority, a runoff
is held between the top two vote-
getters), approval voting (each
voter can vote for as many candi-
dates as he or she approves of),
preference voting (each voter or-
ders the candidates according to 
his or her preference), and cumu-
lative voting (each voter gets as
many votes as there are candidates

(continued )
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CHAPTER 9 Systems of Equations and Inequalities 683

Thus, 13,500 males are registered as Democrats in this city.

(c) There are 10,950 females registered as Republicans. ■

In Example 7, the entries in each column of A add up to 1. (Can you see why this
has to be true, given what the matrix describes?) A matrix with this property is called
stochastic. Stochastic matrices are used extensively in statistics, where they arise fre-
quently in situations like the one described here.

Computer Graphics

One important use of matrices is in the digital representation of images. A digital
camera or a scanner converts an image into a matrix by dividing the image into a rect-
angular array of elements called pixels. Each pixel is assigned a value that represents
the color, brightness, or some other feature of that location. For example, in a 256-
level gray-scale image each pixel is assigned a value between 0 and 255, where 0 rep-
resents white, 255 black, and the numbers in between increasing gradations of gray.
The gradations of a much simpler 8-level gray scale are shown in Figure 2. We use
this 8-level gray scale to illustrate the process.

Figure 3

To digitize the black and white image in Figure 3(a), we place a grid over the pic-
ture as shown in Figure 3(b). Each cell in the grid is compared to the gray scale, and
then assigned a value between 0 and 7 depending on which gray square in the scale
most closely matches the “darkness” of the cell. (If the cell is not uniformly gray, an
average value is assigned.) The values are stored in the matrix shown in Figure 3(c).
The digital image corresponding to this matrix is shown in Figure 3(d). Obviously the

(a) Original image (b) 10  10 grid (d) Digital image(c) Matrix representation

1 1 1 1 1 1 1 2 2 1
1 1 1 1 1 1 4 6 5 2
1 1 1 1 2 3 3 5 5 3
1 1 1 1 3 5 4 6 3 2
1 1 1 1 1 2 3 2 2 1
1 1 1 1 1 3 3 2 1 1
1 1 1 1 1 1 4 1 1 1
1 1 1 1 2 2  4 2 2 2
2 2 3 5 5 2 2 3 4 4
3 3 3 4 3 2 3 3 3 4

number is therefore the total number of male Republicans in this city. We can
label the rows and columns of AB as follows.

SECTION 9.5 The Algebra of Matrices 683

0 1 2 3 4 5 6 7

Figure 2

E
. O

. H
op

pé
/C

or
bi

s

Male Female

Democrat

Republican

Independent

£ 13,500 16,500

9,000 10,950

4,500 5,550

§ � AB

and can give all of his or her votes
to one candidate or distribute them
among the candidates as he or 
she sees fit). This last system is 
often used to select corporate
boards of directors. Each system of
voting has both advantages and
disadvantages.
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684 CHAPTER 9 Systems of Equations and Inequalities

grid that we have used is far too coarse to provide good image resolution. In practice,
currently available high-resolution digital cameras use matrices with dimensions
2048 � 2048 or larger.

Once the image is stored as a matrix, it can be manipulated using matrix 
operations. For example, to darken the image, we add a constant to each entry in the
matrix; to lighten the image, we subtract. To increase the contrast, we darken the
darker areas and lighten the lighter areas, so we could add 1 to each entry that is 4, 5,
or 6 and subtract 1 from each entry that is 1, 2, or 3. (Note that we cannot darken an
entry of 7 or lighten a 0.) Applying this process to the matrix in Figure 3(c) produces
the new matrix in Figure 4(a). This generates the high-contrast image shown in 
Figure 4(b).

Figure 4

Other ways of representing and manipulating images using matrices are discussed
in the Discovery Projects on pages 700 and 792.

9.5 Exercises

(b) High-contrast image(a) Matrix modified to
increase contrast

0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 5 7 6 1
0 0 0 0 1 2 2 6 6 2
0 0 0 0 2 6 5 7 2 1
0 0 0 0 0 1 2 1 1 0
0 0 0 0 0 2 2 1 0 0
0 0 0 0 0 0 5 0 0 0
0 0 0 0 1 1  5 1 1 1
1 1 2 6 6 1 1 2 5 5
2 2 2 5 2 1 2 2 2 5

684 CHAPTER 9 Systems of Equations and Inequalities

1–2 ■ Determine whether the matrices A and B are equal.

1. ,

2. ,

3–10 ■ Perform the matrix operation, or if it is impossible,
explain why.

3.

4.

5. 3 £1 2

4 �1

1 0

§
c0 1 1

1 1 0
d � c2 1 �1

1 3 �2
d

c 2 6

�5 3
d � c�1 �3

6 2
d

B � c0.25 0

14 6
2

dA � c 1
4 ln 1

2 3
d

B � c1 �2
1
2 6

dA � c1 �2 0
1
2 6 0

d 6.

7.

8.

9.

10. £2 �3

0 1

1 2

§  c5
1
d

c 1 2

�1 4
d  c1 �2 3

2 2 �1
d

c2 1 2

6 3 4
d  £ 1 �2

3 6

�2 0

§
£2 6

1 3

2 4

§  £ 1 �2

3 6

�2 0

§
2 £1 1 0

1 0 1

0 1 1

§ � £1 1

2 1

3 1

§
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11–16 ■ Solve the matrix equation for the unknown matrix X,
or explain why no solution exists.

11. 2X � A � B 12. 3X � B � C

13. 14.

15. 16. 2A � B � 3X

17–38 ■ The matrices A, B, C, D, E, F, and G are defined as
follows.

Carry out the indicated algebraic operation, or explain why it
cannot be performed.

17. B � C 18. B � F

19. C � B 20. 5A

21. 3B � 2C 22. C � 5A

23. 2C � 6B 24. DA

25. AD 26. BC

27. BF 28. GF

29. 30.

31. GE 32. A2

33. A3 34. DB � DC

35. B 2 36. F 2

37. BF � FE 38. ABE

D1AB 21DA 2B

G � £ 5 �3 10

6 1 0

�5 2 2

§F � £1 0 0

0 1 0

0 0 1

§
E � £12

0

§D � 37 3 4
C � c2 � 

5
2 0

0 2 �3
dB � c3 1

2 5

1 �1 3
dA � c2 �5

0 7
d

1
5 1X � D 2 � C

51X � C 2 � D21B � X 2 � D

D � £10 20

30 20

10 0

§C � £2 3

1 0

0 2

§
B � c2 5

3 7
dA � c4 6

1 3
d

39–42 ■ Solve for x and y.

39.

40.

41.

42.

43–46 ■ Write the system of equations as a matrix equation
(see Example 6).

43.

44.

45.

46.

47. Let

Determine which of the following products are defined, and
calculate the ones that are:

BCA   CAB   CBA

ABC   ACB   BAC

C � ≥ 1

0

�1

�2

¥
B � 31 7 �9 2 4
A � c1 0 6 �1

2 1
2 4 0

d

µ x � y � z � 2

4x � 2y � z � 2

x � y � 5z � 2

�x � y � z � 2

•3x1 � 2x2 � x3 � x4 � 0

x1 � x3 � 5

3x2 � x3 � x4 � 4

• 6x � y � z � 12

2x � z � 7

y � 2z � 4

e2x � 5y � 7

3x � 2y � 4

c x y

�y x
d � c y x

x �y
d � c 4 �4

�6 6
d

2 c x y

x � y x � y
d � c 2 �4

�2 6
d

3 c x y

y x
d � c 6 �9

�9 6
d

c x 2y

4 6
d � c 2 �2

2x �6y
d
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Number of items sold

Santa Monica Long Beach Anaheim

Hamburgers
Hot dogs

Milk shakes
£4000 1000 3500

400 300 200

700 500 9000

§ � A

686 CHAPTER 9 Systems of Equations and Inequalities

48. (a) Prove that if A and B are 2 � 2 matrices, then

(b) If A and B are 2 � 2 matrices, is it necessarily 
true that

Applications

49. Fast-Food Sales A small fast-food chain with 
restaurants in Santa Monica, Long Beach, and Anaheim
sells only hamburgers, hot dogs, and milk shakes. On a 
certain day, sales were distributed according to the follow-
ing matrix.

1A � B 2 2 � A2 � 2AB � B 
2

1A � B22 � A2 � AB � BA � B 
2

Because of a wage increase, February profits are less than
January profits. The profit per car is tabulated by model in
the following matrix.

(a) Calculate the product BA.

(b) Interpret the entries in the product matrix BA.

50. Car-Manufacturing Profits A specialty-car manufac-
turer has plants in Auburn, Biloxi, and Chattanooga. Three
models are produced, with daily production given in the 
following matrix.

The price of each item is given by the following matrix.

(a) Calculate AB.

(b) Assuming all cars produced were sold, what was the
daily profit in January from the Biloxi plant?

(c) What was the total daily profit (from all three plants) 
in February?

51. Canning Tomato Products Jaeger Foods produces
tomato sauce and tomato paste, canned in small, medium,
large, and giant sized tins. The matrix A gives the size 
(in ounces) of each container.

Hamburger Hot dog Milk Shake

[$0.90 $0.80 $1.10] � B

Cars produced each day

Model K Model R Model W

Auburn
Biloxi

Chattanooga
£12 10 0

4 4 20

8 9 12

§ � A

Small Medium Large Giant

Ounces [6 10 14 28] � A

Cans of Cans of
sauce paste

Small
Medium

Large
Giant

≥ 2000 2500

3000 1500

2500 1000

1000 500

¥ � B

The matrix B tabulates one day’s production of tomato
sauce and tomato paste.

January February

Model K
Model R
Model W

£ $1000   $500

$2000 $1200

$1500   $1000

§ � B

(a) Calculate the product of AB.

(b) Interpret the entries in the product matrix AB.
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52. Produce Sales A farmer’s three children, Amy, Beth, and
Chad, run three roadside produce stands during the summer
months. One weekend they all sell watermelons, yellow
squash, and tomatoes. The matrices A and B tabulate the
number of pounds of each product sold by each sibling on
Saturday and Sunday.

(b) Find a matrix that represents a darker version of the 
image in the figure.

(c) The negative of an image is obtained by reversing light
and dark, as in the negative of a photograph. Find the
matrix that represents the negative of the image in the
figure. How do you change the elements of the matrix
to create the negative?

(d) Increase the contrast of the image by changing each 1 to
a 0 and each 2 to a 3 in the matrix you found in part (b).
Draw the image represented by the resulting matrix.
Does this clarify the image?

(e) Draw the image represented by the matrix I. Can you
recognize what this is? If you don’t, try increasing the
contrast.

Discovery • Discussion

54. When Are Both Products Defined? What must be 
true about the dimensions of the matrices A and B if both
products AB and BA are defined?

55. Powers of a Matrix Let

Calculate A2, A3, A4, . . . until you detect a pattern. Write a
general formula for An.

56. Powers of a Matrix Let . Calculate A2, A3,

A4, . . . until you detect a pattern. Write a general formula 
for An.

57. Square Roots of Matrices A square root of a matrix B is
a matrix A with the property that A2 � B. (This is the same
definition as for a square root of a number.) Find as many
square roots as you can of each matrix:

[Hint: If , write the equations that a, b, c, and 

d would have to satisfy if A is the square root of the given
matrix.]

A � ca b

c d
d
c4 0

0 9
d       c1 5

0 9
d

A � c1 1

1 1
d

A � c1 1

0 1
d

F1 2 3 3 2 0

0 3 0 1 0 1

1 3 2 3 0 0

0 3 0 1 0 1

1 3 3 2 3 0

0 1 0 1 0 1

V
Price per pound

Melons
Squash � C

Tomatoes
£0.10

0.50

1.00

S
I �

Sunday

Melons Squash Tomatoes

Amy
Beth
Chad

£100 60 30

35 20 20

60 25 30

§ � B

The matrix C gives the price per pound (in dollars) for each
type of produce that they sell.

Saturday

Melons Squash Tomatoes

Amy
Beth
Chad

£120 50 60

40 25 30

60 30 20

§ � A

Perform the following matrix operations, and interpret the
entries in each result.

(a) AC (b) BC (c) A � B (d)

53. Digital Images A four-level gray scale is shown below.

(a) Use the gray scale to find a 6 � 6 matrix that digitally
represents the image in the figure.

0 1 2 3

1A � B 2C
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Will the Species Survive?

To study how species survive, mathematicians model their populations by 
observing the different stages in their life. They consider, for example, the stage
at which the animal is fertile, the proportion of the population that reproduces,
and the proportion of the young that survive each year. For a certain species,
there are three stages: immature, juvenile, and adult. An animal is considered
immature for the first year of its life, juvenile for the second year, and an adult
from then on. Conservation biologists have collected the following field data 
for this species:

688 CHAPTER 9 Systems of Equations and Inequalities

D I S C O V E R Y
P R O J E C T

Immature Juvenile Adult

Immature

Juvenile

Adult

X0 � £ 600

400

3500

§Immature

Juvenile

Adult

A � £0 0 0.4

0.1 0 0

0 0.3 0.8

§
The entries in the matrix A indicate the proportion of the population that 
survives to the next year. For example, the first column describes what happens
to the immature population: None remain immature, 10% survive to become 
juveniles, and of course none become adults. The second column describes what
happens to the juvenile population: None become immature or remain juvenile,
and 30% survive to adulthood. The third column describes the adult population:
The number of their new offspring is 40% of the adult population, no adults 
become juveniles, and 80% survive to live another year. The entries in the popu-
lation matrix X0 indicate the current population (year 0) of immature, juvenile,
and adult animals.

Let X1 � AX0, X2 � AX1, X3 � AX2, and so on.

1. Explain why X1 gives the population in year 1, X2 the population in year 2,
and so on.

2. Find the population matrix for years 1, 2, 3, and 4. (Round fractional entries
to the nearest whole number.) Do you see any trend?

3. Show that X2 � A 2X0, X3 � A3X0, and so on.

4. Find the population after 50 years—that is, find X50. (Use your results in
Problem 3 and a graphing calculator.) Does it appear that the species will 
survive?

5. Suppose the environment has improved so that the proportion of immatures
that become juveniles each year increases to 0.1 from 0.3, the proportion 
of juveniles that become adults increases to 0.3 from 0.7, and the proportion
of adults that survives to the next year increases from 0.8 to 0.95. Find the
population after 50 years with the new matrix A. Does it appear that the spe-
cies will survive under these new conditions?

6. The survival-rate matrix A given above is called a transition matrix. Such
matrices occur in many applications of matrix algebra. The following transi-
tion matrix T predicts the calculus grades of a class of college students who

A
rt

 W
ol

fe
/S

to
ne

/G
et

ty
 Im

ag
es
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SUGGESTED TIME 

AND EMPHASIS 

1 class.
Recommended material.

DRILL QUESTION

Find the inverse of the matrix 
. 

Answer

c 1
3 0

0 -8
5

d

c3 0

0 -5
8
d

POINTS TO STRESS

1. The identity matrix.
2. Definition and computation of the inverse of a matrix.

SECTION 9.6 Inverses of Matrices and Matrix Equations 689

must take a four-semester sequence of calculus courses. The first column of the
matrix, for instance, indicates that of those students who get an A in one course,
70% will get an A in the following course, 15% will get a B, and 10% will get 
a C. (Students who receive D or F are not permitted to go on to the next course,
so are not included in the matrix.) The entries in the matrix Y0 give the number
of incoming students who got A, B, and C, respectively, in their final high 
school mathematics course.

Let Y1 � TY0, Y2 � TY1, Y3 � TY2, and Y4 � TY3. Calculate and interpret the
entries of Y1, Y2, Y3, and Y4.

9.6 Inverses of Matrices and Matrix Equations

In the preceding section we saw that, when the dimensions are appropriate, matrices
can be added, subtracted, and multiplied. In this section we investigate division of
matrices. With this operation we can solve equations that involve matrices.

The Inverse of a Matrix

First, we define identity matrices, which play the same role for matrix multiplication
as the number 1 does for ordinary multiplication of numbers; that is,
for all numbers a. In the following definition the term main diagonal refers to the en-
tries of a square matrix whose row and column numbers are the same. These entries
stretch diagonally down the matrix, from top left to bottom right.

Thus, the 2 � 2, 3 � 3, and 4 � 4 identity matrices are

Identity matrices behave like the number 1 in the sense that

whenever these products are defined.

A # In � A  and  In
# B � B

I2 � c1 0

0 1
d   I3 � £1 0 0

0 1 0

0 0 1

§   I4 � ≥ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

¥

The identity matrix In is the n � n matrix for which each main diagonal 
entry is a 1 and for which all other entries are 0.

1 # a � a # 1 � a

A B C

T � £0.70 0.25 0.05

0.15 0.50 0.25

0.05 0.15 0.45

§        Y0 � £140

320

400

§  A

B

C

A

B

C
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ALTERNATE EXAMPLE 1

SAMPLE QUESTION

Text Question

If AB = I, where I is the identity
matrix, is it necessarily true that
BA = I?

Answer

Yes

ALTERNATE EXAMPLE 2
Verify that B is the inverse of A.

and

ANSWER

AB = BA = c1 0

0 1
d

B = c 3 -2

-4 3
d

A = c3 2

4 3
d

= C1 2

3 -1

5 8

S
c1 0

0 1
dC1 2

3 -1

5 8

S

IN-CLASS MATERIALS

Perhaps take this opportunity to talk about the inverse of a complex number: How do we find ?

The technique, multiplying by , is not as important as the concept that given a real, complex, or

matrix quantity it is often possible to find an inverse that will reduce it to unity. One can also add “inverse
functions” to this discussion—in this case f (x) = x is the identity function, so-called because it leaves
inputs unchanged (analogous to multiplying by 1). Try to get the students to see the conceptual similarities
in solving the three following equations:

3x = 2
(3 + i) x = 2 - 4i

= c3
1
dcx

y
dc2 1

3 -4
d

3 - 4i

3 - 4i

1

3 + 4i

Example 1 Identity Matrices

The following matrix products show how multiplying a matrix by an identity matrix
of the appropriate dimension leaves the matrix unchanged.

If A and B are n � n matrices, and if AB � BA � In, then we say that B is the in-
verse of A, and we write B � A�1. The concept of the inverse of a matrix is analogous
to that of the reciprocal of a real number.

£�1 7 1
2

12 1 3

�2 0 7

§  £1 0 0

0 1 0

0 0 1

§ � £�1 7 1
2

12 1 3

�2 0 7

§
c1 0

0 1
d  c 3 5 6

�1 2 7
d � c 3 5 6

�1 2 7
d

690 CHAPTER 9 Systems of Equations and Inequalities

Inverse of a Matrix

Let A be a square n � n matrix. If there exists an n � n matrix A�1 with the
property that

then we say that A�1 is the inverse of A.

