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CHAPTER 8 Polar Coordinates and Vectors 581

Chapter Overview

In this chapter we study polar coordinates, a new way of describing the location of
points in a plane.

A coordinate system is a method for specifying the location of a point in the plane.
We are familiar with rectangular (or Cartesian) coordinates. In rectangular coordi-
nates the location of a point is given by an ordered pair , which gives the dis-
tance of the point to two perpendicular axes. Using rectangular coordinates is like
describing a location in a city by saying that it’s at the corner of 2nd Street and 4th
Avenue. But we might also describe this same location by saying that it’s miles
northeast of City Hall. So instead of specifying the location with respect to a grid of
streets and avenues, we specify it by giving its distance and direction from a fixed ref-
erence point. That is what we do in the polar coordinate system. In polar coordinates
the location of a point is given by an ordered pair where r is the distance from
the origin (or pole) and u is the angle from the positive x-axis (see the figure below).

Why do we study different coordinate systems? Because certain curves are more
naturally described in one coordinate system rather than the other. In rectangular co-
ordinates we can give simple equations for lines, parabolas, or cubic curves, but the
equation of a circle is rather complicated (and it is not a function). In polar coordi-
nates we can give simple equations for circles, ellipses, roses, and figure 8’s—curves
that are difficult to describe in rectangular coordinates. So, for example, it is more
natural to describe a planet’s path around the sun in terms of distance from the sun
and angle of travel—in other words, in polar coordinates. We will also give polar rep-
resentations of complex numbers. As you will see, it is easy to multiply complex
numbers if they are written in polar form.

In this chapter we also use coordinates to describe directed quantities, or vectors.
When we talk about temperature, mass, or area, we need only one number. For ex-
ample, we say the temperature is 70�F. But quantities such as velocity or force are 
directed quantities, because they involve direction as well as magnitude. Thus we say
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582 CHAPTER 8 Polar Coordinates and Vectors

SUGGESTED TIME 

AND EMPHASIS 

1 class.
Essential material.

POINT TO STRESS

1. The relationships between rec-
tangular and polar coordinates.

2. Converting equations into
different coordinate systems.

that a boat is sailing at 10 knots to the northeast. We can also express this graphically
by drawing an arrow of length 10 in the direction of travel. The velocity can be com-
pletely described by the displacement of the arrow from tail to head, which we ex-
press as the vector (see the figure).

In the Focus on Modeling (page 630) we will see how polar coordinates are used
to draw a (flat) map of a (spherical) world. In the Discovery Project on page 626 we
explore how an analysis of the vector forces of wind and current can be used to nav-
igate a sailboat.

8.1 Polar Coordinates

In this section we define polar coordinates, and we learn how polar coordinates are
related to rectangular coordinates.

Definition of Polar Coordinates

The polar coordinate system uses distances and directions to specify the location of
a point in the plane. To set up this system, we choose a fixed point O in the plane
called the pole (or origin) and draw from O a ray (half-line) called the polar axis as
in Figure 1. Then each point P can be assigned polar coordinates where

We use the convention that u is positive if measured in a counterclockwise direction
from the polar axis or negative if measured in a clockwise direction. If r is negative,
then is defined to be the point that lies units from the pole in the direction
opposite to that given by u (see Figure 2).

Example 1 Plotting Points in Polar Coordinates

Plot the points whose polar coordinates are given.

(a) (b) (c) (d)

Solution The points are plotted in Figure 3. Note that the point in part (d) lies 
4 units from the origin along the angle 5p/4, because the given value of r is negative.

Figure 3 ■
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ALTERNATE EXAMPLE 1
Plot the points whose polar
coordinates are given:

(a) (1, p/6)
(b) (1/2, 5p/6)
(c) (-4, 101p/2)

ANSWER
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CHAPTER 8 Polar Coordinates and Vectors 583

IN-CLASS MATERIALS

Begin with an intuitive definition
of polar coordinates and then
derive the algebraic formulas,
noting that the graph of a polar
function need not pass the
Vertical Line Test.

ALTERNATE EXAMPLE 2
Find rectangular coordinates for
the point that has polar 

coordinates .

ANSWER

a- 3

2
, 

313

2
b

a3, 
2p

3
b

Note that the coordinates and represent the same point, as shown
in Figure 4. Moreover, because the angles u � 2np (where n is any integer) all have
the same terminal side as the angle u, each point in the plane has infinitely many rep-
resentations in polar coordinates. In fact, any point can also be represented by

for any integer n.

Figure 4

Example 2 Different Polar Coordinates for the Same Point

(a) Graph the point with polar coordinates .

(b) Find two other polar coordinate representations of P with r � 0, and two with 
r � 0.

Solution

(a) The graph is shown in Figure 5(a).

(b) Other representations with r � 0 are

Add 2p to u

Add �2p to u

Other representations with r � 0 are

Replace r by �r and add p to u

Replace r by �r and add �p to u

The graphs in Figure 5 explain why these coordinates represent the same point.

Figure 5 ■
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SECTION 8.1 Polar Coordinates 583

DRILL QUESTION

Convert the equation 
r sin u = 3r cos u + 2 to polar
form.

Answer

y = 3x + 2
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584 CHAPTER 8 Polar Coordinates and Vectors

EXAMPLES
Coordinate conversion:

Rectangular (8,16) is the same 
as polar 

Rectangular is the 
same as polar .

Polar is the same as 
rectangular .

Polar (7, 10) is (approximately) 
the same as rectangular 
(-5.8735, -3.8081).

ALTERNATE EXAMPLE 3
Find the rectangular coordinates
for the point whose polar 

coordinates are . 

ANSWER
The rectangular coordinates for 
the given point are (0, -4)

ALTERNATE EXAMPLE 4
Find two polar coordinates for the
point that has rectangular
coordinates (-7, -7).

ANSWER

a712, -
3p

4
b , a -712, -

p

4
b

a -4, 
5p

2
b

(213, 2)
A4, 13p

6 B
A10, -p3 B

(5, -513)

(815, 1.107).

IN-CLASS MATERIALS

Point out how some equations are simpler to consider in rectangular coordinates (y = ln x is easier than
r sin u = ln r + ln cos u) but some equations are simpler in polar coordinates (r = u, the simple spiral,
is much easier than You can foreshadow Chapter 10 at this point, pointing
out that there are curves called rotated ellipses, hyperbolas, and parabolas, that turn out to be very nice
when considered as polar equations.

;2x2 + y2 = tan- 1 ( y/x)).

Relationship between Polar 

and Rectangular Coordinates

Situations often arise in which we need to consider polar and rectangular coordinates
simultaneously. The connection between the two systems is illustrated in Figure 6,
where the polar axis coincides with the positive x-axis. The formulas in the following
box are obtained from the figure using the definitions of the trigonometric functions
and the Pythagorean Theorem. (Although we have pictured the case where r � 0 and
u is acute, the formulas hold for any angle u and for any value of r.)

584 CHAPTER 8 Polar Coordinates and Vectors
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Figure 6
Relationship between Polar and Rectangular Coordinates

1. To change from polar to rectangular coordinates, use the formulas

2. To change from rectangular to polar coordinates, use the formulas

r 
2 � x 

2 � y 
2  and  tan u �

y

x
 1x � 0 2

x � r cos u  and  y � r sin u

Example 3 Converting Polar Coordinates 

to Rectangular Coordinates

Find rectangular coordinates for the point that has polar coordinates .

Solution Since r � 4 and u � 2p/3, we have

Thus, the point has rectangular coordinates . ■

Example 4 Converting Rectangular Coordinates 

to Polar Coordinates

Find polar coordinates for the point that has rectangular coordinates .

Solution Using x � 2, y � �2, we get

so or . Also

so u � 3p/4 or �p/4. Since the point lies in quadrant IV (see Figure 7),
we can represent it in polar coordinates as or . ■1�2 12,  3p/4 212 12,  �p/4 212,  �2 2
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y
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�2 12r � 2 12
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2
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CHAPTER 8 Polar Coordinates and Vectors 585

EXAMPLES
Equation conversion:

Rectangular x2 + y2 = 9 is the 
same as polar r = 9.

Polar tan u = 1 is the same as 
rectangular y = x.

IN-CLASS MATERIALS

Do several examples of converting Cartesian equations into polar equations, such as y2 = 4x to 
r = 4 csc u cot u, and of converting polar equations into Cartesian equations (the result of which
are sometimes implicit equations) such as r = 2 sec u to x = 2 and r = 2(1 + cos u) to
(x2 + y2 - 2x)2 = 4(x2 + y2).

Note that the equations relating polar and rectangular coordinates do not uniquely
determine r or u. When we use these equations to find the polar coordinates of a point,
we must be careful that the values we choose for r and u give us a point in the correct
quadrant, as we saw in Example 4.

Polar Equations

In Examples 3 and 4 we converted points from one coordinate system to the other.
Now we consider the same problem for equations.

Example 5 Converting an Equation from Rectangular 

to Polar Coordinates

Express the equation x 2 � 4y in polar coordinates.

Solution We use the formulas x � r cos u and y � r sin u.

Rectangular equation

Substitute x � r cos u, y � r sin u

Expand

Divide by r cos2u

Simplify ■

As Example 5 shows, converting from rectangular to polar coordinates is straight-
forward—just replace x by r cos u and y by r sin u, and then simplify. But converting
polar equations to rectangular form often requires more thought.

Example 6 Converting Equations from Polar 

to Rectangular Coordinates

Express the polar equation in rectangular coordinates. If possible, determine the
graph of the equation from its rectangular form.

(a) r � 5 sec u (b) r � 2 sin u (c) r � 2 � 2 cos u

Solution

(a) Since sec u � 1/cos u, we multiply both sides by cos u.