AA 
�1 � A 

�1A � In

Example 2 Verifying That a Matrix Is an Inverse

Verify that B is the inverse of A, where

Solution We perform the matrix multiplications to show that AB � I and 
BA � I:

■

Finding the Inverse of a 2 � 2 Matrix

The following rule provides a simple way for finding the inverse of a 2 � 2 matrix,
when it exists. For larger matrices, there’s a more general procedure for finding in-
verses, which we consider later in this section.

c 3 �1

�5 2
d  c2 1

5 3
d � c3 # 2 � 1�1 25 3 # 1 � 1�1 231�5 22 � 2 # 5 1�5 21 � 2 # 3 d � c1 0

0 1
d

c2 1

5 3
d  c 3 �1

�5 2
d � c2 # 3 � 11�5 2 21�1 2 � 1 # 2

5 # 3 � 31�5 2 51�1 2 � 3 # 2 d � c1 0

0 1
d

A � c2 1

5 3
d  and  B � c 3 �1

�5 2
d

Inverse of a 2 � 2 Matrix

If 

If ad � bc � 0, then A has no inverse.

A � ca b

c d
d  then  A 

�1 �
1

ad � bc
 c d �b

�c a
d

■
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ALTERNATE EXAMPLE 3

Find the inverse of .

ANSWER

ALTERNATE EXAMPLE 4
Find the inverse of the following
matrix:

ANSWER

IN-CLASS MATERIALS

It is straightforward to demon-
strate that (A - 1)-1 = A for
specific 2 * 2 or 3 * 3 matrices.
Students can pick up why it
should be true, given the
definition of inverse. A general
algebraic proof is a little messy:

D -
1
8

9
8

1
8

-1
8

1
8

1
8

3
8 -19

8
5
8

T
C3 -8 1

1 -1 0

2 1 1

S

1

2
c 3 -4

-4 6
d = c  3

2 -2

-2 3
d

c6 4

4 3
d

Note that there is a formula for 3 * 3 inverses, just as there is a formula for 2 * 2 inverses. Unfortunately, it is so complicated that it is easier to
do 3 * 3 inverses manually than to use a formula.

C fh - ei� bi - ch� ce - bf

di - fg� cg - ai� af - cd

eg - dh� ah - bg� bd - ae

SCa b c

d e f

g h i

S-1

=
1

afh - aei + bdi - bfg + ceg - cdh
 

=
1

1>(ad - bc)
# 1

ad - bc
# ca b

c d
d = ca b

c d
d = A=

1

a a

ad - bc
b a d

ad - bc
b - a b

ad - bc
b a c

ad - bc
b

 D a

ad - bc
   -

b

ad - bc

-
c

ad - bc
   

d

ad - bc

T

Example 3 Finding the Inverse of a 2 � 2 Matrix

Let A be the matrix

Find A�1 and verify that AA�1 � A�1A � I2.

Solution Using the rule for the inverse of a 2 � 2 matrix, we get

To verify that this is indeed the inverse of A, we calculate AA�1 and A�1A:

■

The quantity ad � bc that appears in the rule for calculating the inverse of a 
2 � 2 matrix is called the determinant of the matrix. If the determinant is 0, then
the matrix does not have an inverse (since we cannot divide by 0).

Finding the Inverse of an n � n Matrix

For 3 � 3 and larger square matrices, the following technique provides the most
efficient way to calculate their inverses. If A is an n � n matrix, we first construct the
n � 2n matrix that has the entries of A on the left and of the identity matrix In on the
right:

We then use the elementary row operations on this new large matrix to change the left
side into the identity matrix. (This means that we are changing the large matrix to re-
duced row-echelon form.) The right side is transformed automatically into A�1. (We
omit the proof of this fact.)

Example 4 Finding the Inverse of a 3 � 3 Matrix

Let A be the matrix

(a) Find A�1.

(b) Verify that AA�1 � A�1A � I3.

A � £ 1 �2 �4

2 �3 �6

�3 6 15

§

≥ a11 a12 p a1n

a21 a22 p a2n

o o ∞ o
an1 an2 p ann

  

1 0 p 0

0 1 p 0

o o ∞ o
0 0 p 1

¥

 A 
�1A � c 3

2 � 
5
2

�1 2
d  c4 5

2 3
d � c 3

2
# 4 � A� 

5
2B2 3

2
# 5 � A� 

5
2B31�1 24 � 2 # 2 1�1 25 � 2 # 3 d � c1 0

0 1
d

 AA 
�1 � c4 5

2 3
d  c 3

2 �5
2

�1 2
d � c4 # 32 � 51�1 2 4A� 

5
2B � 5 # 2

2 # 32 � 31�1 2 2A�5
2B � 3 # 2 d � c1 0

0 1
d

A 
�1 �

1

4 # 3 � 5 # 2  c 3 �5

�2 4
d �

1

2
 c 3 �5

�2 4
d � c 3

2 �5
2

�1 2
d

A � c4 5

2 3
d
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(A-1)-1 = D d

ad - bc
  -

b

ad - bc

-
c

ad - bc
  

a

ad - bc

T - 1
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EXAMPLES
■ Nonsingular real matrices

■ Singular real matrices

D 8 3 5 -8

-7 6 0 -6

-5 -3 7 9

-4 6 12 -5

T
C 1 2 3

-1 3 -2

-1 8 -1

S
c 5 4

15 24
d

= D 0 1
2 0 0

1
2 0 0 0

0 0 1
5 0

- 1
12 0 0 1

6

T
D0 2 0 0

2 0 0 0

0 0 5 0

0 1 0 6

T-1

= D -1
5

1
15

2
15

0 -1
3

1
3

4
5

2
5 -1

5

T
C -1 1 1

4 -1 1

4 2 1

S-1

c -2 1

3 3
d

-1

= C -
1
3

1
9

1
3

2
9

S

■ A complex matrix and its inverse

= c -1
5 + 2

5 i 4
5 + 2

5i

-1
5 - 3

5 i -1
5 + 2

5 i
dc 1 2i

1 - i 1
d-1

=
1

-1 - 2i
 c 1 -2i

-1 + i 1
d

Solution

(a) We begin with the 3 � 6 matrix whose left half is A and whose right half is the
identity matrix.

We then transform the left half of this new matrix into the identity matrix by
performing the following sequence of elementary row operations on the entire
new matrix:

We have now transformed the left half of this matrix into an identity matrix.
(This means we’ve put the entire matrix in reduced row-echelon form.) Note
that to do this in as systematic a fashion as possible, we first changed the ele-
ments below the main diagonal to zeros, just as we would if we were using
Gaussian elimination. We then changed each main diagonal element to a 1 by
multiplying by the appropriate constant(s). Finally, we completed the process
by changing the remaining entries on the left side to zeros.

The right half is now A�1.

(b) We calculate AA�1 and A�1A, and verify that both products give the identity
matrix I3.

■

 A�1A � £�3 2 0

�4 1 � 
2
3

1 0 1
3

§  £ 1 �2 �4

2 �3 �6

�3 6 15

§ � £1 0 0

0 1 0

0 0 1

§
 AA�1 � £ 1 �2 �4

2 �3 �6

�3 6 15

§  £�3 2 0

�4 1 � 
2
3

1 0 1
3

§ � £1 0 0

0 1 0

0 0 1

§

A�1 � £�3 2 0

�4 1 � 
2
3

1 0 1
3

§

£1 0 0

0 1 0

0 0 1

  
�3 2 0

�4 1 � 
2
3

1 0 1
3

§R2 � 2R3 � R2
SSSSSSSO

£1 0 0

0 1 2

0 0 1

  
�3 2 0

�2 1 0

1 0 1
3

§R1 � 2R2 � R1
SSSSSSSO

£1 �2 �4

0 1 2

0 0 1

  
1 0 0

�2 1 0

1 0 1
3

§
£1 �2 �4

0 1 2

0 0 3

  
1 0 0

�2 1 0

3 0 1

§R2 � 2R1 � R2
SSSSSSSO
R3 � 3R1 � R3

£ 1 �2 �4

2 �3 �6

�3 6 15

  
1 0 0

0 1 0

0 0 1

§
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R3

SSSO

1
3

Arthur Cayley (1821–1895) was
an English mathematician who
was instrumental in developing the
theory of matrices. He was the first
to use a single symbol such as A to
represent a matrix, thereby intro-
ducing the idea that a matrix is a
single entity rather than just a col-
lection of numbers. Cayley prac-
ticed law until the age of 42, but his
primary interest from adolescence
was mathematics, and he published
almost 200 articles on the subject
in his spare time. In 1863 he ac-
cepted a professorship in mathe-
matics at Cambridge, where he
taught until his death. Cayley’s
work on matrices was of purely
theoretical interest in his day, but
in the 20th century many of his re-
sults found application in physics,
the social sciences, business, and
other fields. One of the most com-
mon uses of matrices today is in
computers, where matrices are em-
ployed for data storage, error cor-
rection, image manipulation, and
many other purposes. These appli-
cations have made matrix algebra
more useful than ever.
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ALTERNATE EXAMPLE 5
Show that the following matrix
does not have an inverse.

ANSWER
When we try to find the inverse,
we wind up with a row of zeros.

C3 -8 1

1 -1 0

5 -15 2

S

IN-CLASS MATERIALS

Example 5 is particularly important, because Section 9.4 presented a straightforward method of solving an
n * n system. The advantage of finding the inverse matrix really kicks in when solving a series of systems
with the same coefficient matrix.

Graphing calculators are also able to calculate matrix inverses. On the TI-82 and
TI-83 calculators, matrices are stored in memory using names such as [A], [B],
[C], . . . . To find the inverse of [A], we key in

[A] 

For the matrix of Example 4, this results in the output shown in Figure 1 (where we
have also used the �Frac command to display the output in fraction form rather than
in decimal form).

The next example shows that not every square matrix has an inverse.

Example 5 A Matrix That Does Not Have an Inverse

Find the inverse of the matrix.

Solution We proceed as follows.

At this point, we would like to change the 0 in the position of this matrix to a
1, without changing the zeros in the and positions. But there is no way
to accomplish this, because no matter what multiple of rows 1 and/or 2 we add to
row 3, we can’t change the third zero in row 3 without changing the first or second
zero as well. Thus, we cannot change the left half to the identity matrix, so the 
original matrix doesn’t have an inverse. ■

If we encounter a row of zeros on the left when trying to find an inverse, as 
in Example 5, then the original matrix does not have an inverse. If we try to 
calculate the inverse of the matrix from Example 5 on a TI-83 calculator, we get 
the error message shown in Figure 2. (A matrix that has no inverse is called 
singular.) 

13,  2 213, 1 2 13,  3 2
£1 0 1

0 1 3

0 0 0

  

2
7

3
7 0

� 
1
7

2
7 0

� 
1
7 � 

5
7 1

§
£1 2 7

0 1 3

0 �1 �3

  
0 1 0

� 
1
7

2
7 0

0 �1 1

§
£1 2 7

0 �7 �21

0 �1 �3

  
0 1 0

1 �2 0

0 �1 1

§
£2 �3 �7

1 2 7

1 1 4

  
1 0 0

0 1 0

0 0 1

§             £1 2 7

2 �3 �7

1 1 4

  
0 1 0

1 0 0

0 0 1

§

£2 �3 �7

1 2 7

1 1 4

§

ENTERX�1

SECTION 9.6 Inverses of Matrices and Matrix Equations 693

[A]-1 Frac
   [[-3 2 0   ]
    [-4 1 -2/3]
    [1  0 1/3 ]]

Figure 1

R1 PRRO R2
SSSSSO

R2 � 2R1 � R2
SSSSSSSO
R3 � R1 � R3

R3 � R2 � R3
SSSSSSSO
R1 � 2R2 � R1

R2

SSSO
�1

7

ERR:SINGULAR MAT
1:Quit
2:Goto

Figure 2
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IN-CLASS MATERIALS

After doing a standard example or two, throw a singular matrix on the board before defining singularity.
“Unexpectedly” run into trouble and thus discover, with your class, that not every matrix has an inverse. 

694 CHAPTER 9 Systems of Equations and Inequalities

Matrix Equations

We saw in Example 6 in Section 9.5 that a system of linear equations can be written
as a single matrix equation. For example, the system

is equivalent to the matrix equation

If we let

then this matrix equation can be written as

The matrix A is called the coefficient matrix.
We solve this matrix equation by multiplying each side by the inverse of A (pro-

vided this inverse exists):

Multiply both sides of equation on the left by A�1

Associative Property

Property of inverses

Property of identity matrix

In Example 4 we showed that

So, from X � A�1 B we have

Thus, x � �11, y � �23, z � 7 is the solution of the original system.

£ xy
z
§ � £�3 2 0

�4 1 � 
2
3

1 0 1
3

§  £75
0

§ � £�11

�23

7

§
A�1 � £�3 2 0

�4 1 � 
2
3

1 0 1
3

§
 X � A�1B

 I3X � A�1B

 1A�1A2X � A�1B

 A�11AX2 � A�1B

 AX � B

AX � B

A � £ 1 �2 �4

2 �3 �6

�3 6 15

§   X � £ xy
z
§   B � £75

0

§

£ 1 �2 �4

2 �3 �6

�3 6 15

§  £ xy
z
§ � £75

0

§
• x � 2y � 4z � 7

2x � 3y � 6z � 5

�3x � 6y � 15z � 0

A X B

Solving the matrix equation AX � B
is very similar to solving the simple
real-number equation

which we do by multiplying each side
by the reciprocal (or inverse) of 3:

 x � 4

 13 13x 2 � 1
3 112 2

3x � 12

X � A�1 B

57050_09_ch09_p634-741.qxd  08/04/2008  11:23 AM  Page 694



CHAPTER 9 Systems of Equations and Inequalities 695

ALTERNATE EXAMPLE 6
Consider the following system
of equations:

4x + y = 14
12x - y = 2

(a) Write the system as a matrix
equation.

(b) Solve the system by solving
the matrix equation.

ANSWERS

(a)

(b) x = 1, y = 10 

alternatively, = c 1

10
d bcx

y
da

= c14

2
dcx

y
dc 4 1

12 -1
d

e

We have proved that the matrix equation AX � B can be solved by the following
method.

SECTION 9.6 Inverses of Matrices and Matrix Equations 695

Solving a Matrix Equation

If A is a square n � n matrix that has an inverse A�1, and if X is a variable
matrix and B a known matrix, both with n rows, then the solution of the 
matrix equation.

is given by

X � A�1B

AX � B

Example 6 Solving a System Using a Matrix Inverse

(a) Write the system of equations as a matrix equation.

(b) Solve the system by solving the matrix equation.

Solution

(a) We write the system as a matrix equation of the form AX � B:

(b) Using the rule for finding the inverse of a 2 � 2 matrix, we get

Multiplying each side of the matrix equation by this inverse matrix, we get

So x � 30 and y � 9. ■

c x
y
d � c�2 5

3

�1 2
3

d  c15

36
d � c30

9
d

A 
�1 � c2 �5

3 �6
d�1

�
1

21�6 2 � 1�5 23  c�6 �1�5 2
�3 2

d �
1

3
c�6 5

�3 2
d � c�2 5

3

�1 2
3

d

c2 �5

3 �6
d  c x

y
d � c15

36
d

e2x � 5y � 15

3x � 6y � 36

A X � B

X � A�1 B
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ALTERNATE EXAMPLE 7
Consider the situation given in the
text, only with three different
brands of rodent food:

Applications

Suppose we need to solve several systems of equations with the same coefficient 
matrix. Then converting the systems to matrix equations provides an efficient way to
obtain the solutions, because we only need to find the inverse of the coefficient ma-
trix once. This procedure is particularly convenient if we use a graphing calculator to
perform the matrix operations, as in the next example.

Example 7 Modeling Nutritional Requirements 

Using Matrix Equations

A pet-store owner feeds his hamsters and gerbils different mixtures of three types
of rodent food: KayDee Food, Pet Pellets, and Rodent Chow. He wishes to feed 
his animals the correct amount of each brand to satisfy their daily requirements 
for protein, fat, and carbohydrates exactly. Suppose that hamsters require 340 mg of
protein, 280 mg of fat, and 440 mg of carbohydrates, and gerbils need 480 mg of
protein, 360 mg of fat, and 680 mg of carbohydrates each day. The amount of each
nutrient (in mg) in one gram of each brand is given in the following table. How
many grams of each food should the storekeeper feed his hamsters and gerbils daily
to satisfy their nutrient requirements?

696 CHAPTER 9 Systems of Equations and Inequalities

Mathematics in 

the Modern World

Mathematical Ecology

In the 1970s humpback whales be-
came a center of controversy. Envi-
ronmentalists believed that whaling
threatened the whales with immi-
nent extinction; whalers saw their
livelihood threatened by any at-
tempt to stop whaling. Are whales
really threatened to extinction by
whaling? What level of whaling is
safe to guarantee survival of the
whales? These questions motivated
mathematicians to study popula-
tion patterns of whales and other
species more closely.

As early as the 1920s Alfred J.
Lotka andVitoVolterra had founded
the field of mathematical biology
by creating predator-prey models.
Their models, which draw on a
branch of mathematics called dif-
ferential equations, take into ac-
count the rates at which predator
eats prey and the rates of growth of
each population. Notice that as
predator eats prey, the prey popula-
tion decreases; this means less food
supply for the predators, so their
population begins to decrease;
with fewer predators the prey popu-
lation begins to increase, and so on.
Normally, a state of equilibrium
develops, and the two populations
alternate between a minimum and
a maximum. Notice that if the
predators eat the prey too fast they
will be left without food and en-
sure their own extinction.

(continued)

Vo
lv

ox
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x 
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KayDee Food Pet Pellets Rodent Chow

Protein (mg) 10 0 20
Fat (mg) 10 20 10
Carbohydrates (mg) 5 10 30

Solution We let x1, x2, and x3 be the respective amounts (in grams) of KayDee
Food, Pet Pellets, and Rodent Chow that the hamsters should eat and y1, y2, and y3

be the corresponding amounts for the gerbils. Then we want to solve the matrix
equations

Hamster equation

Gerbil equation

Let

A � £10 0 20

10 20 10

5 10 30

§ , B � £340

280

440

§ , C � £480

360

680

§ , X � £ x1

x2

x3

§ , Y � £ y1

y2

y3

§

£10 0 20

10 20 10

5 10 30

§  £ y1

y2

y3

§ � £480

360

680

§
£10 0 20

10 20 10

5 10 30

§  £ x1

x2

x3

§ � £340

280

440

§

Small
Rodent Animal Pet
Kibble Food Choice

Protein 12 2 18
(mg)

Fat 8 22 8
(mg)

Carbo- 6 10 28
hydrates
(mg)

Now determine the amount of
grams of each of the new brands
of food the storekeeper should
feed his hamsters.

ANSWER
(A graphing calculator was used
to solve the matrix equations.)

For the gerbils: 8.46 g of Rodent
Kibble, 5.88 g of Small Animal
Food, 20.37 g of Pet Choice. For
the hamsters: 9.67 g of Rodent
Kibble, 4.88 g of Small Animal
Food, 11.90 g of Pet Choice.
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Then we can write these matrix equations as

Hamster equation

Gerbil equation

We want to solve for X and Y, so we multiply both sides of each equation by A�1,
the inverse of the coefficient matrix. We could find A�1 by hand, but it is more 
convenient to use a graphing calculator as shown in Figure 3.