Multiply by cos u

Substitute x � r cos u

The graph of x � 5 is the vertical line in Figure 8.

 x � 5

 r cos u � 5

 r � 5 sec u

 r � 4 sec u tan u

 r � 4 
sin u

cos2u

 r 
2 cos2u � 4r sin u

 1r cos u 2 2 � 41r sin u 2
 x 

2 � 4y

SECTION 8.1 Polar Coordinates 585

x

y

0

x=5

Figure 8

ALTERNATE EXAMPLE 5
Convert the equation x = 1 to
polar form.

ANSWER
r = sec (u)

ALTERNATE EXAMPLE 6b
Express the polar equation 
r = 4 sin u in rectangular
coordinates.

ANSWER
x2 + (y - 2)2 = 4

ALTERNATE EXAMPLE 6c
Convert the equation r = 5 +
4 cos u to rectangular coordinates. 

ANSWER
(x2 + y2 - 4x)2 = 25(x2 + y2)

SAMPLE QUESTION

Text Question

Where do the conversion equa-
tions x = r cos u, y = r sin u
come from?

Answer

Several correct answers are
possible. Anything addressing the
definitions of sine and cosine, for
example, should be given credit.
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586 CHAPTER 8 Polar Coordinates and Vectors

586 CHAPTER 8 Polar Coordinates and Vectors

1–6 ■ Plot the point that has the given polar coordinates.

1. 2. 3.

4. 5. 6.

7–12 ■ Plot the point that has the given polar coordinates. Then
give two other polar coordinate representations of the point, one
with r � 0 and the other with r � 0.

7. 8. 9.

10. 11. 12.

13–20 ■ Determine which point in the figure, P, Q, R, or S, has
the given polar coordinates.

O

π

4

1
2

3
4

P

π

4

Q

R S

13,  1 21�5,  0 21�2,  �p/3 2
1�1,  7p/6 212,  3p/4 213,  p/2 2

1�5,  �17p/6 21�2,  4p/3 213,  �2p/3 2
16,  �7p/6 211,  0 214,  p/4 2

13. 14.

15. 16.

17. 18.

19. 20.

21–22 ■ A point is graphed in rectangular form. Find polar 
coordinates for the point, with r � 0 and 0 � u � 2p.

21. 22.

x

y

0

P

1

1

14,  103p/4 21�4,  101p/4 2
1�4,  23p/4 214,  �23p/4 2
1�4,  13p/4 21�4,  �p/4 2
14,  �3p/4 214,  3p/4 2

(b) We multiply both sides of the equation by r, because then we can use the 
formulas r 2 � x 2 � y 2 and r sin u � y.

Multiply by r

r2 � x2 � y2 and r sin u � y

Subtract 2y

Complete the square in y

This is the equation of a circle of radius 1 centered at the point . It is
graphed in Figure 9.

(c) We first multiply both sides of the equation by r:

Using r 2 � x 2 � y 2 and x � r cos u, we can convert two of the three terms in
the equation into rectangular coordinates, but eliminating the remaining r
requires more work:

r 2 � x 2 � y 2 and r cos u � x

Subtract 2x

Square both sides

r2 � x2 � y2

In this case, the rectangular equation looks more complicated than the polar
equation. Although we cannot easily determine the graph of the equation from
its rectangular form, we will see in the next section how to graph it using the
polar equation. ■

8.1 Exercises

 1x 
2 � y 

2 � 2x 2 2 � 41x 
2 � y 

2 2
 1x 

2 � y 
2 � 2x 2 2 � 4r 

2

 x 
2 � y 

2 � 2x � 2r

 x 
2 � y 

2 � 2r � 2x

r 
2 � 2r � 2r cos u

10,  1 2
 x 

2 � 1y � 1 2  2 � 1

 x 
2 � y 

2 � 2y � 0

 x 
2 � y 

2 � 2y

 r 
2 � 2r sin u

x

y

0 1

1

Figure 9

x

y

0

Q

1

1
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CHAPTER 8 Polar Coordinates and Vectors 587

SUGGESTED TIME 

AND EMPHASIS 

1 class. 
Essential material.

POINTS TO STRESS

1. Graphs in polar coordinates.
2. Tests for symmetry.
3. Using graphing devices to obtain polar graphs.

8.2 Graphs of Polar Equations

The graph of a polar equation consists of all points P that have at least one
polar representation whose coordinates satisfy the equation. Many curves that
arise in mathematics and its applications are more easily and naturally represented by
polar equations rather than rectangular equations.

A rectangular grid is helpful for plotting points in rectangular coordinates 
(see Figure 1(a) on the next page). To plot points in polar coordinates, it is conven-

1r,  u 2
r � f 1u 2

SECTION 8.2 Graphs of Polar Equations 587

23–24 ■ A point is graphed in polar form. Find its rectangular
coordinates.

23.

24.

25–32 ■ Find the rectangular coordinates for the point whose
polar coordinates are given.

25. 26.

27. 28.

29. 30.

31. 32.

33–40 ■ Convert the rectangular coordinates to polar 
coordinates with r � 0 and 0 � u � 2p.

33. 34.

35. 36.

37. 38.

39. 40.

41–46 ■ Convert the equation to polar form.

41. x � y 42. x 2 � y 2 � 9

10,  �13 21�6,  0 2
11,  �2 213,  4 2
1�16,  �12 2118,  18 2
13 13,  �3 21�1,  1 2

113,  �5p/3 216 12,  11p/6 2
10,  13p 215,  5p 2
1�1,  5p/2 2112,  �p/4 2
16,  2p/3 214,  p/6 2

O

S 5π

6

1

O

2π

3
_

R

1

43. y � x 2 44. y � 5

45. x � 4 46. x 2 � y 2 � 1

47–60 ■ Convert the polar equation to rectangular 
coordinates.

47. r � 7 48. u � p

49. r cos u � 6 50. r � 6 cos u

51. r 2 � tan u 52. r 2 � sin 2u

53. 54.

55. r � 1 � cos u 56.

57. r � 2 sec u 58. r � 2 � cos u

59. sec u � 2 60. cos 2u � 1

Discovery • Discussion

61. The Distance Formula in Polar Coordinates

(a) Use the Law of Cosines to prove that the distance 
between the polar points and is

(b) Find the distance between the points whose polar 
coordinates are and , using the 
formula from part (a).

(c) Now convert the points in part (b) to rectangular 
coordinates. Find the distance between them using 
the usual Distance Formula. Do you get the same 
answer?

11,  7p/6 213,  3p/4 2

d � 2r 
2
1 � r 

2
2 � 2r1r2 cos1u2 � u1 2

1r2,  u2 21r1,  u1 2

r �
4

1 � 2 sin u

r �
1

1 � sin u
r �

1

sin u � cos u
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588 CHAPTER 8 Polar Coordinates and Vectors

DRILL QUESTION

What is the polar equation of a
circle with radius 3 centered at the
origin?

Answer

r = 3

ALTERNATE EXAMPLE 1
Sketch the graph of the equation

.

ANSWER

1

B

r =
12u

IN-CLASS MATERIALS

After showing students how to graph polar functions on a calculator, give them a chance to experiment and
try to come up with interesting-looking polar graphs. Make sure they know that if their graphs have a lot of
cusps, it could be that their is set too large.¢t

ient to use a grid consisting of circles centered at the pole and rays emanating from
the pole, as in Figure 1(b). We will use such grids to help us sketch polar graphs.

Figure 1

In Examples 1 and 2 we see that circles centered at the origin and lines that pass
through the origin have particularly simple equations in polar coordinates.

Example 1 Sketching the Graph of a Polar Equation

Sketch the graph of the equation r � 3 and express the equation in rectangular 
coordinates.

Solution The graph consists of all points whose r-coordinate is 3, that is, all
points that are 3 units away from the origin. So the graph is a circle of radius 
3 centered at the origin, as shown in Figure 2.

Squaring both sides of the equation, we get

Square both sides

Substitute r2 � x2 � y2

So the equivalent equation in rectangular coordinates is x 2 � y 2 � 9. ■

In general, the graph of the equation r � a is a circle of radius centered at the
origin. Squaring both sides of this equation, we see that the equivalent equation in
rectangular coordinates is x 2 � y 2 � a 2.

Example 2 Sketching the Graph of a Polar Equation

Sketch the graph of the equation u � p/3 and express the equation in rectangular
coordinates.

Solution The graph consists of all points whose u-coordinate is p/3. This is the
straight line that passes through the origin and makes an angle of p/3 with the polar

0 a 0

x 
2 � y 

2 � 9

r 
2 � 32

(a) Grid for rectangular coordinates (b) Grid for polar coordinates

3π
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11 2 3 4 52 3 4 5 66
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4

C !C !3,3, @@
ππ

33
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ππ

4

π

6

π

4

π

3

5π

4

7π

4

A!A!6,6 @@
ππ

66

π

2

0
OO

π
x

y

0

P(_2,P(_2, 33))

11

22

33

44

55

11 2 3 4 52 3 4 5_55 _44 _33 _22 _11
_1_1
1

_2_2

_3_3

_4_4

_5_5

Q(4,Q(4, 22))

R(3,R(3, _5)_5)

588 CHAPTER 8 Polar Coordinates and Vectors

r==33

OO

3π

4

π

4

5π

4

7π

4

Figure 2
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CHAPTER 8 Polar Coordinates and Vectors 589

ALTERNATE EXAMPLE 3
Sketch the graph of the polar
equation r = -cos u by plotting
points as done in the text.

ANSWER

10.5

0.5

1

_1

_0.5

0.5 0_1

EXAMPLE
Do a problem where r = f(u) is graphed both as a function in rectangular coordinates and as a polar
function. For example, if r = (1.5)u we get the two graphs shown below.

1

2

_3 _2 _1 1

r=1.5¨, _3≤¨≤3

O

0

1

2

3

4

_3 _2 _1 1 2 3

r=1.5¨

¨

r

We plot these points in Figure 4 and then join them to sketch the curve. The graph
appears to be a circle. We have used values of u only between 0 and p, since the
same points (this time expressed with negative r-coordinates) would be obtained if
we allowed u to range from p to 2p.

In general, the graphs of equations of the form

are circles with radius centered at the points with polar coordinates and
, respectively.1a,  0 2

1a,  p/2 20 a 0
r � 2a sin u  and  r � 2a cos u

u 0 p/6 p/4 p/3 p/2 2p/3 3p/4 5p/6 p

r � 2 sin u 0 1 2 1 012131312

axis (see Figure 3). Note that the points on the line with r � 0 lie in quad-
rant I, whereas those with r � 0 lie in quadrant III. If the point lies on this
line, then

Thus, the rectangular equation of this line is ■

To sketch a polar curve whose graph isn’t as obvious as the ones in the preceding
examples, we plot points calculated for sufficiently many values of u and then join
them in a continuous curve. (This is what we did when we first learned to graph func-
tions in rectangular coordinates.)

Example 3 Sketching the Graph of a Polar Equation

Sketch the graph of the polar equation r � 2 sin u.

Solution We first use the equation to determine the polar coordinates of several
points on the curve. The results are shown in the following table.

y � 13 x.

y

x
� tan u � tan 

p

3
� 13

1x,  y 2
1r,  p/3 2

SECTION 8.2 Graphs of Polar Equations 589

Figure 3

2π

3

π

3

4π

3

5π

3

ππ

33

π

3
¨==

OO

The polar equation r � 2 sin u in 
rectangular coordinates is

(See Section 8.1, Example 6(b)). From
the rectangular form of the equation we
see that the graph is a circle of radius 1
centered at .10,  1 2

x 
2 � 1y � 1 2 2 � 1

Figure 4

r � 2 sin u ■
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590 CHAPTER 8 Polar Coordinates and Vectors

ALTERNATE EXAMPLE 4

Sketch the graph of .

ANSWER

ALTERNATE EXAMPLE 5
One of the figures below
represents the graph of the curve

.

(a) (b)

(c) (d)

ANSWER
(c)

y

x8

8

-8

-8

y

x8-8

-8

8

y

x

8

_8

π

6

7π

6

π

2

2π

y

x

8

_8

π

4

5π

4

3π

4

2π

r = 8 cos 2u

10.50_0.5

_1

_0.5

0.5

1

_1

r =
cos 3u

2

IN-CLASS MATERIALS

An interesting graph to look at is .

1_1

_1

1

O

r = cos 
u

2

Example 4 Sketching the Graph of a Polar Equation

Sketch the graph of r � 2 � 2 cos u.

Solution Instead of plotting points as in Example 3, we first sketch the graph 
of r � 2 � 2 cos u in rectangular coordinates in Figure 5. We can think of this
graph as a table of values that enables us to read at a glance the values of r that 
correspond to increasing values of u. For instance, we see that as u increases from 
0 to p/2, r (the distance from O) decreases from 4 to 2, so we sketch the corre-
sponding part of the polar graph in Figure 6(a). As u increases from p/2 to p,
Figure 5 shows that r decreases from 2 to 0, so we sketch the next part of the graph
as in Figure 6(b). As u increases from p to 3p/2, r increases from 0 to 2, as shown
in part (c). Finally, as u increases from 3p/2 to 2p, r increases from 2 to 4, as shown
in part (d). If we let u increase beyond 2p or decrease beyond 0, we would simply
retrace our path. Combining the portions of the graph from parts (a) through (d) of
Figure 6, we sketch the complete graph in part (e).

Figure 6 Steps in sketching r � 2 � 2 cos u ■

The curve in Figure 6 is called a cardioid because it is heart-shaped. In general,
the graph of any equation of the form

is a cardioid.

Example 5 Sketching the Graph of a Polar Equation

Sketch the curve r � cos 2u.

Solution As in Example 4, we first sketch the graph of r � cos 2u in rectangular
coordinates, as shown in Figure 7. As u increases from 0 to p/4, Figure 7 shows
that r decreases from 1 to 0, and so we draw the corresponding portion of the polar
curve in Figure 8 (indicated by �). As u increases from p/4 to p/2, the value of r
goes from 0 to �1. This means that the distance from the origin increases from 0 to 1,
but instead of being in quadrant I, this portion of the polar curve (indicated by �)
lies on the opposite side of the origin in quadrant III. The remainder of the curve is
drawn in a similar fashion, with the arrows and numbers indicating the order in

r � a11 	 cos u 2  or  r � a11 	 sin u 2

(a) (b) (c) (d) (e)

OO

π

22
¨̈=

¨̈=0 OO

π

22
¨̈=

¨̈==ππ OO

33ππ

22
¨̈==

¨̈==ππ OOOO ¨=2π

33ππ

22
¨̈=

OO
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¨

r

0 3π

2

π

2
π 2π

Figure 5

r � 2 � 2 cos u

The polar equation r � 2 � 2 cos u in
rectangular coordinates is

(See Section 8.1, Example 6(c)). The
simpler form of the polar equation
shows that it is more natural to describe
cardioids using polar coordinates.

1x 
2 � y 

2 � 2x 2 2 � 41x 
2 � y 

2 2

Have the class try to figure out if, as , the curve will
get infinitely close to the curve r = 1, and if so, why. If
this curve is combined with the circle r = 1, the resulting
set of points is what topologists call “connected, but not
path-connected.” The set of points is not path-connected
because there is no path from the origin that touches the
outer circle. It is called “connected” because (to simplify
things somewhat) there is no curve that separates the two
components without touching either.”

u: q

57050_08_ch08_p580-633.qxd  08/04/2008  11:06 AM  Page 590



CHAPTER 8 Polar Coordinates and Vectors 591

EXAMPLE
Sketch a graph of the polar curve 
r = f(u) where f(u) is the function
whose representation in rectangu-
lar coordinates is given below.

ANSWER

O

(1, π/2)

(1, π)

¨

r
1

_1

0 π 3π
2

π
2 2π

which the portions are traced out. The resulting curve has four petals and is called a
four-leaved rose.

In general, the graph of an equation of the form

is an n-leaved rose if n is odd or a 2n-leaved rose if n is even (as in Example 5).

Symmetry

When graphing a polar equation, it’s often helpful to take advantage of symmetry. We
list three tests for symmetry; Figure 9 shows why these tests work.

r � a cos nu  or  r � a sin nu

Figure 7 Figure 8

Graph of r � cos 2u sketched Four-leaved rose r � cos 2u sketched 
in rectangular coordinates in polar coordinates ■

¨=0
¨=π

3π
4¨=

π
2¨=

¨=π
4

6

8

32

5

4

7

1

5π
4

3π
2

54

32

1

6 7

8

7π
4

r

1

π 2π0

_1

π
4

π
2

3π
4

¨

SECTION 8.2 Graphs of Polar Equations 591

Tests for Symmetry

1. If a polar equation is unchanged when we replace u by �u, then the graph
is symmetric about the polar axis (Figure 9(a)).

2. If the equation is unchanged when we replace r by �r, then the graph is
symmetric about the pole (Figure 9(b)).

3. If the equation is unchanged when we replace u by p� u, the graph is
symmetric about the vertical line u � p/2 (the y-axis) (Figure 9(c)).

Figure 9

O

(r, ¨)

(_r, ¨)

(a)  Symmetry about the polar axis (b)  Symmetry about the pole

O

(r, ¨)

(r, _¨)

_¨
¨

(c)  Symmetry about the line ¨= π
2

O

(r, ¨ )(r, π _ ¨)

π-¨
¨

π
2¨=
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ALTERNATE EXAMPLE 6
Sketch the graph of the equation

ANSWER

SAMPLE QUESTION

Text Question

Sketch the graph of r = cos u.

Answer

O

_1

1

_1 1

C

r = 1 - 2 cos u.

The graphs in Figures 2, 6(e), and 8 are symmetric about the polar axis. The graph
in Figure 8 is also symmetric about the pole. Figures 4 and 8 show graphs that are
symmetric about u � p/2. Note that the four-leaved rose in Figure 8 meets all three
tests for symmetry.

In rectangular coordinates, the zeros of the function correspond to the 
x-intercepts of the graph. In polar coordinates, the zeros of the function are
the angles u at which the curve crosses the pole. The zeros help us sketch the graph,
as illustrated in the next example.

Example 6 Using Symmetry to Sketch a Polar Graph

Sketch the graph of the equation r � 1 � 2 cos u.

Solution We use the following as aids in sketching the graph.

■ Symmetry Since the equation is unchanged when u is replaced by �u, the
graph is symmetric about the polar axis.

■ Zeros To find the zeros, we solve

■ Table of values As in Example 4, we sketch the graph of r � 1 � 2 cos u in
rectangular coordinates to serve as a table of values (Figure 10).

Now we sketch the polar graph of r � 1 � 2 cos u from u � 0 to u � p, and
then use symmetry to complete the graph in Figure 11. ■

The curve in Figure 11 is called a limaçon, after the Middle French word for snail.
In general, the graph of an equation of the form

or

is a limaçon. The shape of the limaçon depends on the relative size of a and b (see the
table on page 594).