Figure 3

From the calculator displays, we see that

Thus, each hamster should be fed 10 g of KayDee Food, 3 g of Pet Pellets, and 
12 g of Rodent Chow, and each gerbil should be fed 8 g of KayDee Food, 4 g of 
Pet Pellets, and 20 g of Rodent Chow daily. ■

9.6 Exercises

X � A 
�1B � £10

3

12

§ ,  Y � A 
�1C � £ 8

4

20

§

[A]-1*[B]
             [[10]
              [3 ]
              [12]]

(a)

[A]-1*[C]
             [[8 ]
              [4 ]
              [20]]

(b)

AY � C

AX � B

SECTION 9.6 Inverses of Matrices and Matrix Equations 697

Since Lotka and Volterra’s time,
more detailed mathematical models
of animal populations have been 
developed. For many species the
population is divided into several
stages—immature, juvenile, adult,
and so on. The proportion of each
stage that survives or reproduces in a
given time period is entered into a
matrix (called a transition matrix);
matrix multiplication is then used to
predict the population in succeeding
time periods. (See the Discovery
Project, page 688.) 

As you can see, the power of
mathematics to model and predict is
an invaluable tool in the ongoing de-
bate over the environment.

1–4 ■ Calculate the products AB and BA to verify that B is the
inverse of A.

1.

2.

3.

4. A � £3 2 4

1 1 �6

2 1 12

§ , B � £ 9 �10 �8

�12 14 11

� 
1
2

1
2

1
2

§
A � £ 1 3 �1

1 4 0

�1 �3 2

§ ,  B � £ 8 �3 4

�2 1 �1

1 0 1

§
A � c2 �3

4 �7
d , B � c 7

2 �3
2

2 �1
d

A � c4 1

7 2
d , B � c 2 �1

�7 4
d

5–6 ■ Find the inverse of the matrix and verify that 
A�1A � AA�1 � I2 and B�1B � BB�1 � I3.

5. 6.

7–22 ■ Find the inverse of the matrix if it exists.

7. 8.

9. 10.

11. 12. c 1
2

1
3

5 4
dc 6 �3

�8 4
d

c�7 4

8 �5
dc 2 5

�5 �13
d

c3 4

7 9
dc5 3

3 2
d

B � £ 1 3 2

0 2 2

�2 �1 0

§A � c7 4

3 2
d
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698 CHAPTER 9 Systems of Equations and Inequalities

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23–30 ■ Solve the system of equations by converting to a 
matrix equation and using the inverse of the coefficient matrix,
as in Example 6. Use the inverses from Exercises 7–10, 15,
16, 19, and 21.

23.

24. e3x � 4y � 10

7x � 9y � 20

e5x � 3y � 4

3x � 2y � 0

≥ 1 0 1 0

0 1 0 1

1 1 1 0

1 1 1 1

¥

≥ 1 2 0 3

0 1 1 1

0 1 0 1

1 2 0 2

¥
£3 �2 0

5 1 1

2 �2 0

§
£0 �2 2

3 1 3

1 �2 3

§
£2 1 0

1 1 4

2 1 2

§
£1 2 3

4 5 �1

1 �1 �10

§
£5 7 4

3 �1 3

6 7 5

§
£ 2 4 1

�1 1 �1

1 4 0

§
£4 2 3

3 3 2

1 0 1

§
c0.4 �1.2

0.3 0.6
d 25.

26.

27.

28.

29.

30.

31–36 ■ Use a calculator that can perform matrix operations 
to solve the system, as in Example 7.

31.

32.

33.

34.

35.

36. dx � y � z � „ � 15

x � y � z � „ � 5

x � 2y � 3z � 4„ � 26

x � 2y � 3z � 4„ � 2

d x � y � 3„ � 0

x � 2z � 8

2y � z � „ � 5

2x � 3y � 2„ � 13

• x � 1
2 y � 1

3 z � 4

x � 1
4 y � 1

6 z � 7

x � y � z � �6

•12x � 1
2 y � 7z � 21

11x � 2y � 3z � 43

13x � y � 4z � 29

• 3x � 4y � z � 2

2x � 3y � z � �5

5x � 2y � 2z � �3

• x � y � 2z � 3

2x � 5z � 11

2x � 3y � 12

dx � 2y � 3„ � 0

y � z � „ � 1

y � „ � 2

x � 2y � 2„ � 3

• �2y � 2z � 12

3x � y � 3z � �2

x � 2y � 3z � 8

•5x � 7y � 4z � 1

3x � y � 3z � 1

6x � 7y � 5z � 1

• 2x � 4y � z � 7

�x � y � z � 0

x � 4y � �2

e�7x � 4y � 0

8x � 5y � 100

e 2x � 5y � 2

�5x � 13y � 20
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SECTION 9.6 Inverses of Matrices and Matrix Equations 699

37–38 ■ Solve the matrix equation by multiplying each side by
the appropriate inverse matrix.

37.

38.

39–40 ■ Find the inverse of the matrix.

39. 40.

41–46 ■ Find the inverse of the matrix. For what value(s) of x,
if any, does the matrix have no inverse?

41. 42.

43. 44.

45. 46.

Applications

47. Nutrition A nutritionist is studying the effects of the 
nutrients folic acid, choline, and inositol. He has three types
of food available, and each type contains the following
amounts of these nutrients per ounce:

c sec x tan x

tan x sec x
dc cos x sin x

�sin x cos x
d

C x 1

�x
1

x � 1

S£1 e 
x 0

e 
x �e 

2x 0

0 0 2

§
c e 

x �e 
2x

e 
2x e 

3x dc2 x

x x 
2 d

1abcd � 0 2
≥ a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

¥ca �a

a a
d

£0 �2 2

3 1 3

1 �2 3

§  £ x u

y √
z „

§ � £3 6

6 12

0 0

§
c 3 �2

�4 3
d  c x y z

u √ „
d � c1 0 �1

2 1 3
d

(b) How many ounces of each food should the nutritionist
feed his laboratory rats if he wants their daily diet to
contain 10 mg of folic acid, 14 mg of choline, and 
13 mg of inositol?

(c) How much of each food is needed to supply 9 mg 
of folic acid, 12 mg of choline, and 10 mg of 
inositol?

(d) Will any combination of these foods supply 2 mg 
of folic acid, 4 mg of choline, and 11 mg of 
inositol?

48. Nutrition Refer to Exercise 47. Suppose food type C 
has been improperly labeled, and it actually contains 
4 mg of folic acid, 6 mg of choline, and 5 mg of inositol 
per ounce. Would it still be possible to use matrix inversion
to solve parts (b), (c), and (d) of Exercise 47? Why or 
why not?

49. Sales Commissions An encyclopedia saleswoman
works for a company that offers three different grades 
of bindings for its encyclopedias: standard, deluxe, and
leather. For each set she sells, she earns a commission based
on the set’s binding grade. One week she sells one standard,
one deluxe, and two leather sets and makes $675 in com-
mission. The next week she sells two standard, one deluxe,
and one leather set for a $600 commission. The third week
she sells one standard, two deluxe, and one leather set,
earning $625 in commission.

(a) Let x, y, and z represent the commission she earns 
on standard, deluxe, and leather sets, respectively.
Translate the given information into a system of 
equations in x, y, and z.

(b) Express the system of equations you found in part (a) 
as a matrix equation of the form AX � B.

(c) Find the inverse of the coefficient matrix A and use it 
to solve the matrix equation in part (b). How much
commission does the saleswoman earn on a set of 
encyclopedias in each grade of binding?

Discovery • Discussion

50. No Zero-Product Property for Matrices We have used
the Zero-Product Property to solve algebraic equations. 
Matrices do not have this property. Let O represent the 
2 � 2 zero matrix:

Find 2 � 2 matrices A � O and B � O such that AB � O.
Can you find a matrix A � O such that A2 � O?

O � c0 0

0 0
d

Type A Type B Type C

Folic acid (mg) 3 1 3
Choline (mg) 4 2 4
Inositol (mg) 3 2 4

1a � 0 2

(a) Find the inverse of the matrix

and use it to solve the remaining parts of this problem.

£3 1 3

4 2 4

3 2 4

§
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Computer Graphics I

Matrix algebra is the basic tool used in computer graphics to manipulate images
on a computer screen. We will see how matrix multiplication can be used to
“move” a point in the plane to a prescribed location. Combining such moves en-
ables us to stretch, compress, rotate, and otherwise transform a figure, as we see
in the images below.

Moving Points in the Plane

Let’s represent the point in the plane by a 2 � 1 matrix:

For example, the point in the figure is represented by the matrix

Multiplying by a 2 � 2 matrix moves the point in the plane. For example, if

then multiplying P by T we get

We see that the point has been moved to the point . In general, mul-
tiplication by this matrix T reflects points in the x-axis. If every point in an image
is multiplied by this matrix, then the entire image will be flipped upside down
about the x-axis. Matrix multiplication “transforms” a point to a new point in the
plane. For this reason, a matrix used in this way is called a transformation.

Table 1 gives some standard transformations and their effects on the gray
square in the first quadrant.

13,  �2 213,  2 2 (3, _2)

T1

10

y

x

TP � c1 0

0 �1
d  c3

2
d � c 3

�2
d

T � c1 0

0 �1
d

1

10

y

x

(3, 2)P � c3
2
d

13,  2 2 1x, y 2   4  c x
y
d1x, y 2

Image Compressed Rotated Sheared

700 CHAPTER 9 Systems of Equations and Inequalities

D I S C O V E R Y
P R O J E C T
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SECTION 9.6 Inverses of Matrices and Matrix Equations 701

Table 1 

Transformation matrix Effect

Reflection in x-axis

Expansion (or contraction) 
in the x-direction

Shear in x-direction

T � c1 c

0 1
d

T � c c 0

0 1
d

T � c1 0

0 �1
d

1

10

y

x

1

10

y

x

1

10

y

x

1

10

y

x

1
y

x

c

1

10

y

xc c+1

T

T

T

Moving Images in the Plane

Simple line drawings such as the house in Figure 1 consist of a collection of vertex
points and connecting line segments. The entire image in Figure 1 can be repre-
sented in a computer by the 2 � 11 data matrix

The columns of D represent the vertex points of the image. To draw the house, we
connect successive points (columns) in D by line segments. Now we can transform
the whole house by multiplying D by an appropriate transformation matrix. For 

example, if we apply the shear transformation , we get the 
following matrix.

 � c2 0 1.5 4.5 5.5 4 3 4 3 2 3

0 0 3 5 3 0 0 2 2 0 0
d

 TD � c1 0.5

0 1
d  c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

T � c1 0.5

0 1 
d

D � c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

1

10

y

x

Figure 1
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To draw the image represented by TD, we start with the point , connect it by 

a line segment to the point , then follow that by a line segment to , and

so on. The resulting tilted house is shown in Figure 2.
A convenient way to draw an image corresponding to a given data matrix is

to use a graphing calculator. The TI-83 program in the margin converts a data
matrix stored in [A] into the corresponding image, as shown in Figure 3. (To
use this program for a data matrix with m columns, store the matrix in [A] and
change the “10” in the For command to m � 1.)

Figure 3

We will revisit computer graphics in the Discovery Project on page 792,
where we will find matrices that rotate an image by any given angle.

1. The gray square in Table 1 has the following vertices.

Apply each of the three transformations given in Table 1 to these vertices and
sketch the result, to verify that each transformation has the indicated effect.
Use c � 2 in the expansion matrix and c � 1 in the shear matrix.

2. Verify that multiplication by the given matrix has the indicated effect when
applied to the gray square in the table. Use c � 3 in the expansion matrix and
c � 1 in the shear matrix.

Reflection in y-axis Expansion (or contraction) Shear in y-direction
in y-direction

3. Let .

(a) What effect does T have on the gray square in the Table 1?

T � c1 1.5

0 1
d

T1 � c�1 0

0 1
d    T2 � c1 0

0 c
d    T3 � c1 0

c 1
d

c0
0
d , c1

0
d , c1

1
d , c0

1
d

6

_1

_1 7

(a)

6

_1

_1 7

(b)House with
data matrix D

Tilted house
with data matrix TD

c1.5

3
dc0

0
d c2

0
d

702 CHAPTER 9 Systems of Equations and Inequalities

1

10

y

x

Figure 2

PROGRAM:IMAGE

:For(N,1,10)

:Line([A])(1,N),

[A](2,N),[A](1,N+1),

[A](2,N+1))

:End
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SECTION 9.6 Inverses of Matrices and Matrix Equations 703

(b) Find T�1.

(c) What effect does T�1 have on the gray square?

(d) What happens to the square if we first apply T, then T�1?

4. (a) Let . What effect does T have on the gray square in Table 1?

(b) Let . What effect does S have on the gray square in Table 1?

(c) Apply S to the vertices of the square, and then apply T to the result.
What is the effect of the combined transformation?

(d) Find the product matrix W � TS.

(e) Apply the transformation W to the square. Compare to your final result
in part (c). What do you notice?

5. The figure shows three outline versions of the letter F. The second one is 
obtained from the first by shrinking horizontally by a factor of 0.75, and the
third is obtained from the first by shearing horizontally by a factor of 0.25.

(a) Find a data matrix D for the first letter F.

(b) Find the transformation matrix T that transforms the first F into the sec-
ond. Calculate TD and verify that this is a data matrix for the second F.

(c) Find the transformation matrix S that transforms the first F into the third.
Calculate SD and verify that this is a data matrix for the third F.

6. Here is a data matrix for a line drawing.

(a) Draw the image represented by D.

(b) Let . Calculate the matrix product TD and draw the image

represented by this product. What is the effect of the transformation T?

(c) Express T as a product of a shear matrix and a reflection matrix. (See
problem 2.)

T � c1 1

0 �1
d

D � c0 1 2 1 0 0

0 0 2 4 4 0
d

1

10

8

4 6

1

10

8

82

1
0

8

31

y y y

x x x

S � c1 0

0 2
d

T � c3 0

0 1
d
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704 CHAPTER 9 Systems of Equations and Inequalities

SUGGESTED TIME

AND EMPHASIS

1 class. 
Recommended material: determi-
nants; optional material: Cramer’s
Rule.

POINTS TO STRESS

1. Definition and computation of
determinants, including row
operations.

2. The relationship between
determinants and singularity.

3. Cramer’s Rule.

ALTERNATE EXAMPLE 1
Evaluate |A|.

ANSWER
19

IN-CLASS MATERIALS

Discuss computational complexity.
If a 2 * 2 determinant requires 3
arithmetical operations (two multi-
plications and a subtraction), then a
3 * 3 determinant requires 12, and
a 4 * 4 requires 52. If we let f(n)
be the number of arithmetical oper-
ations for an n * n matrix, we get
the formula f(n) = nf(n - 1) + n:
there are n determinants of (n - 1) *

A = c5 -9

1 2
d

n Number of Operations

2 3
3 12
4 52
5 265
6 1596
7 11,179
8 89,440

n Number of Operations

9 804,969
10 8,049,700
11 88,546,711
. .
. .
. .
20 5,396,862,315,159,760,000

9.7 Determinants and Cramer’s Rule

If a matrix is square (that is, if it has the same number of rows as columns), then we
can assign to it a number called its determinant. Determinants can be used to solve
systems of linear equations, as we will see later in this section. They are also useful
in determining whether a matrix has an inverse.

Determinant of a 2 � 2 Matrix

We denote the determinant of a square matrix A by the symbol or . We first
define for the simplest cases. If A � [a] is a 1 � 1 matrix, then .
The following box gives the definition of a 2 � 2 determinant.

det1A 2 � adet1A 2 0 A 0det1A 2

704 CHAPTER 9 Systems of Equations and Inequalities

Determinant of a 2 � 2 Matrix

The determinant of the 2 � 2 matrix is

det1A 2 � 0 A 0 � ` a b

c d
` � ad � bc

A � ca b

c d
d

Example 1 Determinant of a 2 � 2 Matrix

Evaluate for .

Solution

■

Determinant of an n � n Matrix

To define the concept of determinant for an arbitrary n � n matrix, we need the 
following terminology.

` 6 �3

2 3
` � 6 # 3 � 1�3 22 � 18 � 1�6 2 � 24

A � c6 �3

2 3
d0 A 0

We will use both notations, and
, for the determinant of A. Although

the symbol looks like the absolute
value symbol, it will be clear from the
context which meaning is intended.

0 A 00 A 0 det1A 2

To evaluate a 2 � 2 determinant, we
take the product of the diagonal from
top left to bottom right, and subtract the
product from top right to bottom left, as
indicated by the arrows.

�——�

Let A be an n � n matrix.

1. The minor Mij of the element aij is the determinant of the matrix
obtained by deleting the ith row and jth column of A.

2. The cofactor Aij of the element aij is

Aij � Ó�1Ôi�jMij

(n - 1) matrices and n extra multiplications (when expanding by a row). So we can generate the following table:

Students can observe this rapid growth on their calculators; it will take the calculator ten times as long to do a 10 * 10 determinant as it takes to
do a 9 * 9. In fact, f(n) grows a little more rapidly than n!.
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CHAPTER 9 Systems of Equations and Inequalities 705

SAMPLE QUESTION

Text Question

Name one application of
determinants.

Answer

Any of the following: determining
the singularity of a matrix, solving
systems with Cramer’s Rule, 
finding the area of a triangle.

DRILL QUESTION

Find 

Answer

7

ALTERNATE EXAMPLE 2 
Evaluate the determinant of the
matrix.

ANSWER
36

A = C 9 3 -1

0 3 2

-4 2 4

S

C2 1 3

1 0 0

0 2 -1

S .

IN-CLASS MATERIALS

Show the students the “basket” method of computing a 3 * 3 determinant. Stress that this method does
not generalize to higher dimensions. One rewrites the first two columns of the matrix, and then multiplies
along the diagonals, adding the top-to-bottom diagonals and subtracting the bottom-to-top ones. In the

example below, we calculate the determinant of to be 105 + 48 + 72 - (45 + 96 + 84) = 0.

105 48 72

1 4

2 5

3 6

45 96 84

C1 4 7

2 5 8

3 6 9

S
C1 4 7

2 5 8

3 6 9

S

For example, if A is the matrix

then the minor M12 is the determinant of the matrix obtained by deleting the first row
and second column from A. Thus

So, the cofactor . Similarly

So, .
Note that the cofactor of aij is simply the minor of aij multiplied by either 1 or �1,

depending on whether i � j is even or odd. Thus, in a 3 � 3 matrix we obtain the co-
factor of any element by prefixing its minor with the sign obtained from the follow-
ing checkerboard pattern:

We are now ready to define the determinant of any square matrix.

£ � � �

� � �

� � �

§

A33 � 1�1 2 3�3M33 � 4

M33 � 3 2 3 �1

0 2 4

�2 5 6

3 � ` 2 3

0 2
` � 2 # 2 � 3 # 0 � 4

A12 � 1�1 2 1�2M12 � �8

M12 � 3 2 3 1

0 2 4

�2 5 6

3 � ` 0 4

�2 6
` � 016 2 � 41�2 2 � 8

£ 2 3 �1

0 2 4

�2 5 6

§
SECTION 9.7 Determinants and Cramer’s Rule 705

The Determinant of a Square Matrix

If A is an n � n matrix, then the determinant of A is obtained by multiplying
each element of the first row by its cofactor, and then adding the results. In
symbols,

det1A 2 � 0 A 0 � ∞ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

∞ � a11A11 � a12A12 � p � a1n 
A1n

Example 2 Determinant of a 3 � 3 Matrix

Evaluate the determinant of the matrix.