Graphing Polar Equations with Graphing Devices

Although it’s useful to be able to sketch simple polar graphs by hand, we need a
graphing calculator or computer when the graph is as complicated as the one in Fig-
ure 12. Fortunately, most graphing calculators are capable of graphing polar equa-
tions directly.

r � a 	 b sin ur � a 	 b cos u

 u �
2p

3
, 

4p

3

 cos u � � 

1

2

 0 � 1 � 2 cos u

r � f 1u 2y � f 1x 2

592 CHAPTER 8 Polar Coordinates and Vectors

Figure 10

Figure 11

r � 1 � 2 cos u

¨

r

0 2π

3

π

3
π 2π

3

_1

2π

3
¨=

4π

3
¨=

Figure 12

r � sin u � sin315 u/2 2
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ALTERNATE EXAMPLE 7
For the graph of the equation 

determine the number 

of complete rotations required 
before the graph starts to repeat
itself.

ANSWER
2

r = cos 
u

2
,

Example 7 Drawing the Graph of a Polar Equation

Graph the equation .

Solution We need to determine the domain for u. So we ask ourselves: How
many complete rotations are required before the graph starts to repeat itself? The
graph repeats itself when the same value of r is obtained at u and u � 2np. Thus,
we need to find an integer n, so that

For this equality to hold, 4np/3 must be a multiple of 2p, and this first happens
when n � 3. Therefore, we obtain the entire graph if we choose values of u between
u � 0 and . The graph is shown in Figure 13.

■

Example 8 A Family of Polar Equations

Graph the family of polar equations r � 1 � c sin u for c � 3, 2.5, 2, 1.5, 1. 
How does the shape of the graph change as c changes?

Solution Figure 14 shows computer-drawn graphs for the given values of c. For
c � 1, the graph has an inner loop; the loop decreases in size as c decreases. When
c � 1, the loop disappears and the graph becomes a cardioid (see Example 4).

Figure 14 A family of limaçons r � 1 � c sin u in the viewing rectangle 3�2.5, 2.54 by 3�0.5, 4.54 ■

The following box gives a summary of some of the basic polar graphs used in 
calculus.

c=3.0 c=2.5 c=2.0 c=1.5 c=1.0

1

_1

_1 1

u � 0 � 213 2p � 6p

cos 
21u � 2np 2

3
� cos 

2u

3

r � cos12u/3 2

SECTION 8.2 Graphs of Polar Equations 593

Figure 13

r � cos12u/3 2
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594 CHAPTER 8 Polar Coordinates and Vectors

1–6 ■ Match the polar equation with the graphs labeled I–VI.
Use the table above to help you.

1. r � 3 cos u 2. r � 3

3. r � 2 � 2 sin u 4. r � 1 � 2 cos u

5. r � sin 3u 6. r � sin 4u

I II

1

1

III IV

V VI

3

1

1 3

1 3

8.2 Exercises

Some Common Polar Curves

Circles and Spiral

Limaçons

r � a 	 b sin u

r � a 	 b cos u

Orientation depends on 
the trigonometric function 
(sine or cosine) and the sign of b.

Roses

r � a sin nu

r � a cos nu

n-leaved if n is odd 

2n-leaved if n is even

Lemniscates
Figure-eight-shaped 
curves

1a � 0,  b � 0 2

r=a
circle

r=a ß ¨ 
circle

r=a ç ¨ 
circle

r=a¨
spiral

a<b
limaçon with
inner loop

a=b
cardioid

a>b
dimpled limaçon

a≥2b
convex  limaçon

r™=a™ ß 2¨
lemniscate

r™=a™ ç 2¨
lemniscate

r=a ç 2¨
4-leaved rose

r=a ç 3¨
3-leaved rose

r=a ç 4¨
8-leaved rose

r=a ç 5¨
5-leaved rose
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CHAPTER 8 Polar Coordinates and Vectors 595

7–14 ■ Test the polar equation for symmetry with respect to the
polar axis, the pole, and the line u � p/2.

7. r � 2 � sin u 8. r � 4 � 8 cos u

9. r � 3 sec u 10. r � 5 cos u csc u

11. 12.

13. r 2 � 4 cos 2u 14. r 2 � 9 sin u

15–36 ■ Sketch the graph of the polar equation.

15. r � 2 16. r � �1

17. u � �p/2 18. u � 5p/6

19. r � 6 sin u 20. r � cos u

21. r � �2 cos u 22. r � 2 sin u � 2 cos u

23. r � 2 � 2 cos u 24. r � 1 � sin u

25. 26. r � cos u � 1

27. r � u, u 
 0 (spiral)

28. r u � 1, u � 0 (reciprocal spiral)

29. r � sin 2u (four-leaved rose)

30. r � 2 cos 3u (three-leaved rose)

31. r 2 � cos 2u (lemniscate)

32. r 2 � 4 sin 2u (lemniscate)

33. r � 2 � sin u (limaçon)

34. r � 1 � 2 cos u (limaçon)

35. r � 2 � sec u (conchoid)

36. r � sin u tan u (cissoid)

37–40 ■ Use a graphing device to graph the polar equation.
Choose the domain of u to make sure you produce the entire
graph.

37. 38.

39. (nephroid)

40. (hippopede)

41. Graph the family of polar equations r � 1 � sin nu for 
n � 1, 2, 3, 4, and 5. How is the number of loops related to n?

42. Graph the family of polar equations r � 1 � c sin 2u for 
c � 0.3, 0.6, 1, 1.5, and 2. How does the graph change as 
c increases?

43–46 ■ Match the polar equation with the graphs labeled I–IV.
Give reasons for your answers.

43. 44. r � 1/1ur � sin1u/2 2

r � 21 � 0.8 sin2u

r � 1 � 2 sin1u/2 2
r � sin18u/5 2r � cos1u/2 2

r � �311 � sin u 2

r �
5

1 � 3 cos u
r �

4

3 � 2 sin u

45. r � u sin u 46.

47–50 ■ Sketch a graph of the rectangular equation. [Hint: First
convert the equation to polar coordinates.]

47.

48.

49.

50.

51. Show that the graph of r � a cos u � b sin u is a circle, and
find its center and radius.

52. (a) Graph the polar equation r � tan u sec u in the viewing
rectangle 3�3, 34 by 3�1, 94.

(b) Note that your graph in part (a) looks like a parabola
(see Section 2.5). Confirm this by converting the 
equation to rectangular coordinates.

Applications

53. Orbit of a Satellite Scientists and engineers often use
polar equations to model the motion of satellites in earth 
orbit. Let’s consider a satellite whose orbit is modeled by the
equation , where r is the distance in
miles between the satellite and the center of the earth and u
is the angle shown in the figure on the next page.

(a) On the same viewing screen, graph the circle r � 3960
(to represent the earth, which we will assume to be a
sphere of radius 3960 mi) and the polar equation of the
satellite’s orbit. Describe the motion of the satellite as u
increases from 0 to 2p.

r � 22500/ 14 � cos u 2

x 
2 � y 

2 � 1x 
2 � y 

2 � x 2 2
1x 

2 � y 
2 2 2 � x 

2 � y 
2

1x 
2 � y 

2 2 3 � 1x 
2 � y 

2 2 2
1x 

2 � y 
2 2 3 � 4x 

2y 
2

1 1

III

10

III IV

1

r � 1 � 3 cos13u 2

SECTION 8.2 Graphs of Polar Equations 595
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SUGGESTED TIME

AND EMPHASIS

class.

Recommended material.

ALTERNATE EXAMPLE 1
Graph the complex numbers 
z1 = 3 - 4i, z2 = -2i + 1.

ANSWER

r=3

O

3π

4

π

4

5π

4

7π

4

1
2 –1

POINTS TO STRESS

1. Three representations of a complex number: as a point, as a number a + bi, and in trigonometric form.
2. Multiplication and division of complex numbers in trigonometric form.
3. DeMoivre’s Theorem.

8.3 Polar Form of Complex Numbers; 
DeMoivre’s Theorem

In this section we represent complex numbers in polar (or trigonometric) form. This
enables us to find the nth roots of complex numbers. To describe the polar form of
complex numbers, we must first learn to work with complex numbers graphically.

Graphing Complex Numbers

To graph real numbers or sets of real numbers, we have been using the number line,
which has just one dimension. Complex numbers, however, have two components: a
real part and an imaginary part. This suggests that we need two axes to graph com-
plex numbers: one for the real part and one for the imaginary part. We call these the
real axis and the imaginary axis, respectively. The plane determined by these two
axes is called the complex plane. To graph the complex number a � bi, we plot the
ordered pair of numbers in this plane, as indicated in Figure 1.

Example 1 Graphing Complex Numbers

Graph the complex numbers z1 � 2 � 3i, z2 � 3 � 2i, and z1 � z2.

Solution We have . The graph is shown
in Figure 2. ■

z1 � z2 � 12 � 3i 2 � 13 � 2i 2 � 5 � i

1a,  b 2

Imaginary
axis

Real
axis

bi a+bi

a0

596 CHAPTER 8 Polar Coordinates and Vectors

(b) For what angle u is the satellite closest to the earth?
Find the height of the satellite above the earth’s surface
for this value of u.

54. An Unstable Orbit The orbit described in Exercise 53 is
stable because the satellite traverses the same path over and
over as u increases. Suppose that a meteor strikes the 
satellite and changes its orbit to

r �

22500 a 1 �
u

40
b

4 � cos u

¨

r

(a) On the same viewing screen, graph the circle r � 3960
and the new orbit equation, with u increasing from 0 to
3p. Describe the new motion of the satellite.

(b) Use the feature on your graphing calculator to
find the value of u at the moment the satellite crashes
into the earth.

Discovery • Discussion

55. A Transformation of Polar Graphs How are the graphs
of and 
related to the graph of r � 1 � sin u? In general, how is the
graph of related to the graph of ?

56. Choosing a Convenient Coordinate System Compare
the polar equation of the circle r � 2 with its equation in
rectangular coordinates. In which coordinate system is the
equation simpler? Do the same for the equation of the four-
leaved rose r � sin 2u. Which coordinate system would you
choose to study these curves?

57. Choosing a Convenient Coordinate System Compare
the rectangular equation of the line y � 2 with its polar equa-
tion. In which coordinate system is the equation simpler?
Which coordinate system would you choose to study lines?

r � f 1u 2r � f 1u � a 2
r � 1 � sin1u � p/3 2r � 1 � sin1u � p/6 2

TRACE

Figure 1

Im

Re

3i
z⁄=2+3i

z¤=3- 2i

z⁄+z¤=5+i2i

i

_i

_2i

2          4

Figure 2
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ALTERNATE EXAMPLE 2
Graph the set of complex numbers 

.

SAMPLE QUESTION

Text Question

Graph the following set of
complex numbers: 

Answer

ALTERNATE EXAMPLE 3
Calculate the moduli of the
complex numbers -7 + 24i and
40 + 9i.

ANSWER
25, 41

ALTERNATE EXAMPLE 4
Graph the set of complex numbers

.

ANSWER

i

10

Im

Re

-i

-1

D

|z|≤1

E = {z| |z| Ú 1}

Re

Im

1

1

{z| |z| = 1}

Re

Im

S = {a + bi | 2 … a … 3}

Example 2 Graphing Sets of Complex Numbers

Graph each set of complex numbers.

(a) (b)

Solution

(a) S is the set of complex numbers whose real part is nonnegative. The graph is
shown in Figure 3(a).

(b) T is the set of complex numbers for which the real part is less than 1 and the
imaginary part is nonnegative. The graph is shown in Figure 3(b).

■

Recall that the absolute value of a real number can be thought of as its distance
from the origin on the real number line (see Section 1.1). We define absolute value
for complex numbers in a similar fashion. Using the Pythagorean Theorem, we can
see from Figure 4 that the distance between a � bi and the origin in the complex
plane is . This leads to the following definition.2a 

2 � b 
2

Im

Re0

(b)

1

Im

Re0

(a)Figure 3

T � 5a � bi 0  a � 1, b 
 06S � 5a � bi 0  a 
 06

SECTION 8.3 Polar Form of Complex Numbers; DeMoivre’s Theorem 597

The modulus (or absolute value) of the complex number z � a � bi is

0 z 0 � 2a 
2 � b 

2

Im

Re

bi
a+bi

0 a

œ∑∑∑∑∑∑a™+b™

b

Figure 4

Example 3 Calculating the Modulus

Find the moduli of the complex numbers 3 � 4i and 8 � 5i.

Solution

■

Example 4 Absolute Value of Complex Numbers

Graph each set of complex numbers.

(a) @ (b) @
Solution

(a) C is the set of complex numbers whose distance from the origin is 1. Thus, C is
a circle of radius 1 with center at the origin, as shown in Figure 5.

0 z 0 � 16D � 5z0 z 0 � 16C � 5z

 0 8 � 5i 0 � 282 � 1�5 2 2 � 189

 0 3 � 4i 0 � 232 � 42 � 125 � 5

The plural of modulus is moduli.

Im

Re0_1

_i

i
C

|z |=1

1

Figure 5

EXAMPLES
Switching between forms:

■

■

■

■ (4 - 3i)5 = -3116 + 237i

3(cos 20° + i sin 20°) L 2.81907786 + 1.02606043i

4(cos 1 + i sin 1) L 2.161 + 3.366i

4acos 
5p

4
+ i sin 

5p

4
b = -212 - 212i
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ALTERNATE EXAMPLE 5
Write the complex number -1 - i
in trigonometric form.

ANSWER

ALTERNATE EXAMPLE 5b

Let 

and .

Find .

ANSWER

acos ap
12
b - i sin ap

12
bbz1

z2
=

4

9

z1

z2

z2 = 9acos 
p

3
+ i sin 

p

3
b

z1 = 4acos 
p

4
+ i sin 

p

4
b

12 acosa5p

4
b + i sin a5p

4
bb

IN-CLASS MATERIALS

Verify, using the multiplication of complex numbers in trigonometric form, that i2 = -1. This leads to an-
other way to view complex numbers, one which is more intuitively justifiable for some than allowing nega-
tive square roots. We define a “complex number” as a point in the plane where we want to define addition
in a certain way (that will parallel vector addition defined in the next section) and multiplication of quanti-
ties of the same magnitude to correspond to a rotation. The idea that the point (0, 1) times itself is (-1, 0) is
then a logical consequence of this definition of multiplication. Then, if we define the point (1, 0) to be “1”
and the point (0, 1) to be “i” we obtain i2 = -1. This is not violating the laws of conventional mathematics,
it is just a result of our definitions of operations on these point quantities. In the real world, it turns out
there are quantities (such as waveforms, impedance of an AC circuit, etc.) that are most usefully repre-
sented in this way.

The argument of z is not unique, but any two arguments of z differ by a multiple
of 2p.

Example 5 Writing Complex Numbers in Polar Form

Write each complex number in trigonometric form.

(a) 1 � i (b) (c) (d) 3 � 4i

Solution These complex numbers are graphed in Figure 8, which helps us find
their arguments.

Figure 8

Im

Re

i
1+i

10

¨

Im

Re

4i
3+4i

30

¨

Im

Re

œ∑3 i_1+œ∑3 i

_1 0

¨

Im

Re

_4i
_4 œ∑3-4i

_4 œ∑3
0

¨

(a) (b) (c) (d)

�413 � 4i�1 � 13i

(b) D is the set of complex numbers whose distance from the origin is less than or
equal to 1. Thus, D is the disk that consists of all complex numbers on and in-
side the circle C of part (a), as shown in Figure 6. ■

Polar Form of Complex Numbers

Let z � a � bi be a complex number, and in the complex plane let’s draw the line seg-
ment joining the origin to the point a � bi (see Figure 7). The length of this line seg-
ment is . If u is an angle in standard position whose terminal
side coincides with this line segment, then by the definitions of sine and cosine (see
Section 6.2)

so z � r cos u � ir sin u � r(cos u � i sin u). We have shown the following.

a � r cos u  and  b � r sin u

r � 0 z 0 � 2a 
2 � b 

2

598 CHAPTER 8 Polar Coordinates and Vectors

Im

Re0_1

_i

i
D

|z |≤1

1

Figure 6

Im

Re

bi
a+bi

a0

¨

r

Figure 7

Polar Form of Complex Numbers

A complex number z � a � bi has the polar form (or trigonometric form)

where and tan u � b/a. The number r is the modulus
of z, and u is an argument of z.

r � 0 z 0 � 2a 
2 � b 

2

z � r 1cos u � i sin u 2

DRILL QUESTION

Compute 

Answer

512 + 512 i13

(13 - i )10.
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(a) An argument is u � p/4 and . Thus

(b) An argument is u � 2p/3 and . Thus

(c) An argument is u � 7p/6 (or we could use u � �5p/6), and
. Thus

(d) An argument is and . So

■

The addition formulas for sine and cosine that we discussed in Section 7.2 greatly
simplify the multiplication and division of complex numbers in polar form. The fol-
lowing theorem shows how.

3 � 4i � 5 3cosAtan�1 
 
4
3B � i sinAtan�1 

 
4
3B 4

r � 232 � 42 � 5u � tan�1 
 
4
3

�4 13 � 4i � 8 a cos 
7p

6
� i sin 

7p

6
b

r � 148 � 16 � 8

�1 � 13 i � 2 a cos 
2p

3
� i sin 

2p

3
b

r � 11 � 3 � 2

1 � i � 12 a cos 
p

4
� i sin 

p

4
b

r � 11 � 1 � 12

SECTION 8.3 Polar Form of Complex Numbers; DeMoivre’s Theorem 599

 u � p
4

 tan u � 1
1 � 1

 u � 2p
3

 tan u �
13

�1
� �13

 u � 7p
6

 tan u �
�4

�4 13
�

1

13

 u � tan�1 
 
4
3

 tan u � 4
3

Multiplication and Division of Complex Numbers

If the two complex numbers z1 and z2 have the polar forms

then

Multiplication

Division 
z1

z2
�

r1

r2
3cos1u1 � u2 2 � i sin1u1 � u2 2 4  1z2 � 0 2

 z1z2 � r1r2 3cos1u1 � u2 2 � i sin1u1 � u2 2 4

 z1 � r11cos u1 � i sin u1 2  and  z2 � r21cos u2 � i sin u2 2

This theorem says:

To multiply two complex numbers, multiply the moduli and add the arguments.

To divide two complex numbers, divide the moduli and subtract the arguments.

■ Proof To prove the multiplication formula, we simply multiply the two com-
plex numbers.

In the last step we used the addition formulas for sine and cosine. ■

The proof of the division formula is left as an exercise.

 � r1r2 3cos1u1 � u2 2 � i sin1u1 � u2 2 4
 � r1r2 3cos u1 cos u2 � sin u1 sin u2 � i1sin u1 cos u2 � cos u1 sin u2 2 4

 z1z2 � r1r21cos u1 � i sin u1 2 1cos u2 � i sin u2 2
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ALTERNATE EXAMPLE 6

Let 

and .

Find .

ANSWER

 +  i sin a11p

30
b b

 z1z2 = 56 acos a11p

30
b

z1z2

z2 = 8acos 
p

5
+ i sin 

p

5
b

z1 = 7acos 
p

6
+ i sin 

p

6
b

Example 6 Multiplying and Dividing Complex Numbers

Let

Find (a) z1z2 and (b) z1/z2.