A � £ 2 3 �1

0 2 4

�2 5 6

§
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706 CHAPTER 9 Systems of Equations and Inequalities

ALTERNATE EXAMPLE 3
Evaluate the determinant of the
matrix by expanding by the
second row and by expanding 
by the third column.

ANSWER
276, 276

EXAMPLE
A  4 * 4 determinant:

Expand by Row 3:

D = -8C1 1 1

2 0 5

0 1 3

S +

D1 1 1 1

2 -1 0 5

0 8 1 2

0 2 1 3

T

A = C 6 6 -1

0 9 8

-2 2 9

S

IN-CLASS MATERIALS

Make sure the students see the fundamentally recursive nature of determinants. Draw a 6 * 6 matrix on the
board and expand by a row, showing how you would then have to compute six 5 * 5 determinants, which
would require the computation of thirty 4 * 4 determinants, and so forth.

Solution

■

In our definition of the determinant we used the cofactors of elements in the first
row only. This is called expanding the determinant by the first row. In fact, we can
expand the determinant by any row or column in the same way, and obtain the same
result in each case (although we won’t prove this). The next example illustrates this
principle.

Example 3 Expanding a Determinant about a Row 

and a Column

Let A be the matrix of Example 2. Evaluate the determinant of A by expanding

(a) by the second row

(b) by the third column

Verify that each expansion gives the same value.

Solution

(a) Expanding by the second row, we get

(b) Expanding by the third column gives

In both cases, we obtain the same value for the determinant as when we expanded
by the first row in Example 2. ■

The following criterion allows us to determine whether a square matrix has an in-
verse without actually calculating the inverse. This is one of the most important uses
of the determinant in matrix algebra, and it is the reason for the name determinant.

 � �4 � 64 � 24 � �44

 � � 30 # 5 � 21�2 2 4 � 4 32 # 5 � 31�2 2 4 � 612 # 2 � 3 # 0 2 � �1 ` 0 2

�2 5
` � 4 ` 2 3

�2 5
` � 6 ` 2 3

0 2
`

 det1A 2 � † 2 3 �1

0 2 4

�2 5 6

†
 � 0 � 20 � 64 � �44

 � 0 � 2 32 # 6 � 1�1 2 1�2 2 4 � 4 32 # 5 � 31�2 2 4
 det1A 2 � † 2 3 �1

0 2 �4

�2 5 6

† � �0 ` 3 �1

5 6
` � 2 ` 2 �1

�2 6
` � 4 ` 2 3

�2 5
`

 � �44

 � �16 � 24 � 4

 � 212 # 6 � 4 # 5 2 � 3 30 # 6 � 41�2 2 4 � 30 # 5 � 21�2 2 4
 det1A 2 � † 2 3 �1

0 2 4

�2 5 6

† � 2 ` 2 4

5 6
` � 3 ` 0 4

�2 6
` � 1�1 2 ` 0 2

�2 5
`

706 CHAPTER 9 Systems of Equations and Inequalities

Graphing calculators are capable of
computing determinants. Here is the
output when the TI-83 is used to calcu-
late the determinant in Example 3.

[A]
        [[2  3 -1]
         [0  2 4 ]
         [-2 5 6 ]]
det([A])
                       -44

= -8(-9) + (-15) - 2(1) = 55

- 2C1 1 1

2 -1 0

0 2 1

SC1 1 1

2 -1 5

0 2 3

S

57050_09_ch09_p634-741.qxd  08/04/2008  11:23 AM  Page 706



CHAPTER 9 Systems of Equations and Inequalities 707

ALTERNATE EXAMPLE 4
Does the matrix A have an
inverse? 

ANSWER
No

A = D1 2 0 1

0 0 0 1

8 2 1 5

4 8 0 9

T

IN-CLASS MATERIALS

Determinants have many nice properties. For example, if a row or column consists of all zeros, it is trivial
to prove that the determinant is zero. The row/column transformation rule given in the text then lets us
conclude that if two rows of a matrix are identical, the determinant is zero. Also, the determinant of a
product is the product of the determinants.

We will not prove this fact, but from the formula for the inverse of a 2 � 2 matrix
(page 704), you can see why it is true in the 2 � 2 case.

Example 4 Using the Determinant to Show 

That a Matrix Is Not Invertible

Show that the matrix A has no inverse.

Solution We begin by calculating the determinant of A. Since all but one of the
elements of the second row is zero, we expand the determinant by the second row.
If we do this, we see from the following equation that only the cofactor A24 will
have to be calculated.

Since the determinant of A is zero, A cannot have an inverse, by the Invertibility
Criterion. ■

Row and Column Transformations

The preceding example shows that if we expand a determinant about a row or column
that contains many zeros, our work is reduced considerably because we don’t have to
evaluate the cofactors of the elements that are zero. The following principle often
simplifies the process of finding a determinant by introducing zeros into it without
changing its value.

 � 31�2 2 11 # 4 � 2 # 2 2 � 0

 � 31�2 2 ` 1 2

2 4
`

 � 3 † 1 2 0

5 6 2

2 4 0

†
 � �0 # A21 � 0 # A22 � 0 # A23 � 3 # A24 � 3A24

 det1A 2 � ∞ 1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

∞

A � ≥ 1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

¥

SECTION 9.7 Determinants and Cramer’s Rule 707

Invertibility Criterion

If A is a square matrix, then A has an inverse if and only if .det1A 2 � 0

Expand this by column 3
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ALTERNATE EXAMPLE 5
Evaluate the determinant of the
matrix.

Does the matrix A have an
inverse? 

ANSWER
-456, Yes

A = D 6 2 1 -3

1 2 6 9

18 6 7 -9

18 8 3 -9

T
Example 5 Using Row and Column Transformations 

to Calculate a Determinant

Find the determinant of the matrix A. Does it have an inverse?

Solution If we add �3 times row 1 to row 3, we change all but one element of
row 3 to zeros:

This new matrix has the same determinant as A, and if we expand its determinant
by the third row, we get

Now, adding 2 times column 3 to column 1 in this determinant gives us

Since the determinant of A is not zero, A does have an inverse. ■

Cramer’s Rule

The solutions of linear equations can sometimes be expressed using determinants. 
To illustrate, let’s solve the following pair of linear equations for the variable x.eax � by � r

cx � dy � s

 � 41�25 2 321�1 2 � 1�4 22 4 � �600

 � 41�25 2 ` 2 �4

2 �1
`

 det1A 2 � 4 † 0 2 �4

25 5 11

0 2 �1

†
det1A 2 � 4 † 8 2 �4

3 5 11

2 2 �1

†

≥ 8 2 �1 �4

3 5 �3 11

0 0 4 0

2 2 7 �1

¥

A � ≥ 8 2 �1 �4

3 5 �3 11

24 6 1 �12

2 2 7 �1

¥

708 CHAPTER 9 Systems of Equations and Inequalities

Row and Column Transformations of a Determinant

If A is a square matrix, and if the matrix B is obtained from A by adding a
multiple of one row to another, or a multiple of one column to another, then

.det1A 2 � det1B 2

Expand this by column 1

David Hilbert (1862–1943) was
born in Königsberg, Germany, and
became a professor at Göttingen
University. He is considered by
many to be the greatest mathe-
matician of the 20th century. At 
the International Congress of
Mathematicians held in Paris in
1900, Hilbert set the direction of
mathematics for the about-to-dawn 
20th century by posing 23 prob-
lems he believed to be of crucial
importance. He said that “these 
are problems whose solutions we
expect from the future.” Most of
Hilbert’s problems have now been
solved (see Julia Robinson, page
678 and Alan Turing, page 103),
and their solutions have led to 
important new areas of mathe-
matical research. Yet as we enter
the new millennium, some of his 
problems remain unsolved. In his 
work, Hilbert emphasized struc-
ture, logic, and the foundations of
mathematics. Part of his genius lay
in his ability to see the most gen-
eral possible statement of a prob-
lem. For instance, Euler proved
that every whole number is the sum
of four squares; Hilbert proved a 
similar statement for all powers of
positive integers.

B
. H

. W
ar

d 
an

d 
K

. C
. W

ar
d

/C
or

bi
s
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EXAMPLE
Cramer’s Rule:

x - y + z = 8
-x - y - z = -9

x - 2y - 4z = 5

and

so we have x = 8, and

.z =
1

2

y =
1

2
,

Dz = C 1 -1 8

-1 -1 -9

1 -2 5

S = 5,

Dy = C 1 8 1

-1 -9 -1

1 5 -4

S = 5,

Dx = C 8 -1 1

-9 -1 -1

5 -2 -4

S = 80,

D = C 1 -1 1

-1 -1 -1

1 -2 -4

S = 10,

To eliminate the variable y, we multiply the first equation by d and the second by b,
and subtract.

Factoring the left-hand side, we get . Assuming that 
ad � bc � 0, we can now solve this equation for x:

Similarly, we find

The numerator and denominator of the fractions for x and y are determinants of 
2 � 2 matrices. So we can express the solution of the system using determinants as
follows.

y �
as � cr

ad � bc

x �
rd � bs

ad � bc

1ad � bc 2x � rd � bs

adx � bdy � rd

bcx � bdy � bs

adx � bcx � rd � bs

SECTION 9.7 Determinants and Cramer’s Rule 709

Cramer’s Rule for Systems in Two Variables

The linear system

has the solution

provided .` a b

c d
` � 0

x �

` r b

s d
`

` a b

c d
`    y �

` a r

c s
`

` a b

c d
`

eax � by � r

cx � dy � s

Using the notation

we can write the solution of the system as

 x �
0 Dx 00 D 0   and  y �

0 Dy 00 D 0

Dy � ca r

c s
dDx � c r b

s d
dD � ca b

c d
d

Coefficient
matrix

Replace first 
column of D by 
r and s.

Replace second
column of D by
r and s.
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ALTERNATE EXAMPLE 6
Use Cramer’s Rule to solve the
system.

If the equations of the system
are dependent, or if a system is
inconsistent, so indicate.

ANSWER

a-3, 
1

2
b

e3x + 10y = -4

x + 4y = -1

IN-CLASS MATERIALS

When solving a single n * n system, Cramer’s Rule doesn’t have much of an advantage over Gaussian
elimination. There are, however, some circumstances when Cramer’s Rule is vastly superior. One such
situation is when there is a large system (say 100 equations with 100 unknowns) and we are interested in
only one variable. Gaussian elimination requires us to do the work to solve the complete system. Finding
the inverse of the matrix also requires us to do all the work necessary to find all the variables. Cramer’s
Rule, however, allows us to find two (admittedly large) determinants to get our answer.

Another situation is when the coefficient matrix is sparse—a large percentage of the entries are zero. It is
usually very quick to find determinants of sparse matrices, and in that case Cramer’s Rule can be very
quick.

Example 6 Using Cramer’s Rule to Solve a System

with Two Variables

Use Cramer’s Rule to solve the system.

Solution For this system we have

The solution is

■

Cramer’s Rule can be extended to apply to any system of n linear equations in 
n variables in which the determinant of the coefficient matrix is not zero. As we saw
in the preceding section, any such system can be written in matrix form as

By analogy with our derivation of Cramer’s Rule in the case of two equations in 
two unknowns, we let D be the coefficient matrix in this system, and be the ma-
trix obtained by replacing the ith column of D by the numbers b1, b2, . . . , bn that ap-
pear to the right of the equal sign. The solution of the system is then given by the
following rule.

Dx i

≥ a11 a12
p a1n

a21 a22
p a2n

o o ∞ o
an1 an2

p ann

¥  ≥ x1

x2

o
xn

¥ � ≥ b1

b2

o
bn

¥

 y �
0 Dy 00 D 0 �

5

10
�

1

2

 x �
0 Dx 00 D 0 �

�20

10
� �2

 0 Dy 0 � ` 2 �1

1 2
` � 2 # 2 � 1�1 21 � 5

 0 Dx 0 � ` �1 6

2 8
` � 1�1 28 � 6 # 2 � �20

 0 D 0 � ` 2 6

1 8
` � 2 # 8 � 6 # 1 � 10

e2x � 6y � �1

x � 8y � 2

710 CHAPTER 9 Systems of Equations and Inequalities

Cramer’s Rule

If a system of n linear equations in the n variables x1, x2, . . . , xn is equivalent
to the matrix equation DX � B, and if � 0, then its solutions are

where is the matrix obtained by replacing the ith column of D by the 
n � 1 matrix B.

Dx i

x1 �
0 Dx1
00 D 0 , x2 �

0 Dx2
00 D 0 , . . . , xn �

0 Dxn
00 D 0

0 D 0

Emmy Noether (1882–1935) was
one of the foremost mathemati-
cians of the early 20th century. Her
groundbreaking work in abstract
algebra provided much of the foun-
dation for this field, and her work
in Invariant Theory was essential
in the development of Einstein’s
theory of general relativity. Al-
though women weren’t allowed to
study at German universities at that
time, she audited courses unoffi-
cially and went on to receive a doc-
torate at Erlangen summa cum
laude, despite the opposition of the
academic senate, which declared
that women students would “over-
throw all academic order.” She
subsequently taught mathematics
at Göttingen, Moscow, and Frank-
furt. In 1933 she left Germany to
escape Nazi persecution, accepting
a position at Bryn Mawr College 
in suburban Philadelphia. She lec-
tured there and at the Institute for
Advanced Study in Princeton, New
Jersey, until her untimely death 
in 1935.

Th
e 

G
ra

ng
er

 C
ol

le
ct
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n
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ALTERNATE EXAMPLE 7
Use Cramer’s Rule to solve the
system.

If the equations of the system are
dependent, or if a system is
inconsistent, so indicate.

ANSWER

a -
12

23
, -

141

92
, 

2

23
b

c 9x - 8y + 5z = 8

x + 6z = 0

6x - 4y = 3

Example 7 Using Cramer’s Rule to Solve a System 

with Three Variables

Use Cramer’s Rule to solve the system.

Solution First, we evaluate the determinants that appear in Cramer’s Rule. Note
that D is the coefficient matrix and that Dx, Dy, and Dz are obtained by replacing the
first, second, and third columns of D by the constant terms.

Now we use Cramer’s Rule to get the solution:

■

Solving the system in Example 7 using Gaussian elimination would involve ma-
trices whose elements are fractions with fairly large denominators. Thus, in cases like
Examples 6 and 7, Cramer’s Rule gives us an efficient way to solve systems of linear
equations. But in systems with more than three equations, evaluating the various de-
terminants involved is usually a long and tedious task (unless you are using a graph-
ing calculator). Moreover, the rule doesn’t apply if � 0 or if D is not a square
matrix. So, Cramer’s Rule is a useful alternative to Gaussian elimination, but only in
some situations.

Areas of Triangles Using Determinants

Determinants provide a simple way to calculate the area of a triangle in the coordi-
nate plane.

0 D 0

 z �
0 Dz 00 D 0 �

13

�38
� � 

13

38

 y �
0 Dy 00 D 0 �

�22

�38
�

11

19

 x �
0 Dx 00 D 0 �

�78

�38
�

39

19

0 Dy 0 � † 2 1 4

1 0 6

3 5 0

† � �22       0 Dz 0 � † 2 �3 1

1 0 0

3 �2 5

† � 13

 0 D 0 � † 2 �3 4

1 0 6

3 �2 0

† � �38   0 Dx 0 � † 1 �3 4

0 0 6

5 �2 0

† � �78

•2x � 3y � 4z � 1

x � 6z � 0

3x � 2y � 5

SECTION 9.7 Determinants and Cramer’s Rule 711
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712 CHAPTER 9 Systems of Equations and Inequalities

ALTERNATE EXAMPLE 8
Find the area of a triangle with
vertices (0, 2), (3, 5), and (-4, 0).

ANSWER

,

so the area is 3 square units.

;
1

2
 †

0 2 1

3 5 1

-4 0 1
† = ;3

You are asked to prove this formula in Exercise 59.

Example 8 Area of a Triangle

Find the area of the triangle shown in Figure 1.

Figure 1

Solution The vertices are , , and . Using the formula in the
preceding box, we get:

To make the area positive, we choose the negative sign in the formula. Thus, the
area of the triangle is

■area � � 
1
2 1�12 2 � 6

area � � 
1
2 † �1 4 1

3 6 1

1 2 1

† � � 
1
2 1�12 2

11,  2 213,  6 21�1,  4 2
0 1

2

4

6

3

y

x

712 CHAPTER 9 Systems of Equations and Inequalities

Area of a Triangle

If a triangle in the coordinate plane has vertices , and 
, then its area is

where the sign is chosen to make the area positive.

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

y

x

area � � 
1
2 † a1 b1 1

a2 b2 1

a3 b3 1

†

1a3, b3 2 1a1, b1 2 , 1a2, b2 2

[A]
         [[-1 4 1]
          [3  6 1]

         
 [1  2 1]]

det([A])
                       -12

We can calculate the determinant by
hand or by using a graphing calculator.
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SECTION 9.7 Determinants and Cramer’s Rule 713

1–8 ■ Find the determinant of the matrix, if it exists.

1. 2.

3. 4.

5. 6.

7. 8.

9–14 ■ Evaluate the minor and cofactor using the matrix A.

9. M11, A11 10. M33, A33 11. M12, A12

12. M13, A13 13. M23, A23 14. M32, A32

15–22 ■ Find the determinant of the matrix. Determine whether
the matrix has an inverse, but don’t calculate the inverse.

15. 16.

17. 18.

19. 20.

21. 22.

23–26 ■ Evaluate the determinant, using row or column opera-
tions whenever possible to simplify your work.

23. 24.

25. ∞ ∞ 26. ∞ 2 �1 6 4

7 2 �2 5

4 �2 10 8

6 1 1 4

∞
1 2 3 4 5

0 2 4 6 8

0 0 3 6 9

0 0 0 4 8

0 0 0 0 5

∞ �2 3 �1 7

4 6 �2 3

7 7 0 5

3 �12 4 0

∞∞ 0 0 4 6

2 1 1 3

2 1 2 3

3 0 1 7

∞

≥ 1 2 0 2

3 �4 0 4

0 1 6 0

1 0 2 0

¥≥ 1 3 3 0

0 2 0 1

�1 0 0 2

1 6 4 1

¥
£ 1 2 5

�2 �3 2

3 5 3

§£30 0 20

0 �10 �20

40 0 10

§
£�2 � 

3
2

1
2

2 4 0
1
2 2 1

§£1 3 7

2 0 �1

0 2 6

§
£0 �1 0

2 6 4

1 0 3

§£2 1 0

0 �2 4

0 1 �3

§

A � £ 1 0 1
2

�3 5 2

0 0 4

§
c2.2 �1.4

0.5 1.0
dc 1

2
1
8

1 1
2

d
c3
0
d32  5 4

c�2 1

3 �2
dc4 5

0 �1
d

c0 �1

2 0
dc2 0

0 3
d 27. Let

(a) Evaluate by expanding by the second row.

(b) Evaluate by expanding by the third column.

(c) Do your results in parts (a) and (b) agree?

28. Consider the system

(a) Verify that x � �1, y � 0, z � 1 is a solution of the
system.

(b) Find the determinant of the coefficient matrix.

(c) Without solving the system, determine whether there
are any other solutions.

(d) Can Cramer’s Rule be used to solve this system? Why
or why not?

29–44 ■ Use Cramer’s Rule to solve the system.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. •2x � 5y � 4

x � y � z � 8

3x � 5z � 0

• 3y � 5z � 4

2x � z � 10

4x � 7y � 0

•2x � y � 5

5x � 3z � 19

4y � 7z � 17

• 1
3 x � 1

5 y � 1
2 z � 7

10

� 
2
3 x � 2

5 y � 3
2 z � 11

10

x � 4
5 y � z � 9

5

•�2a � c � 2

a � 2b � c � 9

3a � 5b � 2c � 22

•2x1 � 3x2 � 5x3 � 1

x1 � x2 � x3 � 2

2x2 � x3 � 8

• 5x � 3y � z � 6

4y � 6z � 22

7x � 10y � �13

• x � y � 2z � 0

3x � z � 11

�x � 2y � 0

e10x � 17y � 21

20x � 31y � 39
e 0.4x � 1.2y � 0.4

1.2x � 1.6y � 3.2

e 1
2 x � 1

3 y � 1 

1
4 x � 1

6 y � � 
3
2

e x � 6y � 3

3x � 2y � 1

e6x � 12y � 33

4x � 7y � 20
e2x � y � �9

x � 2y � 8

• x � 2y � 6z � 5

�3x � 6y � 5z � 8

2x � 6y � 9z � 7

det1B 2det1B 2
B � £ 4 1 0

�2 �1 1

4 0 3

§
9.7 Exercises
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714 CHAPTER 9 Systems of Equations and Inequalities

43. 44.

45–46 ■ Evaluate the determinants.

45. ∞ ∞ 46. ∞ ∞
47–50 ■ Solve for x.

47. 48.

49. 50.

51–54 ■ Sketch the triangle with the given vertices and use a
determinant to find its area.

51.

52.

53.

54.

55. Show that 

Applications

56. Buying Fruit A roadside fruit stand sells apples at 
75¢ a pound, peaches at 90¢ a pound, and pears at 60¢ a
pound. Muriel buys 18 pounds of fruit at a total cost of
$13.80. Her peaches and pears together cost $1.80 more
than her apples.

(a) Set up a linear system for the number of pounds of
apples, peaches, and pears that she bought.

(b) Solve the system using Cramer’s Rule.

† 1 x x 
2

1 y y 
2

1 z z 
2

† � 1x � y 2 1y � z 2 1z � x 2
1�2,  5 2 , 17,  2 2 , 13,  �4 21�1,  3 2 , 12,  9 2 , 15, �6 211,  0 2 , 13,  5 2 , 1�2,  2 210,  0 2 , 16,  2 2 , 13,  8 2

† a b x � a

x x � b x

0 1 1

† � 0† 1 0 x

x 
2 1 0

x 0 1

† � 0

† x 1 1

1 1 x

x 1 x

† � 0† x 12 13

0 x � 1 23

0 0 x � 2

† � 0

a a a a a

0 a a a a

0 0 a a a

0 0 0 a a

0 0 0 0 a

a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 d 0

0 0 0 0 e

d x � y � 1

y � z � 2

z � „ � 3

„ � x � 4

d x � y � z � „ � 0

2x � „ � 0

y � z � 0

x � 2z � 1

57. The Arch of a Bridge The opening of a railway 
bridge over a roadway is in the shape of a parabola. 
A surveyor measures the heights of three points on the
bridge, as shown in the figure. He wishes to find an 
equation of the form

to model the shape of the arch.

(a) Use the surveyed points to set up a system of 
linear equations for the unknown coefficients a, b,
and c.

(b) Solve the system using Cramer’s Rule.

58. A Triangular Plot of Land An outdoors club is purchas-
ing land to set up a conservation area. The last remaining
piece they need to buy is the triangular plot shown in the
figure. Use the determinant formula for the area of a triangle
to find the area of the plot.

Discovery • Discussion

59. Determinant Formula for the Area of a Triangle The
figure shows a triangle in the plane with vertices

, and .

(a) Find the coordinates of the vertices of the surrounding
rectangle and find its area.

1a3,  b3 21a1,  b1 2 , 1a2,  b2 2

2000

4000

6000

2000 4000 6000
E-W baseline (ft)

N-S baseline
(ft)

0

x (ft)10

25 ft
40 ft33   ft3

4

4015

y (ft)

y � ax 
2 � bx � c
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SUGGESTED TIME

AND EMPHASIS

–1 class. 

Optional material.

1
2

POINT TO STRESS

Decomposing a rational function into partial fractions.

SECTION 9.8 Partial Fractions 715

(b) Find the area of the red triangle by subtracting the 
areas of the three blue triangles from the area of the
rectangle.

(c) Use your answer to part (b) to show that the area of the
red triangle is given by

60. Collinear Points and Determinants

(a) If three points lie on a line, what is the area of the 
“triangle” that they determine? Use the answer to this
question, together with the determinant formula for the
area of a triangle, to explain why the points 

, and are collinear if and only if

† a1 b1 1

a2 b2 1

a3 b3 1

† � 0

1a3,  b3 21a2,  b2 2 1a1,  b1 2 ,

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

y

x

area � � 
1
2 † a1 b1 1

a2 b2 1

a3 b3 1

†

(b) Use a determinant to check whether each set of points is
collinear. Graph them to verify your answer.

(i)

(ii)

61. Determinant Form for the Equation of a Line

(a) Use the result of Exercise 60(a) to show that the 
equation of the line containing the points and

is

(b) Use the result of part (a) to find an equation for the line
containing the points and .

62. Matrices with Determinant Zero Use the definition 
of determinant and the elementary row and column opera-
tions to explain why matrices of the following types have
determinant 0.

(a) A matrix with a row or column consisting entirely of
zeros

(b) A matrix with two rows the same or two columns the
same

(c) A matrix in which one row is a multiple of another row,
or one column is a multiple of another column

63. Solving Linear Systems Suppose you have to solve a
linear system with five equations and five variables without
the assistance of a calculator or computer. Which method
would you prefer: Cramer’s Rule or Gaussian elimination?
Write a short paragraph explaining the reasons for your 
answer.

1�10,  25 2120,  50 2
† x y 1

x 1 y 1 1

x 2 y 2 1

† � 0

1x2,  y2 2 1x1,  y1 2
1�5,  10 2 , 12,  6 2 , 115,  �2 21�6,  4 2 , 12,  10 2 , 16,  13 2

9.8 Partial Fractions

To write a sum or difference of fractional expressions as a single fraction, we bring
them to a common denominator. For example,

But for some applications of algebra to calculus, we must reverse this process—that
is, we must express a fraction such as as the sum of the simpler
fractions and . These simpler fractions are called partial frac-
tions; we learn how to find them in this section.

1/ 12x � 1 21/ 1x � 1 2 3x/ 12x 
2 � x � 1 2

1

x � 1
�

1

2x � 1
�
12x � 1 2 � 1x � 1 21x � 1 2 12x � 1 2 �

3x

2x 
2 � x � 1

Common denominator

Partial fractions

2x2-x-1
= 3x

2x+1
1+

x-1
1
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SAMPLE QUESTION

Text Question

What does it mean to express a
rational expression as partial
fractions?

Answer

It means to write the expression as
a sum of fractions with simpler
denominators.

EXAMPLE
Case 1:

+

DRILL QUESTION

Express as a sum of

partial fractions.

Answer

ALTERNATE EXAMPLE 1
Find the partial fraction
decomposition of 

.

ANSWER
5

x - 1
-

2

x + 1
-

3

x + 2

13x + 17

x3 + 2x2 - x - 2

2

x2 - 1
=

1

x - 1
-

1

x + 1

2

x2 - 1

2

x + 3

-1

x - 2

x - 7

(x - 2)(x + 3)
=

IN-CLASS MATERIALS

Remind students of the process of polynomial division, perhaps by rewriting as 

x2 + x + 3 + . Be sure to indicate that, in order to use partial fractions, the degree of the numerator 

has to be less than the degree of the denominator.

1

2x + 1

2x3 + 3x2 + 7x + 4

2x + 1

Let r be the rational function

where the degree of P is less than the degree of Q. By the Linear and Quadratic Fac-
tors Theorem in Section 3.4, every polynomial with real coefficients can be factored
completely into linear and irreducible quadratic factors, that is, factors of the form 
ax � b and ax 2 � bx � c, where a, b, and c are real numbers. For instance,

After we have completely factored the denominator Q of r, we can express as a
sum of partial fractions of the form

This sum is called the partial fraction decomposition of r. Let’s examine the details
of the four possible cases.

A1ax � b 2 i  and  
Ax � B1ax 

2 � bx � c 2 j
r1x 2x 

4 � 1 � 1x 
2 � 1 2 1x 

2 � 1 2 � 1x � 1 2 1x � 1 2 1x 
2 � 1 2

r 1x 2 �
P1x 2
Q1x 2

716 CHAPTER 9 Systems of Equations and Inequalities

Case 1: The Denominator Is a Product

of Distinct Linear Factors

Suppose that we can factor as

with no factor repeated. In this case, the partial fraction decomposition of
takes the form

P1x 2
Q1x 2 �

A1

a1x � b1
�

A2

a2x � b2
� p �

An

anx � bn

P1x 2 /Q1x 2
Q1x 2 � 1a1x � b1 2 1a2x � b2 2 p 1anx � bn 2Q1x 2

The constants A1, A2, . . . , An are determined as in the following example.

Example 1 Distinct Linear Factors

Find the partial fraction decomposition of .

Solution The denominator factors as follows:

This gives us the partial fraction decomposition

5x � 7

x 
3 � 2x 

2 � x � 2
�

A

x � 1
�

B

x � 1
�

C

x � 2

 � 1x � 1 2 1x � 1 2 1x � 2 2 x 
3 � 2x 

2 � x � 2 � x 
21x � 2 2 � 1x � 2 2 � 1x 

2 � 1 2 1x � 2 2
5x � 7

x 
3 � 2x 

2 � x � 2

The Rhind papyrus is the oldest
known mathematical document. It
is an Egyptian scroll written in
1650 B.C. by the scribe Ahmes,
who explains that it is an exact
copy of a scroll written 200 years
earlier. Ahmes claims that his pa-
pyrus contains “a thorough study
of all things, insight into all that ex-
ists, knowledge of all obscure se-
crets.” Actually, the document
contains rules for doing arithmetic,
including multiplication and divi-
sion of fractions and several exer-
cises with solutions. The exercise
shown below reads: A heap and its
seventh make nineteen; how large
is the heap? In solving problems of
this sort, the Egyptians used partial
fractions because their number
system required all fractions to be
written as sums of reciprocals of
whole numbers. For example,
would be written as .

The papyrus gives a correct for-
mula for the volume of a truncated
pyramid (page 143). It also gives
the formula for the area
of a circle with diameter d. How
close is this to the actual area?

A � A89 dB2
1
3 � 1

4

7
12
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EXAMPLE
Case 2:

3x2 - x - 3

x2(x + 1)
=

1

x + 1
+

2
x

-
3

x2

IN-CLASS MATERIALS

Find the coefficients for the partial fraction decomposition for in two different ways: 

first using two linear equations, and then using the method of creating zeros [setting x = 1 and then 
x = -2 in x + 3 = A(x + 2) + B(x - 1)].

x + 3

(x -  2)(x -1)

Multiplying each side by the common denominator, , we get

Expand

Combine like terms

If two polynomials are equal, then their coefficients are equal. Thus, since 
5x � 7 has no x 2-term, we have A � B � C � 0. Similarly, by comparing the
coefficients of x, we see that 3A � B � 5, and by comparing constant terms, we get
2A � 2B � C � 7. This leads to the following system of linear equations for A, B,
and C.

We use Gaussian elimination to solve this system.

Equation � Equation 2

From the third equation we get C � �1. Back-substituting we find that B � �1
and A � 2. So, the partial fraction decomposition is

■

The same approach works in the remaining cases. We set up the partial fraction de-
composition with the unknown constants, A, B, C, . . . . Then we multiply each side
of the resulting equation by the common denominator, simplify the right-hand side of
the equation, and equate coefficients. This gives a set of linear equations that will al-
ways have a unique solution (provided that the partial fraction decomposition has
been set up correctly).

5x � 7

x3 � 2x2 � x � 2
�

2

x � 1
�

�1

x � 1
�

�1

x � 2

3 � 1�2 2•A �  B � C � 0

�2B � 3C � 5

3C � �3

Equation 2 � (�3) � Equation 1
Equation 3 � (�2) � Equation 1

•A �  B � C � 0

�2B � 3C � 5

�4B � 3C � 7

Equation 1: Coefficients of x2

Equation 2: Coefficients of x
Equation 3: Constant coefficients

• A � B � C � 0

3A � B � 5

2A � 2B � C � 7

 � 1A � B � C 2x 
2 � 13A � B 2x � 12A � 2B � C 2 � A1x 

2 � 3x � 2 2 � B1x 
2 � x � 2 2 � C1x 

2 � 1 2 5x � 7 � A1x � 1 2 1x � 2 2 � B1x � 1 2 1x � 2 2 � C1x � 1 2 1x � 1 21x � 1 2 1x � 1 2 1x � 2 2
SECTION 9.8 Partial Fractions 717

Case 2: The Denominator Is a Product of 

Linear Factors, Some of Which Are Repeated

Suppose the complete factorization of contains the linear factor ax � b
repeated k times; that is, is a factor of . Then, corresponding to
each such factor, the partial fraction decomposition for contains

A1

ax � b
�

A21ax � b 2 2 � p �
Ak1ax � b 2 k

P1x 2 /Q1x 2Q1x 21ax � b 2 k Q1x 2
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ALTERNATE EXAMPLE 2
Find the partial fraction 

decomposition of 

ANSWER

EXAMPLE
Case 3:

ALTERNATE EXAMPLE 3
Find the partial fraction 
decomposition of

ANSWER
6
x

+
5x - 2

x2 + 4

11x2 - 2x + 24

x3 + 4x
.

=
1

x - 1
-

x + 1

x2 + 2

3

(x - 1)(x2 + 2)

6
x

+
6

x - 1
+

12

(x - 1)3

6x2 + 6

x(x - 1)3 .

IN-CLASS MATERIALS

Point out that the quadratic in the denominator of is not irreducible. It can be factored 

into the two linear terms x - 2 and x + 3, and so the partial fraction decomposition is found by writing

and solving for A and B. Therefore it is important, when factoring the

denominator, to make sure all quadratics are irreducible.

1

x2 + x - 6
=

A

x + 2
+

B

x - 3

f (x) =
1

x2 + x - 6

Example 2 Repeated Linear Factors

Find the partial fraction decomposition of .

Solution Because the factor x � 1 is repeated three times in the denominator,
the partial fraction decomposition has the form

Multiplying each side by the common denominator, , gives

Expand

Combine like
terms

Equating coefficients, we get the equations

If we rearrange these equations by putting the last one in the first position, we can
easily see (using substitution) that the solution to the system is A � �1, B � 1,
C � 0, D � 2, and so the partial fraction decomposition is

■
x 

2 � 1

x1x � 1 2 3 �
�1
x

�
1

x � 1
�

21x � 1 2 3

Coefficients of x3

Coefficients of x2

Coefficients of x
Constant coefficients

µ A � B � 0

�3A � 2B � C � 1

3A � B � C � D � 0

�A � 1

 � 1A � B 2x 
3 � 1�3A � 2B � C 2x 

2 � 13A � B � C � D 2x � A

 � A1x 
3 � 3x 

2 � 3x � 1 2 � B1x 
3 � 2x 

2 � x 2 � C1x 
2 � x 2 � Dx

 x 
2 � 1 � A1x � 1 2 3 � Bx1x � 1 2 2 � Cx1x � 1 2 � Dx

x1x � 1 2 3
x 

2 � 1

x1x � 1 2 3 �
A
x

�
B

x � 1
�

C1x � 1 2 2 �
D1x � 1 2 3

x 
2 � 1

x1x � 1 2 3
718 CHAPTER 9 Systems of Equations and Inequalities

Case 3: The Denominator Has Irreducible 

Quadratic Factors, None of Which Is Repeated

Suppose the complete factorization of contains the quadratic factor 
ax 2 � bx � c (which can’t be factored further). Then, corresponding to this,
the partial fraction decomposition of will have a term of the form

Ax � B

ax 
2 � bx � c

P1x 2/Q1x 2Q1x 2

Example 3 Distinct Quadratic Factors

Find the partial fraction decomposition of .

Solution Since , which can’t be factored further, we write

2x 
2 � x � 4

x 
3 � 4x

�
A
x

�
Bx � C

x 
2 � 4

x 
3 � 4x � x1x 

2 � 4 2
2x 

2 � x � 4

x 
3 � 4x
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EXAMPLE
Case 4:

ALTERNATE EXAMPLE 4
Write the form of the partial
fraction decomposition of the
following:

ANSWER

+
Hx + I

(x2 + 2x + 30)3

+
Fx + G

(x2 + 2x + 30)2

+
Dx + E

(x2 + 2x + 30)

C

(x + 1)2

A

x - 2
+

B

(x + 1)
+

x2 + 12

(x + 1)2 (x2 + 2x + 30)3 (x - 2)

-
x

(x2 + 1)2

x

x2 + 1

1

(x2 + 1)2x
=

1
x

-

Multiplying by , we get

Equating coefficients gives us the equations

and so A � 1, B � 1, and C � �1. The required partial fraction decomposition is

■
2x 

2 � x � 4

x 
3 � 4x

�
1
x

�
x � 1

x 
2 � 4

Coefficients of x2

Coefficients of x
Constant coefficients

cA � B � 2

C � �1

4A � 4

 � 1A � B 2x 
2 � Cx � 4A

 2x 
2 � x � 4 � A1x 

2 � 4 2 � 1Bx � C 2xx1x 
2 � 4 2
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Suppose the complete factorization of contains the factor
, where ax 2 � bx � c can’t be factored further. Then the 

partial fraction decomposition of will have the terms

A1x � B1

ax 
2 � bx � c

�
A2x � B21ax 
2 � bx � c 2 2 � p �

Ak  
x � Bk1ax 

2 � bx � c 2 k
P1x 2/Q1x 21ax 

2 � bx � c 2 k Q1x 2

Example 4 Repeated Quadratic Factors

Write the form of the partial fraction decomposition of

Solution

■

To find the values of A, B, C, D, E, F, G, H, I, J, and K in Example 4, we would
have to solve a system of 11 linear equations. Although possible, this would certainly
involve a great deal of work!