Solution

(a) By the multiplication formula

To approximate the answer, we use a calculator in radian mode and get

(b) By the division formula

Using a calculator in radian mode, we get the approximate answer:

■

DeMoivre’s Theorem

Repeated use of the multiplication formula gives the following useful formula for
raising a complex number to a power n for any positive integer n.

z1

z2
� 2

5 10.9659 � 0.2588i 2 � 0.3864 � 0.1035i

 � 
2

5
a cos 

p

12
� i sin 

p

12
b

 � 
2

5
c cos a� 

p

12
b � i sin a� 

p

12
b d

 
z1

z2
�

2

5
c cos ap

4
�
p

3
b � i sin ap

4
�
p

3
b d

z1z2 � 101�0.2588 � 0.9659i 2 � �2.588 � 9.659i

 � 10 a cos 
7p

12
� i sin 

7p

12
b

 z1z2 � 12 2 15 2 c cos ap
4

�
p

3
b � i sin ap

4
�
p

3
b d

z1 � 2 a cos 
p

4
� i sin 

p

4
b  and  z2 � 5 a cos 

p

3
� i sin 

p

3
b

600 CHAPTER 8 Polar Coordinates and Vectors

DeMoivre’s Theorem

If , then for any integer n

z 
n � r 

n1cos nu � i sin nu 2
z � r 1cos u � i sin u 2

This theorem says: To take the nth power of a complex number, we take the nth power
of the modulus and multiply the argument by n.

■ Proof By the multiplication formula

 � r 
21cos 2u � i sin 2u 2

 z 
2 � zz � r 

2 3cos1u � u 2 � i sin1u � u 2 4

Mathematics in 

the Modern World

Fractals

Many of the things we model in
this book have regular predictable
shapes. But recent advances in
mathematics have made it possible
to model such seemingly random
or even chaotic shapes as those of a
cloud, a flickering flame, a moun-
tain, or a jagged coastline. The 
basic tools in this type of modeling
are the fractals invented by the
mathematician Benoit Mandelbrot.
A fractal is a geometric shape built
up from a simple basic shape by
scaling and repeating the shape
indefinitely according to a given
rule. Fractals have infinite detail;
this means the closer you look, the
more you see. They are also self-
similar; that is, zooming in on a
portion of the fractal yields the
same detail as the original shape.
Because of their beautiful shapes,
fractals are used by movie makers
to create fictional landscapes and
exotic backgrounds.

Although a fractal is a complex
shape, it is produced according to
very simple rules (see page 605).
This property of fractals is ex-
ploited in a process of storing pic-
tures on a computer called fractal
image compression. In this process
a picture is stored as a simple basic
shape and a rule; repeating the
shape according to the rule pro-
duces the original picture. This is
an extremely efficient method of
storage; that’s how thousands of
color pictures can be put on a
single compact disc.

Bi
ll 

Ro
ss

/C
or

bi
s
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ALTERNATE EXAMPLE 7

Find .

ANSWER 

-
1

64

a1

2
+

1

2
ib12

Now we multiply z 2 by z to get

Repeating this argument, we see that for any positive integer n

A similar argument using the division formula shows that this also holds for negative
integers. ■

Example 7 Finding a Power Using DeMoivre’s Theorem

Find .

Solution Since , it follows from Example 5(a) that

So by DeMoivre’s Theorem,

■

nth Roots of Complex Numbers

An nth root of a complex number z is any complex number „ such that „ n � z.
DeMoivre’s Theorem gives us a method for calculating the nth roots of any complex
number.

 � 
25

210  a cos 
5p

2
� i sin 

5p

2
b �

1

32
 i

 a 1

2
�

1

2
 i b 10

� a 12

2
b 10 a cos 

10p

4
� i sin 

10p

4
b

1

2
�

1

2
 i �
12

2
 a cos 

p

4
� i sin 

p

4
b

1
2 � 1

2 i � 1
2 11 � i 2

A12 � 1
2 iB10

z 
n � r 

n1cos nu � i sin nu 2

 � r 
31cos 3u � i sin 3u 2

 z 
3 � z 

2z � r 
3 3cos12u � u 2 � i sin12u � u 2 4

SECTION 8.3 Polar Form of Complex Numbers; DeMoivre’s Theorem 601

nth Roots of Complex Numbers

If and n is a positive integer, then z has the n distinct
nth roots

for k � 0, 1, 2, . . . , n � 1.

„k � r 
1/n c cos a u � 2kp

n
b � i sin a u � 2kp

n
b d

z � r 1cos u � i sin u 2

■ Proof To find the nth roots of z, we need to find a complex number „ such that

Let’s write z in polar form:

One nth root of z is

„ � r 
1/n a cos 

u

n
� i sin 

u

n
b

z � r 1cos u � i sin u 2

„ 
n � z
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ALTERNATE EXAMPLE 8
Find the six sixth roots of

.

ANSWER

-
313

2
-

3

2
i, -3i, 

313

2
-

3

2
i

313

2
+

3

2
i, 3i, -

313

2
+

3

2
i, 

z = -729

IN-CLASS MATERIALS

Notice that we now have three distinct ways of representing the same quantity. Each has advantages and
disadvantages. For example, it is cumbersome to compute

but not too hard to compute

Similarly, it is annoying to divide

but it is not hard to divide
8(cos 4 + i sin 4)

4[cos (-1) + i sin (-1)]
= 2(cos 5 + i sin 5)

3 - 6i

4 + 2i
=

3

2
 i

3i + (13 + i) = 13 + 4i

3acos 
p

2
+ i sin 

p

2
b + 2acos 

p

6
+ i sin 

p

6
b = 119 (cos 1.162 + i sin 1.162)

since by DeMoivre’s Theorem, „ n � z. But the argument u of z can be replaced by 
u� 2kp for any integer k. Since this expression gives a different value of „ for k � 0,
1, 2, . . . , n � 1, we have proved the formula in the theorem. ■

The following observations help us use the preceding formula.

602 CHAPTER 8 Polar Coordinates and Vectors

1. The modulus of each nth root is r1/n.

2. The argument of the first root is u/n.

3. We repeatedly add 2p/n to get the argument of each successive root.

These observations show that, when graphed, the nth roots of z are spaced equally
on the circle of radius r1/n.

Example 8 Finding Roots of a Complex Number

Find the six sixth roots of z � �64, and graph these roots in the complex plane.

Solution In polar form, . Applying the formula for nth
roots with n � 6, we get

for k � 0, 1, 2, 3, 4, 5. Using 641/6 � 2, we find that the six sixth roots of �64 are

All these points lie on a circle of radius 2, as shown in Figure 9. ■

When finding roots of complex numbers, we sometimes write the argument u of the
complex number in degrees. In this case, the nth roots are obtained from the formula

for k � 0, 1, 2, . . . , n � 1.

„k � r 
1/n c cos a u � 360°k

n
b � i sin a u � 360°k

n
b d

 „5 � 641/6 a cos 
11p

6
� i sin 

11p

6
b � 13 � i

 „4 � 641/6 a cos 
3p

2
� i sin 

3p

2
b � �2i

 „3 � 641/6 a cos 
7p

6
� i sin 

7p

6
b � �13 � i

 „2 � 641/6 a cos 
5p

6
� i sin 

5p

6
b � �13 � i

 „1 � 641/6 a cos 
p

2
� i sin 

p

2
b � 2i

 „0 � 641/6 a cos 
p

6
� i sin 

p

6
b � 13 � i

„k � 641/6 c cos ap � 2kp

6
b � i sin ap � 2kp

6
b d

z � 641cos p � i sin p 2

Im

Re0 2

w‚

2i

_2i

_2

wfi

w¤

w‹

w⁄

w›

Figure 9

The six sixth roots of z � �64

We add 2p/6 � p/3 to each argument
to get the argument of the next root.

57050_08_ch08_p580-633.qxd  08/04/2008  11:06 AM  Page 602



CHAPTER 8 Polar Coordinates and Vectors 603

ALTERNATE EXAMPLE 9
Find the three cube roots of 8i.

ANSWER

ALTERNATE EXAMPLE 10
Solve the equation 

ANSWER

IN-CLASS MATERIALS

Ask the class, “What are the
square roots of 1?” Elicit the
answers , and draw them
this way:

Ask about the fourth roots of 1,
obtaining and , and draw
them as well:

_1

1

1 Re

Im

_1

; i;1

_1

1

1 Re

Im

_1

;1

-
313

2
-

3

2
i, -3i, 

313

2
-

3

2
i

313

2
+

3

2
i, 3i, -

313

2
+

3

2
i, 

z6 + 729 = 0.

-2i, -23 + i, 23 + i

Now ask about the third roots of 1 and fifth roots of 1. You will probably have to do these as an example on
the board. Draw them, and point out that the nth roots of one are always equally spaced around the unit circle.

Fifth roots of 1

_1

1

1 Re

Im

_1

Third roots of 1

_1

1

1 Re

Im

_1

SECTION 8.3 Polar Form of Complex Numbers; DeMoivre’s Theorem 603

1–8 ■ Graph the complex number and find its modulus.

1. 4i 2. �3i

3. �2 4. 6

5. 5 � 2i 6. 7 � 3i

7. 8.

9. 10.

11–12 ■ Sketch the complex number z, and also sketch 2z, �z,
and on the same complex plane.

11. z � 1 � i 12.

13–14 ■ Sketch the complex number z and its complex conju-
gate z on the same complex plane.