The techniques we have described in this section apply only to rational functions
in which the degree of P is less than the degree of Q. If this isn’t the case,

we must first use long division to divide Q into P.
P1x 2 /Q1x 2

�
A
x

�
B

x 
2 �

C

x 
3 �

Dx � E

x 
2 � x � 1

�
Fx � G

x 
2 � 2

�
Hx � I1x 

2 � 2 2 2 �
Jx � K1x 

2 � 2 2 3
x 

5 � 3x 
2 � 12x � 1

x 
31x 

2 � x � 1 2 1x2 � 2 2 3

x 
5 � 3x 

2 � 12x � 1

x 
31x 

2 � x � 1 2 1x 
2 � 2 2 3

Case 4: The Denominator Has a Repeated 

Irreducible Quadratic Factor
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ALTERNATE EXAMPLE 5a
Find the partial fraction
decomposition of 

ANSWER

ALTERNATE EXAMPLE 5b
Prepare the following for partial
fraction decomposition:

ANSWER
We write

+
3x2 + 16x - 5

x(x + 2)(x - 2)

= x2 + 4
x5 + 3x2 - 5

x3 - 4x

x5 + 3x2 - 5

x3 - 4x

3x +
2

x - 2
-

1

x + 2
-

1

x + 3
.

3x4 + 9x3 - 12x2 - 27x + 22

x3 + 3x2 - 4x - 12

IN-CLASS MATERIALS

It is possible to cover this section without covering every single case. For example, one might just cover the
idea of linear factors (Cases 1 and 2) and mention that it is also possible to work with irreducible quadratic
factors. Notice that just because every rational expression can be decomposed in theory doesn’t mean it is
always possible in practice, because there is no closed-form formula for factoring a polynomial of degree 5
or higher.

IN-CLASS MATERIALS

Show the class how a complicated partial fractions problem would be set up, without trying to solve it. 

Example 5 Using Long Division to Prepare 

for Partial Fractions

Find the partial fraction decomposition of

Solution Since the degree of the numerator is larger than the degree of the 
denominator, we use long division to obtain

The remainder term now satisfies the requirement that the degree of the numerator
is less than the degree of the denominator. At this point we proceed as in Example 1
to obtain the decomposition

■

9.8 Exercises

2x 
4 � 4x 

3 � 2x 
2 � x � 7

x 
3 � 2x 

2 � x � 2
� 2x �

2

x � 1
�

�1

x � 1
�

�1

x � 2

2x 
4 � 4x 

3 � 2x 
2 � x � 7

x 
3 � 2x 

2 � x � 2
� 2x �

5x � 7

x 
3 � 2x 

2 � x � 2

2x 
4 � 4x 

3 � 2x 
2 � x � 7

x 
3 � 2x 

2 � x � 2

720 CHAPTER 9 Systems of Equations and Inequalities

1–10 ■ Write the form of the partial fraction decomposition of
the function (as in Example 4). Do not determine the numerical
values of the coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11–42 ■ Find the partial fraction decomposition of the rational
function.

11. 12.

13. 14.

15. 16.
x � 12

x 
2 � 4x

12

x 
2 � 9

x � 6

x1x � 3 251x � 1 2 1x � 4 2
2x1x � 1 2 1x � 1 221x � 1 2 1x � 1 2

11x 
3 � 1 2 1x 

2 � 1 2
x 

3 � x � 1

x12x � 5 2 31x 
2 � 2x � 5 2 2

x 
4 � x 

2 � 1

x 
21x 

2 � 4 2 2x 
3 � 4x 

2 � 21x 
2 � 1 2 1x 

2 � 2 2
1

x 
4 � 1

x 
21x � 3 2 1x 

2 � 4 2
1

x 
4 � x 

3

x 
2 � 3x � 51x � 2 2 21x � 4 2

x

x 
2 � 3x � 4

11x � 1 2 1x � 2 2
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.
x 

2 � x � 1

2x 
4 � 3x 

2 � 1

2x 
3 � 7x � 51x 

2 � x � 2 2 1x 
2 � 1 2

3x 
2 � 2x � 8

x 
3 � x 

2 � 2x � 2

x � 3

x 
3 � 3x

3x 
2 � 12x � 20

x 
4 � 8x 

2 � 16

3x 
3 � 22x 

2 � 53x � 411x � 2 2 21x � 3 2 2
�2x 

2 � 5x � 1

x 
4 � 2x 

3 � 2x � 1

�10x 
2 � 27x � 141x � 1 2 31x � 2 2

x 
3 � 2x 

2 � 4x � 3

x 
4

4x 
2 � x � 2

x 
4 � 2x 

3

x � 412x � 5 2 22x

4x 
2 � 12x � 9

3x 
2 � 5x � 1313x � 2 2 1x 

2 � 4x � 4 2x 
2 � 1

x 
3 � x 

2

�3x 
2 � 3x � 271x � 2 2 12x 

2 � 3x � 9 29x 
2 � 9x � 6

2x 
3 � x 

2 � 8x � 4

7x � 3

x 
3 � 2x 

2 � 3x

x

8x 
2 � 10x � 3

8x � 3

2x 
2 � x

x � 14

x 
2 � 2x � 8

2x � 1

x 
2 � x � 2

4

x 
2 � 4

2x

x3 � 2x2 � x � 2�2x4 � 4x3 � 2x2 � x � 7

2x4 � 4x3 � 2x2 � 4x

5x � 7
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CHAPTER 9 Systems of Equations and Inequalities 721

SUGGESTED TIME

AND EMPHASIS

1 class.
Recommended material.

POINT TO STRESS

Graphing inequalities and systems of inequalities by graphing the border and testing points in the defined
regions.

SECTION 9.9 Systems of Inequalities 721

39. 40.

41.

42.

43. Determine A and B in terms of a and b:

44. Determine A, B, C, and D in terms of a and b:

Discovery • Discussion

45. Recognizing Partial Fraction Decompositions For
each expression, determine whether it is already a partial

ax 
3 � bx 

21x 
2 � 1 2 2 �

Ax � B

x 
2 � 1

�
Cx � D1x 

2 � 1 2 2
ax � b

x 
2 � 1

�
A

x � 1
�

B

x � 1

x 
5 � 3x 

4 � 3x 
3 � 4x 

2 � 4x � 121x � 2 2 21x 
2 � 2 2

x 
5 � 2x 

4 � x 
3 � x � 5

x 
3 � 2x 

2 � x � 2

2x 
2 � x � 81x 

2 � 4 2 2x 
4 � x 

3 � x 
2 � x � 1

x1x 
2 � 1 2 2 fraction decomposition, or whether it can be decomposed

further.

(a) (b)

(c) (d)

46. Assembling and Disassembling Partial Fractions The
following expression is a partial fraction decomposition:

Use a common denominator to combine the terms into one
fraction. Then use the techniques of this section to find its
partial fraction decomposition. Did you get back the original
expression?

2

x � 1
�

11x � 1 2 2 �
1

x � 1

x � 21x 
2 � 1 2 21

x � 1
�

21x � 1 2 2
x1x � 1 2 2x

x 
2 � 1

�
1

x � 1

9.9 Systems of Inequalities

In this section we study systems of inequalities in two variables from a graphical
point of view.

Graphing an Inequality

We begin by considering the graph of a single inequality. We already know that the
graph of y � x 2, for example, is the parabola in Figure 1. If we replace the equal sign
by the symbol �, we obtain the inequality

Its graph consists of not just the parabola in Figure 1, but also every point whose 
y-coordinate is larger than x 2. We indicate the solution in Figure 2(a) by shading the
points above the parabola.

Similarly, the graph of y 
 x 2 in Figure 2(b) consists of all points on and below
the parabola. However, the graphs of y 	 x 2 and y � x 2 do not include the points on
the parabola itself, as indicated by the dashed curves in Figures 2(c) and 2(d).

(a) y≥≈

0

y

x

1

1

1

10

y

x

1

10

y

x

1

10

y

x

(b) y≤≈ (c) y>≈ (d) y<≈

y � x 
21

10

y

x

y=≈

Figure 1

Figure 2
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DRILL QUESTION

Graph the solution set of the sys-
tem of inequalities.

x - y � 0

Answer

ALTERNATE EXAMPLE 1a
For the graph of the inequality 
x2 + y2 � 81 determine whether
the inside or the outside of the
circle satisfies the inequality.

ANSWER
Inside

ALTERNATE EXAMPLE 1b
For the graph of the inequality

determine whether
the points above or below the
boundary line satisfy the
inequality.

ANSWER
Above

x + 4y Ú 9

1

1

x

y

-
1

2
 x2 + y Ú -2

IN-CLASS MATERIALS

Surprisingly, many students are not able to correctly answer this question: “True or false: If a � b then a 
 b.”
Perhaps take a minute or two to remind the students of the basics of inequalities. From straightforward state-
ments involving inequalities, make the transition to some very simple regions such as x 	 2, y 
 3, etc. The
idea is to make sure that the students are crystal-clear on the objects they are working with before working
with them.

The graph of an inequality, in general, consists of a region in the plane whose
boundary is the graph of the equation obtained by replacing the inequality sign (�,

, 	, or �) with an equal sign. To determine which side of the graph gives the solu-
tion set of the inequality, we need only check test points.

722 CHAPTER 9 Systems of Equations and Inequalities

Graphing Inequalities

To graph an inequality, we carry out the following steps.

1. Graph Equation. Graph the equation corresponding to the inequality.
Use a dashed curve for 	 or �, and a solid curve for 
 or �.

2. Test Points. Test one point in each region formed by the graph in Step 1.
If the point satisfies the inequality, then all the points in that region satisfy the
inequality. (In that case, shade the region to indicate it is part of the graph.) If
the test point does not satisfy the inequality, then the region isn’t part of the
graph.

Example 1 Graphs of Inequalities

Graph each inequality.

(a) x 2 � y 2 � 25 (b) x � 2y � 5

Solution

(a) The graph of x 2 � y 2 � 25 is a circle of radius 5 centered at the origin. 
The points on the circle itself do not satisfy the inequality because it is of the
form �, so we graph the circle with a dashed curve, as shown in Figure 3.

To determine whether the inside or the outside of the circle satisfies the 
inequality, we use the test points on the inside and on the outside.
To do this, we substitute the coordinates of each point into the inequality and
check if the result satisfies the inequality. (Note that any point inside or outside
the circle can serve as a test point. We have chosen these points for simplicity.)

16,  0 210,  0 2

Test point x 2 � y2 � 25 Conclusion

02 � 02 � 0 � 25 Part of graph
62 � 02 � 36 � 25 Not part of graph16,  0 210,  0 2

Thus, the graph of x 2 � y 2 � 25 is the set of all points inside the circle (see
Figure 3).

(b) The graph of x � 2y � 5 is the line shown in Figure 4. We use the test points
and on opposite sides of the line.15,  5 210,  0 2

Test point x � 2y � 5 Conclusion

Not part of graph
Part of graph5 � 215 2 � 15 � 515,  5 2 0 � 210 2 � 0  510,  0 2

1

10

y

x

≈+¥<25

(6, 0)

Figure 3
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SAMPLE QUESTION

Text Question

Consider the system of
inequalities.

x2 + y2 � 25
x + 2y � 5

Which of the following are true:

1. The solution set of this system
is all the points that satisfy at
least one of these inequalities.

2. The solution set of this system
is all the points that satisfy ex-
actly one of these inequalities.

3. The solution set of this system
is all the points that satisfy both
of these inequalities.

Answer

Only 3 is true.

DRILL QUESTION

Find the vertices of the graph of
the solution set of the system.

Answer

(-4, 3), (5, 0)

e x2 + y2  < 25

x + 3y Ú 5

IN-CLASS MATERIALS

Have the students come up with examples of systems of two cubic inequalities with varying numbers of separate solution spaces.

{y … x3, y Ú x3 - 5}, one solution space{y … x3 - x, y Ú -x3 + x}, two solution spaces

_2

_10

10

x_1 10

y

_2

_1
0

1

2

_1 1 x

y

Our check shows that the points above the line satisfy the inequality.
Alternatively, we could put the inequality into slope-intercept form and graph it

directly:

From this form we see that the graph includes all points whose y-coordinates are
greater than those on the line ; that is, the graph consists of the points
on or above this line, as shown in Figure 4. ■

Systems of Inequalities

We now consider systems of inequalities. The solution of such a system is the set of
all points in the coordinate plane that satisfy every inequality in the system.

Example 2 A System of Two Inequalities

Graph the solution of the system of inequalities.

Solution These are the two inequalities of Example 1. In this example we wish
to graph only those points that simultaneously satisfy both inequalities. The solu-
tion consists of the intersection of the graphs in Example 1. In Figure 5(a) we show
the two regions on the same coordinate plane (in different colors), and in Figure 5(b)
we show their intersection.

VERTICES The points and in Figure 5(b) are the vertices of the 
solution set. They are obtained by solving the system of equations

We solve this system of equations by substitution. Solving for x in the second 
equation gives x � 5 � 2y, and substituting this into the first equation gives

Substitute x � 5 � 2y

Expand

Simplify

Factor

Thus, y � 0 or y � 4. When y � 0, we have , and when y � 4,
we have . So the points of intersection of these curves are

and .
Note that in this case the vertices are not part of the solution set, since they don’t

satisfy the inequality x 2 � y 2 � 25 (and so they are graphed as open circles in the
figure). They simply show where the “corners” of the solution set lie. ■

1�3,  4 215,  0 2 x � 5 � 214 2 � �3
x � 5 � 210 2 � 5

 �5y14 � y 2 � 0

 �20y � 5y 
2 � 0

 125 � 20y � 4y 
2 2 � y 

2 � 25

 15 � 2y 2 2 � y 
2 � 25

e x 
2 � y 

2 � 25

x � 2y � 5

15,  0 21�3,  4 2

e x 
2 � y 

2 � 25

x � 2y � 5

y � � 
1
2 x � 5

2

 y � � 
1
2 x � 5

2

 2y � �x � 5

 x � 2y � 5

SECTION 9.9 Systems of Inequalities 723

(a)

0

y

x

(b)

0

y

x

(5, 0)

(_3, 4)

Figure 5e x 
2 � y 

2 � 25

x � 2y � 5

1

10

y

x

x+2y≥5

(5, 5)

Figure 4
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ALTERNATE EXAMPLE 3
Find the vertices for the graph of
the solution set of the system.

ANSWER
(10, 1), (0, 3), (11, 0)

µ
x + 5y … 15

x + y … 11

x Ú 0

y Ú 0

IN-CLASS MATERIALS

If areas are discussed, then the idea of infinite regions with finite areas can be discussed. It is interesting
that these regions have finite area:

x � 1 x � 1 x � 1 y 
 e-x

While these do not:

x � 1 x � 1 x � 1 y …
x

100(x2 + x)
y …

1

xln (x + 1)
y …

1
x

y …
1

x1.05y …
1

x2

Systems of Linear Inequalities

An inequality is linear if it can be put into one of the following forms:

In the next example we graph the solution set of a system of linear inequalities.

Example 3 A System of Four Linear Inequalities

Graph the solution set of the system, and label its vertices.

Solution In Figure 6 we first graph the lines given by the equations that corre-
spond to each inequality. To determine the graphs of the linear inequalities, we only
need to check one test point. For simplicity let’s use the point .

Inequality Test point (0, 0) Conclusion

x � 3y 
 12 Satisfies inequality
x � y 
 8 0 � 0 � 0 
 8 Satisfies inequality

Since is below the line x � 3y � 12, our check shows that the region on 
or below the line must satisfy the inequality. Likewise, since is below the 
line x � y � 8, our check shows that the region on or below this line must satisfy
the inequality. The inequalities x � 0 and y � 0 say that x and y are nonnegative.
These regions are sketched in Figure 6(a), and the intersection—the solution 
set—is sketched in Figure 6(b).

VERTICES The coordinates of each vertex are obtained by simultaneously 
solving the equations of the lines that intersect at that vertex. From the system

we get the vertex . The other vertices are the x- and y-intercepts of the 
corresponding lines, and , and the origin . In this case, all 
the vertices are part of the solution set.

(b)

0

y

x

(8, 0)

(6, 2)

(0, 4)

12

8

(a)

0

y

x

12

8
x+y=8

x=0

y=0
x+3y=12

8

4

10,  0 210,  4 218,  0 216,  2 2 e x � 3y � 12

x � y � 8

10,  0 210,  0 2
0 � 310 2 � 0 
 12

10,  0 2
µ x � 3y 
 12

x � y 
 8

x � 0

y � 0

ax � by � c   ax � by 
 c   ax � by 	 c   ax � by � c

724 CHAPTER 9 Systems of Equations and Inequalities

Figure 6 ■

57050_09_ch09_p634-741.qxd  08/04/2008  11:25 AM  Page 724



CHAPTER 9 Systems of Equations and Inequalities 725

EXAMPLES
■ {5x - 3y � 3, x - 2y 	 4, 

x + y 
 1}

■ {y 	 x2 - 4, y 
 4 - x2}

10_1_2_3
_2

2

4

2 3 x

y

_4

_4 _2

_8

0

4

4
(2, _1)

x

y

(  ,   )1
4

3
4

(_     , _     )6
7

17
7

IN-CLASS MATERIALS

This section allows one to foreshadow the concept of area. For example, students should be able to
compute the area of the regions defined by the following systems:

… 4}{y Ú 2x, (x - 3)2 + (y - 6)2

{y Ú 2, x Ú 1, y + 2x Ú 0}

{x Ú 1, x … 3, y … 2, y Ú 0}

Example 4 A System of Linear Inequalities

Graph the solution set of the system.

Solution We must graph the lines that correspond to these inequalities and then
shade the appropriate regions, as in Example 3. We will use a graphing calculator,
so we must first isolate y on the left-hand side of each inequality.

Using the shading feature of the calculator, we obtain the graph in Figure 7. The 
solution set is the triangular region that is shaded in all three patterns. We then use

or the Intersect command to find the vertices of the region. The solution
set is graphed in Figure 8. ■

When a region in the plane can be covered by a (sufficiently large) circle, it is said
to be bounded. A region that is not bounded is called unbounded. For example, the
regions graphed in Figures 3, 5(b), 6(b), and 8 are bounded, whereas those in Figures
2 and 4 are unbounded. An unbounded region cannot be “fenced in”—it extends
infinitely far in at least one direction.

Application: Feasible Regions

Many applied problems involve constraints on the variables. For instance, a factory
manager has only a certain number of workers that can be assigned to perform 
jobs on the factory floor. A farmer deciding what crops to cultivate has only a 
certain amount of land that can be seeded. Such constraints or limitations can usually
be expressed as systems of inequalities. When dealing with applied inequalities, we 
usually refer to the solution set of a system as a feasible region, because the points 
in the solution set represent feasible (or possible) values for the quantities being
studied.

Example 5 Restricting Pollutant Outputs

A factory produces two agricultural pesticides, A and B. For every barrel of A,
the factory emits 0.25 kg of carbon monoxide (CO) and 0.60 kg of sulfur dioxide
(SO2), and for every barrel of B, it emits 0.50 kg of CO and 0.20 kg of SO2. Pollu-
tion laws restrict the factory’s output of CO to a maximum of 75 kg and SO2 to a
maximum of 90 kg per day.

(a) Find a system of inequalities that describes the number of barrels of each pesti-
cide the factory can produce and still satisfy the pollution laws. Graph the fea-
sible region.

(b) Would it be legal for the factory to produce 100 barrels of A and 80 barrels of B
per day?

(c) Would it be legal for the factory to produce 60 barrels of A and 160 barrels of B
per day?

TRACE

• y � � 
1
2 x � 4

y 
 1
2 x � 2

y � 3
2 x � 4

• x � 2y � 8

�x � 2y 
 4

3x � 2y 
 8

SECTION 9.9 Systems of Inequalities 725

8

_2

_2 8

Figure 7

0 1
1

(2, 3)

(4, 2)

(6, 5)
y

x

Figure 8

ALTERNATE EXAMPLE 4
Graph the solution set of the
system.

-2x + y 
 5
x - 2y 
 12

ANSWER

20
y

_10 10 x

_15

0

x + y Ú 3
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Solution

(a) To set up the required inequalities, it’s helpful to organize the given information
into a table.

726 CHAPTER 9 Systems of Equations and Inequalities

A B Maximum

CO (kg) 0.25 0.50 75
SO2 (kg) 0.60 0.20 90

We let

From the data in the table and the fact that x and y can’t be negative, we obtain
the following inequalities.

Multiplying the first inequality by 4 and the second by 5 simplifies this to

The feasible region is the solution of this system of inequalities, shown in 
Figure 9.

(b) Since the point lies inside the feasible region, this production plan is
legal (see Figure 9).

(c) Since the point lies outside the feasible region, this production plan 
is not legal. It violates the CO restriction, although it does not violate the SO2

restriction (see Figure 9). ■

9.9 Exercises

160,  160 2
1100,  80 2

• x � 2y 
 300

3x � y 
 450

x � 0, y � 0

CO inequality
SO2 inequality•0.25x � 0.50y 
 75

0.60x � 0.20y 
 90

x � 0 , y � 0

y � number of barrels of B produced per day

x � number of barrels of A produced per day

0

y

x

(100, 80)

(60, 160)

300200100

200

100

400

300
3x+y=450

x+2y=300

Figure 9

1–14 ■ Graph the inequality.

1. x � 3 2. y � �2

3. y 	 x 4. y � x � 2

5. y 
 2x � 2 6. y � �x � 5

7. 2x � y 
 8 8. 3x � 4y � 12 	 0

9. 4x � 5y � 20 10. �x 2 � y � 10

11. y 	 x 2 � 1 12. x 2 � y 2 � 9

13. x 2 � y 2 
 25 14. x 
2 � 1y � 1 2 2 
 1

15–18 ■ An equation and its graph are given. Find an 
inequality whose solution is the shaded region.

15. 16. y � x 2 � 2

1
1

0

y

x

1
1

0

y

x

y � 1
2 x � 1
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17. x 2 � y 2 � 4 18. y � x 3 � 4x

19–40 ■ Graph the solution of the system of inequalities. 
Find the coordinates of all vertices, and determine whether 
the solution set is bounded.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. • x 
2 � y � 0

x � y � 6

x � y � 6

• x 
2 � y 

2 
 8

x � 2

y � 0

• x � y 	 12

y � 1
2 x � 6

3x � y � 6

• y 	 x � 1

x � 2y 
 12

x � 1 	 0

µ x � 0

y � 0

y 
 4

2x � y 
 8

µ x � 0

y � 0

x 
 5

x � y 
 7

• y � x � 6

3x � 2y � 12

x � 2y 
 2

• x � 2y 
 14

3x � y � 0

x � y � 2

e x 
2 � y 

2 � 9

2x � y 
2 � 1

e x 
2 � y 
 0

2x 
2 � y 
 12

µ x 	 0

y 	 0

x � y � 10

x 
2 � y 

2 	 9

e x 
2 � y 

2 
 4

x � y 	 0

e y � x 
2

x � y � 6
e y � 9 � x 

2

y � x � 3

• x 	 2

y � 12

2x � 4y 	 8

µ x � 0

y � 0

3x � 5y 
 15

3x � 2y 
 9

e x � y 	 0

4 � y 
 2x
e y � 1

4 x � 2

y � 2x � 5

e2x � 3y 	 12

3x � y � 21
e x � y 
 4

y � x

1

1

0

y

x1

1

0

y

x

39. 40.

41–44 ■ Use a graphing calculator to graph the solution of 
the system of inequalities. Find the coordinates of all vertices,
correct to one decimal place.

41. 42.

43. 44.

Applications

45. Publishing Books A publishing company publishes 
a total of no more than 100 books every year. At least 20 
of these are nonfiction, but the company always publishes 
at least as much fiction as nonfiction. Find a system of 
inequalities that describes the possible numbers of fiction
and nonfiction books that the company can produce 
each year consistent with these policies. Graph the
solution set.

46. Furniture Manufacturing A man and his daughter 
manufacture unfinished tables and chairs. Each table 
requires 3 hours of sawing and 1 hour of assembly. 
Each chair requires 2 hours of sawing and 2 hours of 
assembly. The two of them can put in up to 12 hours of 
sawing and 8 hours of assembly work each day. Find a 
system of inequalities that describes all possible combina-
tions of tables and chairs that they can make daily. 
Graph the solution set.

47. Coffee Blends A coffee merchant sells two different 
coffee blends. The Standard blend uses 4 oz of arabica and
12 oz of robusta beans per package; the Deluxe blend uses
10 oz of arabica and 6 oz of robusta beans per package. 
The merchant has 80 lb of arabica and 90 lb of robusta
beans available. Find a system of inequalities that describes
the possible number of Standard and Deluxe packages he
can make. Graph the solution set.

48. Nutrition A cat food manufacturer uses fish and beef 
by-products. The fish contains 12 g of protein and 3 g of fat
per ounce. The beef contains 6 g of protein and 9 g of fat
per ounce. Each can of cat food must contain at least 60 g 
of protein and 45 g of fat. Find a system of inequalities that
describes the possible number of ounces of fish and beef
that can be used in each can to satisfy these minimum 
requirements. Graph the solution set.

• y � x 
3

2x � y � 0

y 
 2x � 6

e y 
 6x � x 
2

x � y � 4

• x � y � 12 

2x � y 
 24 

x � y � �6

• y � x � 3

y � �2x � 6

y 
 8

• y � x 
3

y 
 2x � 4

x � y � 0

• x 
2 � y 

2 � 9

x � y 	 0

x 
 0
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Discovery • Discussion

49. Shading Unwanted Regions To graph the solution of a
system of inequalities, we have shaded the solution of each
inequality in a different color; the solution of the system is
the region where all the shaded parts overlap. Here is a dif-
ferent method: For each inequality, shade the region that
does not satisfy the inequality. Explain why the part of the

plane that is left unshaded is the solution of the system.
Solve the following system by both methods. Which do 
you prefer?

µ x � 2y 	 4

�x � y � 1

x � 3y � 9

x � 3

9 Review

Concept Check

1. Suppose you are asked to solve a system of two equations
(not necessarily linear) in two variables. Explain how 
you would solve the system

(a) by the substitution method

(b) by the elimination method

(c) graphically

2. Suppose you are asked to solve a system of two linear
equations in two variables.

(a) Would you prefer to use the substitution method or the
elimination method?

(b) How many solutions are possible? Draw diagrams to 
illustrate the possibilities.

3. What operations can be performed on a linear system that
result in an equivalent system?

4. Explain how Gaussian elimination works. Your explanation
should include a discussion of the steps used to obtain a 
system in triangular form, and back-substitution.

5. What does it mean to say that A is a matrix with dimension
m � n?

6. What is the augmented matrix of a system? Describe the
role of elementary row operations, row-echelon form,
back-substitution, and leading variables when solving a 
system in matrix form.

7. (a) What is meant by an inconsistent system?

(b) What is meant by a dependent system?

8. Suppose you have used Gaussian elimination to transform
the augmented matrix of a linear system into row-echelon
form. How can you tell if the system has

(a) exactly one solution?

(b) no solution?

(c) infinitely many solutions?

9. How can you tell if a matrix is in reduced row-echelon form?

10. How do Gaussian elimination and Gauss-Jordan elimination
differ? What advantage does Gauss-Jordan elimination have?

11. If A and B are matrices with the same dimension and k is a
real number, how do you find A � B, A � B, and kA?

12. (a) What must be true of the dimensions of A and B for the
product AB to be defined?

(b) If the product AB is defined, how do you calculate it?

13. (a) What is the identity matrix In?

(b) If A is a square n � n matrix, what is its inverse matrix?

(c) Write a formula for the inverse of a 2 � 2 matrix.

(d) Explain how you would find the inverse of a 3 � 3 
matrix.

14. (a) Explain how to express a linear system as a matrix
equation of the form AX � B.

(b) If A has an inverse, how would you solve the matrix
equation AX � B?

15. Suppose A is an n � n matrix.

(a) What is the minor Mij of the element aij?

(b) What is the cofactor Aij?

(c) How do you find the determinant of A?

(d) How can you tell if A has an inverse?

16. State Cramer’s Rule for solving a system of linear equations
in terms of determinants. Do you prefer to use Cramer’s
Rule or Gaussian elimination? Explain.

17. Explain how to find the partial fraction decomposition of a
rational expression. Include in your explanation a discussion
of each of the four cases that arise.

18. How do you graph an inequality in two variables?

19. How do you graph the solution set of a system of 
inequalities?
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Exercises

16.

17. 18.

19–24 ■ A matrix is given.

(a) State the dimension of the matrix.

(b) Is the matrix in row-echelon form?

(c) Is the matrix in reduced row-echelon form?

(d) Write the system of equations for which the given 
matrix is the augmented matrix.

19. 20.

21. 22.

23. 24.

25–46 ■ Find the complete solution of the system, or show that
the system has no solution.

25.

26.

27.

28.

29.

30. • x � y � z � 2

x � y � 3z � 6

2y � 3z � 5

• x � 2y � 2z � 6

x � y � �1

2x � y � 3z � 7

d x � y � z � „ � 2

2x � 3z � 5

x � 2y � 4„ � 9

x � y � 2z � 3„ � 5

• x � 2y � 3z � 1

2x � y � z � 3

2x � 7y � 11z � 2

• x � 2y � 3z � 1

x � 3y � z � 0

2x � 6z � 6

• x � y � 2z � 6

2x � 5z � 12

x � 2y � 3z � 9

≥ 1 8 6 �4

0 1 �3 5

0 0 2 �7

1 1 1 0

¥£0 1 �3 4

1 1 0 7

1 2 1 2

§
£1 3 6 2

2 1 0 5

0 0 1 0

§£1 0 8 0

0 1 5 �1

0 0 0 0

§
c1 0 6

0 1 0
dc1 2 �5

0 1 3
d

e y � 5x � x

y � x 
5 � 5

e x � y 
2 � 10

x � 1
22 y � 12

e112x � 312y � 660

7137x � 3931y � 20,000

1–4 ■ Two equations and their graphs are given. Find the inter-
section point(s) of the graphs by solving the system.

1. 2.

3. 4.

5–10 ■ Solve the system of equations and graph the lines.

5. 6.

7. 8.

9. 10.

11–14 ■ Solve the system of equations.

11. 12.

13. 14.

15–18 ■ Use a graphing device to solve the system, correct to
the nearest hundredth.

15. e0.32x � 0.43y � 0

7x � 12y � 341

e x 
2 � y 

2 � 10

x 
2 � 2y 

2 � 7y � 0
µ 3x �

4
y

� 6

x �
8
y

� 4

e x 
2 � y 

2 � 8

y � x � 2
e y � x 

2 � 2x

y � 6 � x

• 2x � 5y � 9

�x � 3y � 1

7x � 2y � 14

•2x � y � 1

x � 3y � 10

3x � 4y � 15

e 6x � 8y � 15  

� 
3
2 x � 2y � �4

e2x � 7y � 28

y � 2
7 x � 4

e y �   2x � 6

y � �x � 3
e 3x � y � 5

2x � y � 5

2

10

y

x
10

1

y

x

e x � y � �2

x 
2 � y 

2 � 4y � 4
e x 

2 � y � 2

x 
2 � 3x � y � 0

20
2

y

x
1

1

0

y

x

e3x � y � 8

y � x 
2 � 5x

e2x � 3y � 7

x � 2y � 0
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44. • x � 2y � 3z � 2

2x � y � 5z � 1

4x � 3y � z � 6

• x � y � z � 0

3x � 2y � z � 6

x � 4y � 3z � 3

• x � y � 3

2x � y � 6

x � 2y � 9

e x � y � z � „ � 0

3x � y � z � „ � 2

• x � y � 1

x � y � 2z � 3

x � 3y � 2z � �1

• x � y � 3z � 2

2x � y � z � 2

3x � 4z � 4

d x � z � „ � 2

2x � y � 2„ � 12

3y � z � „ � 4

x � y � z „ � 10

•�x � 4y � z � 8

2x � 6y � z � �9

x � 6y � 4z � �15

•2x � 3y � 4z � 3

4x � 5y � 9z � 13

2x � 7z � 0

e x � 3y � z � 4

4x � y � 15z � 5

d x � 3z � �1

y � 4„ � 5

2y � z � „ � 0

2x � y � 5z � 4„ � 4

d x � y � z � „ � 0

x � y � 4z � „ � �1

x � 2y � 4„ � �7

2x � 2y � 3z � 4„ � �3

• x � y � z � 2

x � y � 3z � 6

3x � y � 5z � 10

• x � 2y � 3z � �2

2x � y � z � 2

2x � 7y � 11z � �9
45.

46.

47. A man invests his savings in two accounts, one paying 6%
interest per year and the other paying 7%. He has twice as
much invested in the 7% account as in the 6% account, and
his annual interest income is $600. How much is invested in
each account?

48. A piggy bank contains 50 coins, all of them nickels, dimes,
or quarters. The total value of the coins is $5.60, and the
value of the dimes is five times the value of the nickels.
How many coins of each type are there?

49. Clarisse invests $60,000 in money-market accounts at three
different banks. Bank A pays 2% interest per year, bank B
pays 2.5%, and bank C pays 3%. She decides to invest twice
as much in bank B as in the other two banks. After one year,
Clarisse has earned $1575 in interest. How much did she 
invest in each bank?

50. A commercial fisherman fishes for haddock, sea bass, and
red snapper. He is paid $1.25 a pound for haddock, $0.75 
a pound for sea bass, and $2.00 a pound for red snapper. 
Yesterday he caught 560 lb of fish worth $575. The haddock
and red snapper together are worth $320. How many pounds
of each fish did he catch?

51–62 ■ Let

Carry out the indicated operation, or explain why it cannot be
performed.

51. A � B 52. C � D 53. 2C � 3D

54. 5B � 2C 55. GA 56. AG

 G � 35 4
 F � £ 4 0 2

�1 1 0

7 5 0

§ E � c 2 �1

� 
1
2 1

d
 D � £1 4

0 �1

2 0

§ C � £ 1
2 3

2 3
2

�2 1

§
 B � c 1 2 4

�2 1 0
d A � 32 0 �1 4

c x � y � 2z � 3„ � 0

y � z � „ � 1

3x � 2y � 7z � 10„ � 2

d x � y � z � „ � 2

x � y � z � „ � 0

2x � 2„ � 2

2x � 4y � 4z � 2„ � 6
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57. BC 58. CB 59. BF

60. FC 61. 62.

63–64 ■ Verify that the matrices A and B are inverses of each
other by calculating the products AB and BA.

63.

64.

65–70 ■ Solve the matrix equation for the unknown matrix, X,
or show that no solution exists, where

65. A � 3X � B 66.

67. 68. 2X � C � 5A

69. AX � C 70. AX � B

71–78 ■ Find the determinant and, if possible, the inverse of
the matrix.

71. 72.

73. 74.

75. 76.

77. 78.

79–82 ■ Express the system of linear equations as a matrix
equation. Then solve the matrix equation by multiplying each
side by the inverse of the coefficient matrix.

79. 80.

81. 82. •2x � 3z � 5

x � y � 6z � 0

3x � y � z � 5

•2x � y � 5z � 1
3

x � 2y � 2z � 1
4

x � 3z � 1
6

e6x � 5y � 1

8x � 7y � �1
e12x � 5y � 10

5x � 2y � 17

≥ 1 0 1 0

0 1 0 1

1 1 1 2

1 2 1 2

¥≥ 1 0 0 1

0 2 0 2

0 0 3 3

0 0 0 4

¥
£1 2 3

2 4 5

2 5 6

§£3 0 1

2 �3 0

4 �2 1

§
£ 2 4 0

�1 1 2

0 3 2

§c 4 �12

�2 6
d

c2 2

1 �3
dc1 4

2 9
d

21X � A 2 � 3B

1
2 1X � 2B 2 � A

A � c2 1

3 2
d ,  B � c 1 �2

�2 4
d ,  C � c 0 1 3

�2 4 0
d

A � £2 �1 3

2 �2 1

0 1 1

§ , B � £ � 
3
2 2 5

2

� 1 1 2

1 �1 �1

§
A � c 2 �5

�2 6
d , B � c3 5

2

1 1
d

F12C � D 21C � D 2E 83–86 ■ Solve the system using Cramer’s Rule.

83.

84.

85.

86.

87–88 ■ Use the determinant formula for the area of a triangle
to find the area of the triangle in the figure.

87. 88.

89–94 ■ Find the partial fraction decomposition of the rational
function.

89. 90.

91. 92.

93. 94.

95–96 ■ An equation and its graph are given. Find an inequal-
ity whose solution is the shaded region.

95. x � y 2 � 4 96. x 2 � y 2 � 8

1

1

0

y

x1

1

0

y

x

5x 
2 � 3x � 10

x 
4 � x 

2 � 2

2x � 1

x 
3 � x

x � 6

x 
3 � 2x 

2 � 4x � 8

2x � 4

x1x � 1 2 2
8

x 
3 � 4x

3x � 1

x 
2 � 2x � 15

y

x
0

2

3
0

y

x

1 1

• 3x � 4y � z � 10

x � 4z � 20

2x � y � 5z � 30

• 2x � y � 5z � 0

�x � 7y � 9

5x � 4y � 3z � �9

e12x � 11y � 140

7x � 9y � 20

e2x � 7y � 13

6x � 16y � 30
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97–100 ■ Graph the inequality.

97. 3x � y 
 6 98. y � x 2 � 3

99. x 2 � y 2 	 9 100. x � y 2 � 4

101–104 ■ The figure shows the graphs of the equations 
corresponding to the given inequalities. Shade the solution set 
of the system of inequalities.

101. 102.

103. 104.

4

40

y

x

1

1

0

y

x

• y � �2x

y 
 2x

y 
 � 
1
2 x � 2

• x � y � 2

y � x 
 2

x 
 3

1

1

0

y

x
11

0

y

x

e y � x � 1

x 
2 � y 

2 
 1
e y � x 

2 � 3x

y 
 1
3 x � 1

105–108 ■ Graph the solution set of the system of inequalities.
Find the coordinates of all vertices, and determine whether 
the solution set is bounded or unbounded.

105. 106.

107. 108.

109–110 ■ Solve for x, y, and z in terms of a, b, and c.

109.

110.

111. For what values of k do the following three lines have a
common point of intersection?

112. For what value of k does the following system have
infinitely many solutions?

• kx � y � z � 0

x � 2y � kz � 0

�x � 3z � 0

 y � x � 2k

 kx � y � 0

 x � y � 12

1a � b, b � c, c � 0 2•ax � by � cz � a � b � c

bx � by � cz � c

cx � cy � cz � c

•�x � y � z � a

x � y � z � b

x � y � z � c

• x � 4

x � y � 24

x 
 2y � 12

• x � 0, y � 0

x � 2y 
 12

y 
 x � 4

e y � x 
2 � 4

y � 20
e x 

2 � y 
2 � 9

x � y � 0
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9 Test

1–2 ■ A system of equations is given.