13. z � 8 � 2i 14. z � �5 � 6i

z � �1 � i13

1
2  
z

�12 � i 12

2

3 � 4i

5

�1 �
13

3
 i13 � i

15–16 ■ Sketch z1, z2, z1 � z2, and z1z2 on the same complex
plane.

15. z1 � 2 � i, z2 � 2 � i

16. z1 � �1 � i, z2 � 2 � 3i

17–24 ■ Sketch the set in the complex plane.

17.

18.

19. @ 20. @
21. @ 22. @
23.

24. 5z � a � bi 0 a 
 b6
5z � a � bi 0 a � b � 26

2 � 0 z 0 � 565z0 z 0 � 265z
0 z 0 
 165z0 z 0 � 365z

5z � a � bi 0 a � 1, b � 16
5z � a � bi 0 a � 0, b 
 06

Example 9 Finding Cube Roots of a Complex Number

Find the three cube roots of z � 2 � 2i, and graph these roots in the complex plane.

Solution First we write z in polar form using degrees. We have
and u � 45�. Thus

Applying the formula for nth roots (in degrees) with n � 3, we find the cube roots
of z are of the form

where k � 0, 1, 2. Thus, the three cube roots are

The three cube roots of z are graphed in Figure 10. These roots are spaced equally
on a circle of radius . ■

Example 10 Solving an Equation Using the nth Roots

Formula

Solve the equation z 6 � 64 � 0.

Solution This equation can be written as z 6 � �64. Thus, the solutions are the
sixth roots of �64, which we found in Example 8. ■

8.3 Exercises

12

 „2 � 12 1cos 255° � i sin 255° 2 � �0.366 � 1.366i

 „1 � 12 1cos 135° � i sin 135° 2 � �1 � i

 „0 � 12 1cos 15° � i sin 15° 2 � 1.366 � 0.366i

„k � A212B1/3 c cos a 45° � 360°k

3
b � i sin a 45° � 360°k

3
b d

z � 212 1cos 45° � i sin 45° 2
r � 222 � 22 � 212

1212 2 1/3 � 123/2 2 1/3 � 21/2 � 12

We add 360�/3 � 120� to each 
argument to get the argument of the
next root.

Im

Re0 œ∑2

w‚

œ∑2 i

_œ∑2 i

_œ∑2

w⁄

w¤

Figure 10

The three cube roots of z � 2 � 2i
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604 CHAPTER 8 Polar Coordinates and Vectors

25–48 ■ Write the complex number in polar form with 
argument u between 0 and 2p.

25. 1 � i 26. 27.

28. 1 � i 29. 30. �1 � i

31. �3i 32. 33. 5 � 5i

34. 4 35. 36. 8i

37. �20 38. 39. 3 � 4i

40. 41. 42.

43. 44. �3 � 3i 45. 2 � i

46. 47. 48. �pi

49–56 ■ Find the product z1z2 and the quotient z1/z2. Express
your answer in polar form.

49.

50.

51.

52.

53. ,

54. ,

55. ,

56. ,

57–64 ■ Write z1 and z2 in polar form, and then find the product
z1z2 and the quotients z1/z2 and 1/z1.

57.

58.

59.

60.

61. z1 � 5 � 5i, z2 � 4 62.

63. 64. z1 � 3 � 4i, z2 � 2 � 2i

65–76 ■ Find the indicated power using DeMoivre’s Theorem.

65. 66.

67. 68. 11 � i 2 81213 � 2i 2 5
11 � 13 i 2 511 � i 2 20

z1 � �20, z2 � 13 � i

z1 � 413 � 4i, z2 � 8i

z1 � �12 i, z2 � �3 � 313 i

z1 � 213 � 2i, z2 � �1 � i

z1 � 12 � 12 i, z2 � 1 � i

z1 � 13 � i, z2 � 1 � 13 i

 z2 � 1
5 1cos 155° � i sin 155° 2

 z1 � 4
5 1cos 25° � i sin 25° 2

 z2 � 251cos 150° � i sin 150° 2
 z1 � 41cos 200° � i sin 200° 2
 z2 � 3121cos 60° � i sin 60° 2
 z1 � 121cos 75° � i sin 75° 2
 z2 � 21cos 30° � i sin 30° 2
 z1 � 41cos 120° � i sin 120° 2
z1 � 7 a cos 

9p

8
� i sin 

9p

8
b , z2 � 2 a cos 

p

8
� i sin 

p

8
b

z1 � 3 a cos 
p

6
� i sin 

p

6
b , z2 � 5 a cos 

4p

3
� i sin 

4p

3
b

z1 � cos 
p

4
� i sin 

p

4
, z2 � cos 

3p

4
� i sin 

3p

4

z1 � cos p � i sin p, z2 � cos 
p

3
� i sin 

p

3

12 � 12 i3 � 13 i

4113 � i 2
211 � i 23i11 � i 2i12 � 2i 2

13 � i

413 � 4i

�3 � 313 i

213 � 2i

12 � 12 i1 � 13 i

69. 70.

71. 72.

73. 74.

75. 76.

77–86 ■ Find the indicated roots, and graph the roots in the
complex plane.

77. The square roots of 

78. The cube roots of 

79. The fourth roots of �81i 80. The fifth roots of 32

81. The eighth roots of 1 82. The cube roots of 1 � i

83. The cube roots of i 84. The fifth roots of i

85. The fourth roots of �1

86. The fifth roots of 

87–92 ■ Solve the equation.

87. z 4 � 1 � 0 88. z 8 � i � 0

89. 90. z 6 � 1 � 0

91. z 3 � 1 � �i 92. z 3 � 1 � 0

93. (a) Let where n is a positive

integer. Show that 1, „, „ 2, „ 3, . . . , „ n�1 are the n
distinct nth roots of 1.

(b) If z � 0 is any complex number and sn � z, show that
the n distinct nth roots of z are

Discovery • Discussion

94. Sums of Roots of Unity Find the exact values of all
three cube roots of 1 (see Exercise 93) and then add them.
Do the same for the fourth, fifth, sixth, and eighth roots of 1.
What do you think is the sum of the nth roots of 1, for any n?

95. Products of Roots of Unity Find the product of the
three cube roots of 1 (see Exercise 93). Do the same for the
fourth, fifth, sixth, and eighth roots of 1. What do you think
is the product of the nth roots of 1, for any n?

96. Complex Coefficients and the Quadratic Formula

The quadratic formula works whether the coefficients of the
equation are real or complex. Solve these equations using the
quadratic formula, and, if necessary, DeMoivre’s Theorem.

(a)

(b) z 2 � iz � 1 � 0

(c) z 
2 � 12 � i 2z � 1

4 i � 0

z 
2 � 11 � i 2z � i � 0

s, s„, s„ 
2, s„ 

3,  .  .  .  , s„ 
n�1

„ � cos 
2p
n

� i sin 
2p
n

z 
3 � 413 � 4i � 0

�16 � 1613i

413 � 4i

413 � 4i

11 � i 2�81213 � 2i 2�5

13 � 13 i 2 41�1 � i 2 7
a� 

1

2
�
13

2
 i b 1512 � 2i 2 8

113 � i 2�10a 12

2
�
12

2
 i b 12
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. . . .

. . . .

. . . .

As we continue calculating the iterates, one of two things will happen, depend-
ing on the value of c. Either the iterates z0, z1, z2, z3, . . . form a bounded set (that
is, the moduli of the iterates are all less than some fixed number K ), or else they
eventually grow larger and larger without bound. The calculations in the table on
page 606 show that for c � 0.1 � 0.2i, the iterates eventually stabilize at about
0.05 � 0.22i, whereas for c � 1 � i, the iterates quickly become so large that a
calculator can’t handle them.

Fractals

Fractals are geometric objects that exhibit more and more detail the more we
magnify them (see Mathematics in the Modern World on page 600). Many frac-
tals can be described by iterating functions of complex numbers. The most 
famous such fractal is illustrated in Figures 1 and 2. It is called the Mandelbrot
set, named after Benoit Mandelbrot, the mathematician who discovered it in the
1950s.

Here is how the Mandelbrot set is defined. Choose a complex number c, and
define the complex quadratic function

Starting with z0 � 0, we form the iterates of f as follows:

 z3 � f 1f 1f 10 222 � f 1c 
2 � c 2 � 1c 

2 � c 2 2 � c

 z2 � f 1f 10 22 � f 1c 2 � c 
2 � c

 z1 � f 10 2 � c

f 1z 2 � z 
2 � c

Figure 2

Detail from the Mandelbrot set

Figure 1

The Mandelbrot set

D I S C O V E R Y
P R O J E C T

SECTION 8.3 Polar Form of Complex Numbers; DeMoivre’s Theorem 605

See page 597 for the definition of 
modulus (plural moduli).
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The Mandelbrot set consists of those complex numbers c for which the 
iterates of are bounded. (In fact, for this function it turns out 
that if the iterates are bounded, the moduli of all the iterates will be less than
K � 2.) The numbers c that belong to the Mandelbrot set can be graphed in the
complex plane. The result is the black part in Figure 1. The points not in the
Mandelbrot set are assigned colors depending on how quickly the iterates be-
come unbounded.

The TI-83 program below draws a rough graph of the Mandelbrot set. The
program takes a long time to finish, even though it performs only 10 iterations
for each c. For some values of c, you actually have to do many more iterations to
tell whether the iterates are unbounded. (See, for instance, Problem 1(f) below.)
That’s why the program produces only a rough graph. But the calculator output
in Figure 3 is actually a good approximation.