(a) Determine whether the system is linear or nonlinear.

(b) Find all solutions of the system.

1. 2.

3. Use a graphing device to find all solutions of the system correct to two decimal places.

4. In an airplane travels 600 km against the wind. It takes 50 min to travel 300 km
with the wind. Find the speed of the wind and the speed of the airplane in still air.

5. Determine whether each matrix is in reduced row-echelon form, row-echelon form, or
neither.

(a) (b) (c)

6. Use Gaussian elimination to find the complete solution of the system, or show that 
no solution exists.

(a) (b)

7. Use Gauss-Jordan elimination to find the complete solution of the system.

8. Anne, Barry, and Cathy enter a coffee shop. Anne orders two coffees, one juice, and 
two donuts, and pays $6.25. Barry orders one coffee and three donuts, and pays $3.75.
Cathy orders three coffees, one juice, and four donuts, and pays $9.25. Find the price 
of coffee, juice, and donuts at this coffee shop.

9. Let

Carry out the indicated operation, or explain why it cannot be performed.

(a) A � B (b) AB (c) BA � 3B (d) CBA

(e) A�1 (f) B�1 (g) det(B) (h) det(C)

10. (a) Write a matrix equation equivalent to the following system.

(b) Find the inverse of the coefficient matrix, and use it to solve the system.

e4x � 3y � 10

3x � 2y � 30

A � c2 3

2 4
d   B � £ 2 4

�1 1

3 0

§   C � £ 1 0 4

�1 1 2

0 1 3

§

• x � 3y � z � 0

3x � 4y � 2z � �1

�x � 2y � 1

•2x � 3y � z � 3

x � 2y � 2z � �1

4x � y � 5z � 4

• x � y � 2z � 0

2x � 4y � 5z � �5

2y � 3z � 5

£1 1 0

0 0 1

0 1 3

§≥ 1 0 �1 0 0

0 1 3 0 0

0 0 0 1 0

0 0 0 0 1

¥c1 2 4 �6

0 1 �3 0
d

2 
1
2  h

e x � 2y � 1

y � x 
3 � 2x 

2

e6x � y 
2 � 10

3x � y � 5
e x � 3y � 7

5x � 2y � �4
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11. Only one of the following matrices has an inverse. Find the determinant of each matrix,
and use the determinants to identify the one that has an inverse. Then find the inverse.

12. Solve using Cramer’s Rule:

13. Find the partial fraction decomposition of the rational function.

(a) (b)

14. Graph the solution set of the system of inequalities. Label the vertices with their 
coordinates.

(a) (b) e x 
2 � y 
 5

y 
 2x � 5
•2x � y 
 8

x � y � �2

x � 2y � 4

2x � 3

x 
3 � 3x

4x � 11x � 1 2 21x � 2 2

•2x � z � 14

3x � y � 5z � 0

4x � 2y � 3z � �2

A � £1 4 1

0 2 0

1 0 1

§   B � £ 1 4 0

0 2 0

�3 0 1

§
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735

Focus on Modeling

Linear Programming

Linear programming is a modeling technique used to determine the optimal allo-
cation of resources in business, the military, and other areas of human endeavor. For
example, a manufacturer who makes several different products from the same raw
materials can use linear programming to determine how much of each product should
be produced to maximize the profit. This modeling technique is probably the most
important practical application of systems of linear inequalities. In 1975 Leonid Kan-
torovich and T. C. Koopmans won the Nobel Prize in economics for their work in the
development of this technique.

Although linear programming can be applied to very complex problems with hun-
dreds or even thousands of variables, we consider only a few simple examples to
which the graphical methods of Section 9.9 can be applied. (For large numbers of
variables, a linear programming method based on matrices is used.) Let’s examine a
typical problem.

Example 1 Manufacturing for Maximum Profit

A small shoe manufacturer makes two styles of shoes: oxfords and loafers. Two
machines are used in the process: a cutting machine and a sewing machine. Each
type of shoe requires 15 min per pair on the cutting machine. Oxfords require
10 min of sewing per pair, and loafers require 20 min of sewing per pair. Because
the manufacturer can hire only one operator for each machine, each process is
available for just 8 hours per day. If the profit is $15 on each pair of oxfords and
$20 on each pair of loafers, how many pairs of each type should be produced per
day for maximum profit?

Solution First we organize the given information into a table. To be consistent,
let’s convert all times to hours.

Oxfords Loafers Time available

Time on cutting machine (h) 8

Time on sewing machine (h) 8

Profit $15 $20

1
3

1
6

1
4

1
4

We describe the model and solve the problem in four steps.

CHOOSING THE VARIABLES To make a mathematical model, we first give
names to the variable quantities. For this problem we let

FINDING THE OBJECTIVE FUNCTION Our goal is to determine which values for
x and y give maximum profit. Since each pair of oxfords generates $15 profit and

y � number of pairs of loafers made daily

x � number of pairs of oxfords made daily

Because loafers produce more 
profit per pair, it would seem best to
manufacture only loafers. Surprisingly,
this does not turn out to be the most
profitable solution.
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736 CHAPTER 9 Systems of Equations and Inequalities

each pair of loafers $20, the total profit is given by

This function is called the objective function.

GRAPHING THE FEASIBLE REGION The larger x and y are, the greater the profit.
But we cannot choose arbitrarily large values for these variables, because of the 
restrictions, or constraints, in the problem. Each restriction is an inequality in the
variables.

In this problem the total number of cutting hours needed is . Since only 
8 hours are available on the cutting machine, we have

Similarly, by considering the amount of time needed and available on the sewing
machine, we get

We cannot produce a negative number of shoes, so we also have

Thus, x and y must satisfy the constraints

If we multiply the first inequality by 4 and the second by 6, we obtain the simplified
system

The solution of this system (with vertices labeled) is sketched in Figure 1. The only
values that satisfy the restrictions of the problem are the ones that correspond to
points of the shaded region in Figure 1. This is called the feasible region for the
problem.

FINDING MAXIMUM PROFIT As x or y increases, profit increases as well. Thus, it
seems reasonable that the maximum profit will occur at a point on one of the outside
edges of the feasible region, where it’s impossible to increase x or y without going
outside the region. In fact, it can be shown that the maximum value occurs at a vertex.
This means that we need to check the profit only at the vertices. The largest value of
P occurs at the point , where P � $560. Thus, the manufacturer should make
16 pairs of oxfords and 16 pairs of loafers, for a maximum daily profit of $560.

116, 16 2

µ x � y � 32

x � 2y � 48

x � 0

y � 0

µ 1
4 x � 1

4 y � 8
1
6 x � 1

3 y � 8

x � 0

y � 0

x � 0  and  y � 0

1
6 x � 1

3 y � 8

1
4 x � 1

4 y � 8

1
4 x � 1

4 y

P � 15x � 20y
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y

x10

10

x+y=32

x+2y=48

(0, 24)

(0, 0) (32, 0)

(16, 16)

Figure 1

Vertex P � 15x � 20y

0

15132 2 � 2010 2   � $480132,  0 2 15116 2 � 20116 2 � $560116,  16 2 1510 2  � 20124 2 � $48010,  24 210,  0 2
Maximum profit

■
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The linear programming problems that we consider all follow the pattern of Ex-
ample 1. Each problem involves two variables. The problem describes restrictions,
called constraints, that lead to a system of linear inequalities whose solution is called
the feasible region. The function we wish to maximize or minimize is called the 
objective function. This function always attains its largest and smallest values at the
vertices of the feasible region. This modeling technique involves four steps, summa-
rized in the following box.

Linear Programming 737

Guidelines for Linear Programming

1. Choose the Variables. Decide what variable quantities in the problem
should be named x and y.

2. Find the Objective Function. Write an expression for the function we
want to maximize or minimize.

3. Graph the Feasible Region. Express the constraints as a system of 
inequalities and graph the solution of this system (the feasible region).

4. Find the Maximum or Minimum. Evaluate the objective function at
the vertices of the feasible region to determine its maximum or minimum
value.

Example 2 A Shipping Problem

A car dealer has warehouses in Millville and Trenton and dealerships in Camden
and Atlantic City. Every car sold at the dealerships must be delivered from one of
the warehouses. On a certain day the Camden dealers sell 10 cars, and the Atlantic
City dealers sell 12. The Millville warehouse has 15 cars available, and the Trenton
warehouse has 10. The cost of shipping one car is $50 from Millville to Camden,
$40 from Millville to Atlantic City, $60 from Trenton to Camden, and $55 from
Trenton to Atlantic City. How many cars should be moved from each warehouse to
each dealership to fill the orders at minimum cost?

Solution Our first step is to organize the given information. Rather than con-
struct a table, we draw a diagram to show the flow of cars from the warehouses to
the dealerships (see Figure 2 on the next page). The diagram shows the number of
cars available at each warehouse or required at each dealership and the cost of ship-
ping between these locations.

CHOOSING THE VARIABLES The arrows in Figure 2 indicate four possible
routes, so the problem seems to involve four variables. But we let

To fill the orders, we must have

12 � y � number of cars shipped from Trenton to Atlantic City

10 � x � number of cars shipped from Trenton to Camden

y � number of cars to be shipped from Millville to Atlantic City

x � number of cars to be shipped from Millville to Camden

Linear programming helps the
telephone industry determine the
most efficient way to route tele-
phone calls. The computerized rout-
ing decisions must be made very
rapidly so callers are not kept wait-
ing for connections. Since the data-
base of customers and routes is
huge, an extremely fast method for
solving linear programming prob-
lems is essential. In 1984 the 28-
year-old mathematician Narendra
Karmarkar, working at Bell Labs
in Murray Hill, New Jersey, discov-
ered just such a method. His idea is
so ingenious and his method so fast
that the discovery caused a sensa-
tion in the mathematical world. Al-
though mathematical discoveries
rarely make the news, this one was
reported in Time, on December 3,
1984. Today airlines routinely use
Karmarkar’s technique to minimize
costs in scheduling passengers,
flight personnel, fuel, baggage, and
maintenance workers.
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738 CHAPTER 9 Systems of Equations and Inequalities

So the only variables in the problem are x and y.

FINDING THE OBJECTIVE FUNCTION The objective of this problem is to mini-
mize cost. From Figure 2 we see that the total cost C of shipping the cars is

This is the objective function.

GRAPHING THE FEASIBLE REGION Now we derive the constraint inequalities
that define the feasible region. First, the number of cars shipped on each route can’t
be negative, so we have

Second, the total number of cars shipped from each warehouse can’t exceed the
number of cars available there, so

Simplifying the latter inequality, we get

The inequalities 10 � x � 0 and 12 � y � 0 can be rewritten as x 
 10 and 
y 
 12. Thus, the feasible region is described by the constraints

The feasible region is graphed in Figure 3.

µ x � y 
 15

x � y � 12

0 
 x 
 10

0 
 y 
 12

x � y � 12

�x � y 
 �12

22 � x � y 
 10

110 � x 2 � 112 � y 2 
 10

x � y 
 15

 10 � x � 0    12 � y � 0

 x � 0    y � 0

 � 1260 � 10x � 15y

 � 50x � 40y � 600 � 60x � 660 � 55y

 C � 50x � 40y � 60110 � x 2 � 55112 � y 2

Camden
Sell 10

Millville
15 cars

Atlantic City
Sell 12

Trenton
10 cars

$50

$40

Ship
x cars

Ship
10-x

cars

$60

$55

Ship
y cars

Ship
12-y

cars
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y

x

x+y=12

y=12

(0, 12)
(3, 12)

x+y=15

x=10

(10, 2)

(10, 5)

Figure 3

Figure 2
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FINDING MINIMUM COST We check the value of the objective function at each
vertex of the feasible region.

The lowest cost is incurred at the point . Thus, the dealer should ship

3 cars from Millville to Camden
12 cars from Millville to Atlantic City
7 cars from Trenton to Camden
0 cars from Trenton to Atlantic City ■

In the 1940s mathematicians developed matrix methods for solving linear pro-
gramming problems that involve more than two variables. These methods were first
used by the Allies in World War II to solve supply problems similar to (but, of course,
much more complicated than) Example 2. Improving such matrix methods is an ac-
tive and exciting area of current mathematical research.

Problems

1– 4 ■ Find the maximum and minimum values of the given objective function on the indi-
cated feasible region.

1. M � 200 � x � y 2.

3. P � 140 � x � 3y 4. Q � 70x � 82y

5. Making Furniture A furniture manufacturer makes wooden tables and chairs. The 
production process involves two basic types of labor: carpentry and finishing. A table
requires 2 hours of carpentry and 1 hour of finishing, and a chair requires 3 hours of 

µ x � 0, y � 0

x 
 10, y 
 20

x � y � 5

x � 2y 
 18

• x � 0, y � 0

2x � y 
 10

2x � 4y 
 28

y

x1

1

4

4

y=x
y

x0 4

2

5

N � 1
2 x � 1

4 y � 40

13,  12 2
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Vertex C � 1260 � 10x � 15y

1260 � 10110 2 � 1512 2   � $1130110,  2 2 1260 � 10110 2 � 1515 2   � $1085110,  5 2 1260 � 1013 2   � 15112 2 � $105013,  12 2 1260 � 1010 2   � 15112 2 � $108010,  12 2
Minimum cost
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carpentry and hour of finishing. The profit is $35 per table and $20 per chair. The 
manufacturer’s employees can supply a maximum of 108 hours of carpentry work and
20 hours of finishing work per day. How many tables and chairs should be made each
day to maximize profit?

6. A Housing Development A housing contractor has subdivided a farm into 100
building lots. He has designed two types of homes for these lots: colonial and ranch
style. A colonial requires $30,000 of capital and produces a profit of $4000 when sold.
A ranch-style house requires $40,000 of capital and provides an $8000 profit. If he has
$3.6 million of capital on hand, how many houses of each type should he build for max-
imum profit? Will any of the lots be left vacant?

7. Hauling Fruit A trucker hauls citrus fruit from Florida to Montreal. Each crate of 
oranges is 4 ft3 in volume and weighs 80 lb. Each crate of grapefruit has a volume of 
6 ft3 and weighs 100 lb. Her truck has a maximum capacity of 300 ft3 and can carry no
more than 5600 lb. Moreover, she is not permitted to carry more crates of grapefruit
than crates of oranges. If her profit is $2.50 on each crate of oranges and $4 on each
crate of grapefruit, how many crates of each fruit should she carry for maximum profit?

8. Manufacturing Calculators A manufacturer of calculators produces two models:
standard and scientific. Long-term demand for the two models mandates that the com-
pany manufacture at least 100 standard and 80 scientific calculators each day. However,
because of limitations on production capacity, no more than 200 standard and 170 sci-
entific calculators can be made daily. To satisfy a shipping contract, a total of at least
200 calculators must be shipped every day.

(a) If the production cost is $5 for a standard calculator and $7 for a scientific one,
how many of each model should be produced daily to minimize this cost?

(b) If each standard calculator results in a $2 loss but each scientific one produces a 
$5 profit, how many of each model should be made daily to maximize profit?

9. Shipping Stereos An electronics discount chain has a sale on a certain brand of
stereo. The chain has stores in Santa Monica and El Toro and warehouses in Long
Beach and Pasadena. To satisfy rush orders, 15 sets must be shipped from the ware-
houses to the Santa Monica store, and 19 must be shipped to the El Toro store. The cost
of shipping a set is $5 from Long Beach to Santa Monica, $6 from Long Beach to El
Toro, $4 from Pasadena to Santa Monica, and $5.50 from Pasadena to El Toro. If the
Long Beach warehouse has 24 sets and the Pasadena warehouse has 18 sets in stock,
how many sets should be shipped from each warehouse to each store to fill the orders at
a minimum shipping cost?

10. Delivering Plywood A man owns two building supply stores, one on the east side 
and one on the west side of a city. Two customers order some -inch plywood. Customer
A needs 50 sheets and customer B needs 70 sheets. The east-side store has 80 sheets and
the west-side store has 45 sheets of this plywood in stock. The east-side store’s delivery
costs per sheet are $0.50 to customer A and $0.60 to customer B. The west-side store’s
delivery costs per sheet are $0.40 to A and $0.55 to B. How many sheets should be
shipped from each store to each customer to minimize delivery costs?

11. Packaging Nuts A confectioner sells two types of nut mixtures. The standard-
mixture package contains 100 g of cashews and 200 g of peanuts and sells for $1.95.
The deluxe-mixture package contains 150 g of cashews and 50 g of peanuts and sells for
$2.25. The confectioner has 15 kg of cashews and 20 kg of peanuts available. Based on
past sales, he needs to have at least as many standard as deluxe packages available. 
How many bags of each mixture should he package to maximize his revenue?

12. Feeding Lab Rabbits A biologist wishes to feed laboratory rabbits a mixture of two
types of foods. Type I contains 8 g of fat, 12 g of carbohydrate, and 2 g of protein per
ounce. Type II contains 12 g of fat, 12 g of carbohydrate, and 1 g of protein per ounce.

1
2

1
2
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Type I costs $0.20 per ounce and type II costs $0.30 per ounce. The rabbits each receive
a daily minimum of 24 g of fat, 36 g of carbohydrate, and 4 g of protein, but get no
more than 5 oz of food per day. How many ounces of each food type should be fed to
each rabbit daily to satisfy the dietary requirements at minimum cost?

13. Investing in Bonds A woman wishes to invest $12,000 in three types of bonds:
municipal bonds paying 7% interest per year, bank investment certificates paying 8%,
and high-risk bonds paying 12%. For tax reasons, she wants the amount invested in 
municipal bonds to be at least three times the amount invested in bank certificates. To
keep her level of risk manageable, she will invest no more than $2000 in high-risk
bonds. How much should she invest in each type of bond to maximize her annual inter-
est yield? [Hint: Let x � amount in municipal bonds and y � amount in bank
certificates. Then the amount in high-risk bonds will be 12,000 � x � y.]

14. Annual Interest Yield Refer to Problem 13. Suppose the investor decides to 
increase the maximum invested in high-risk bonds to $3000 but leaves the other condi-
tions unchanged. By how much will her maximum possible interest yield increase?

15. Business Strategy A small software company publishes computer games and 
educational and utility software. Their business strategy is to market a total of 36 new
programs each year, with at least four of these being games. The number of utility 
programs published is never more than twice the number of educational programs. On
average, the company makes an annual profit of $5000 on each computer game, $8000
on each educational program, and $6000 on each utility program. How many of each
type of software should they publish annually for maximum profit?

16. Feasible Region All parts of this problem refer to the following feasible region and
objective function.

(a) Graph the feasible region.

(b) On your graph from part (a), sketch the graphs of the linear equations obtained by
setting P equal to 40, 36, 32, and 28.

(c) If we continue to decrease the value of P, at which vertex of the feasible region will
these lines first touch the feasible region?

(d) Verify that the maximum value of P on the feasible region occurs at the vertex you
chose in part (c).

P � x � 4y

µ x � 0

x � y

x � 2y 
 12

x � y 
 10
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