PROGRAM:MANDLBRT

:ClrDraw

:AxesOff

:(Xmax-Xmin)/94�H

:(Ymax-Ymin)/62�V

:For(I,0,93)

:For(J,0,61)

:Xmin+I*H�X

:Ymin+J*V�Y

:X+Yi�C

:0�Z

:For(N,1,10)

:If abs(Z)�2

:Z2+C�Z

:End

:If abs(Z)�2

:Pt-On(real(C),imag(C))

:DispGraph

:End

:End

:StorePic 1 This stores the final image under “1” so
that it can be recalled later

If the iterates have modulus less than or
equal to 2, the point C is plotted

This “For” loop calculates 10 iterates, but
stops iterating if Z has modulus larger 
than 2

These two “For” loops find the complex
number associated with each pixel on the
screen

V is the vertical height of one pixel
H is the horizontal width of one pixel

Use the viewing rectangle 3�2, 14 by 3�1, 14 and make sure the calculator is in 
“a+bi” mode

f 1z 2 � z 
2 � c

606 CHAPTER 8 Polar Coordinates and Vectors

You can use your calculator to find
the iterates, just like in the Discovery
Project on page 233. With the TI-83,
first put the calculator into a+bi
mode. Then press the key and
enter the function Y1=X2+C. Now 
if c � 1 � i, for instance, enter the
following commands:

1-i�C

0�X

Y1�X

Press the key repeatedly to
get the list of iterates. (With this
value of c, you should end up with
the values in the right-hand column 
of the table.)

ENTER

Y=

Figure 3

fÓzÔ � z2 � 0.1 � 0.2i fÓzÔ � z2 � 1 � i

z1 � fÓz0Ô � .1 � .2i z1 � fÓz0Ô � 1 � i
z2 � fÓz1Ô � .07 � .24i z2 � fÓz1Ô � 1 � 3i
z3 � fÓz2Ô � .047 � .234i z3 � fÓz2Ô � �7 � 7i
z4 � fÓz3Ô � .048 � .222i z4 � fÓz3Ô � 1 � 97i
z5 � fÓz4Ô � .053 � .221i z5 � fÓz4Ô � �9407 � 193i
z6 � fÓz5Ô � .054 � .223i z6 � fÓz5Ô � 88454401 � 3631103i
z7 � fÓz6Ô � .053 � .224i z7 � fÓz6Ô � 7.8 � 1015 � 6.4 � 1014i
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CHAPTER 8 Polar Coordinates and Vectors 607

SUGGESTED TIME

AND EMPHASIS 

1 class. 
Essential material.

POINTS TO STRESS

1. The difference between a vector and a scalar.
2. Translational invariance of vectors, including the concept of standard position.
3. The geometric interpretation of vector addition and scalar multiplication.
4. The magnitude of a vector, its direction, and the resolution of a vector into its components.

SECTION 8.4 Vectors 607

1. Use your calculator as described in the margin on page 606 to decide whether
the complex number c is in the Mandelbrot set. (For part (f ), calculate at least
60 iterates.)

(a) c � 1 (b) c � �1

(c) c � �0.7 � 0.15i (d) c � 0.5 � 0.5i

(e) c � i (f) c � �1.0404 � 0.2509i

2. Use the MANDLBRT program with a smaller viewing rectangle to zoom in on
a portion of the Mandelbrot set near its edge. (Store the final image in a dif-
ferent location if you want to keep the complete Mandelbrot picture in “1.”)
Do you see more detail?

3. (a) Write a calculator program that takes as input a complex number c, iter-
ates the function a hundred times, and then gives the fol-
lowing output:

■ “UNBOUNDED AT N ”, if zN is the first iterate whose modulus is
greater than 2

■ “BOUNDED” if each iterate from z1 to z100 has modulus less than or
equal to 2

In the first case, the number c is not in the Mandelbrot set, and the 
index N tells us how “quickly” the iterates become unbounded. In the
second case, it is likely that c is in the Mandelbrot set.

(b) Use your program to test each of the numbers in Problem 1.

(c) Choose other complex numbers and use your program to test them.

f 1z 2 � z 
2 � c

8.4 Vectors

In applications of mathematics, certain quantities are determined completely by their
magnitude—for example, length, mass, area, temperature, and energy. We speak of a
length of 5 m or a mass of 3 kg; only one number is needed to describe each of these
quantities. Such a quantity is called a scalar.

On the other hand, to describe the displacement of an object, two numbers are re-
quired: the magnitude and the direction of the displacement. To describe the velocity
of a moving object, we must specify both the speed and the direction of travel. Quan-
tities such as displacement, velocity, acceleration, and force that involve magnitude
as well as direction are called directed quantities. One way to represent such quanti-
ties mathematically is through the use of vectors.

Geometric Description of Vectors

A vector in the plane is a line segment with an assigned direction. We sketch a vec-
tor as shown in Figure 1 with an arrow to specify the direction. We denote this 
vector by . Point A is the initial point, and B is the terminal point of the vectorAB

!

u=AB

A

B

Figure 1
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608 CHAPTER 8 Polar Coordinates and Vectors

EXAMPLES
Geometric and algebraic addition
and subtraction:

83, -29 - 8-5, -39 = 88, 19

0

1

_4 _2 2 6 84 x

y

_3

_1

_2

83, -29 - 8-5, -39 = 8-2, -59

_4

_3

_2

_1

0

_4 _2 2 x

y

_5

608 CHAPTER 8 Polar Coordinates and Vectors

. The length of the line segment AB is called the magnitude or length of the vec-
tor and is denoted by . We use boldface letters to denote vectors. Thus, we write

.
Two vectors are considered equal if they have equal magnitude and the same di-

rection. Thus, all the vectors in Figure 2 are equal. This definition of equality makes
sense if we think of a vector as representing a displacement. Two such displacements
are the same if they have equal magnitudes and the same direction. So the vectors in
Figure 2 can be thought of as the same displacement applied to objects in different
locations in the plane.

If the displacement is followed by the displacement , then the re-
sulting displacement is as shown in Figure 3. In other words, the single displace-
ment represented by the vector has the same effect as the other two displacements
together. We call the vector the sum of the vectors and and we write

. (The zero vector, denoted by 0, represents no displacement.)
Thus, to find the sum of any two vectors u and v, we sketch vectors equal to u and v
with the initial point of one at the terminal point of the other (see Figure 4(a)). If we
draw u and v starting at the same point, then u � v is the vector that is the diagonal
of the parallelogram formed by u and v, as shown in Figure 4(b).

If a is a real number and v is a vector, we define a new vector av as follows: The
vector av has magnitude and has the same direction as v if a � 0, or the op-
posite direction if a � 0. If a � 0, then av � 0, the zero vector. This process is called
multiplication of a vector by a scalar. Multiplying a vector by a scalar has the ef-
fect of stretching or shrinking the vector. Figure 5 shows graphs of the vector av for
different values of a. We write the vector v as �v. Thus, �v is the vector with
the same length as v but with the opposite direction.

The difference of two vectors u and v is defined by u � v � u � . Figure 6
shows that the vector u � v is the other diagonal of the parallelogram formed by u
and v.

1�v 2
1�1 2

0 a 0  0 v 0

v

u

u+v

v

u

u+v

(a) (b)
Figure 4

Addition of vectors

AC
!
� AB

!
� BC

! BC
!

AB
!

AC
!AC
!AC

! v � BC
!

u � AB
!

u � AB
! 0 AB

! 0
AB
!

v1
3_ _2v_v2vv1

2v

u+v

_v

v

u

uu-v

Figure 5

Multiplication of a vector by a scalar

Figure 6

Subtraction of vectors

Figure 2

A B

C

AB

BC
AC=AB+BC

Figure 3
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CHAPTER 8 Polar Coordinates and Vectors 609

ALTERNATE EXAMPLE 1a
Find the vector u with initial point

and terminal point (4, 8).

ANSWER

ALTERNATE EXAMPLE 1b
If the vector is
sketched with initial point (4, 5),
what is its terminal point? 

ANSWER
(8, 12)

v = 84, 79

a9

4
b

(-5, 4)

SAMPLE QUESTIONS

Text Question

What are the components of the vector from (3, 3) to (4, 4)?

Answer

81, 19

SECTION 8.4 Vectors 609

Vectors in the Coordinate Plane

So far we’ve discussed vectors geometrically. By placing a vector in a coordinate
plane, we can describe it analytically (that is, by using components). In Figure 7(a),
to go from the initial point of the vector v to the terminal point, we move a units to
the right and b units upward. We represent v as an ordered pair of real numbers.

where a is the horizontal component of v and b is the vertical component of v. Re-
member that a vector represents a magnitude and a direction, not a particular arrow
in the plane. Thus, the vector �a, b� has many different representations, depending on
its initial point (see Figure 7(b)).

Figure 7

Using Figure 8, the relationship between a geometric representation of a vector
and the analytic one can be stated as follows.

(a) (b)

a

bv

x

y

a

bv
a

bv

0x

y

a

bv

0

v � 8a,  b9

x⁄ x¤ x

y

v

P

Q

x¤-x⁄

y¤-y⁄

y⁄

y¤

0

Figure 8

Component Form of a Vector

If a vector v is represented in the plane with initial point and termi-
nal point , then

v � 8x2 � x1, y2 � y19
Q1x2, y2 2

P1x1, y1 2

Example 1 Describing Vectors in Component Form

(a) Find the component form of the vector u with initial point and terminal
point .

(b) If the vector v � �3, 7� is sketched with initial point , what is its terminal
point?

(c) Sketch representations of the vector w � �2, 3� with initial points at ,
, , and .

Solution

(a) The desired vector is

u � 83 � 1�2 2 , 7 � 59 � 85,  29

11,  4 21�2,  �1 212,  2 2 10,  0 2
12,  4 2

13,  7 2 1�2,  5 2

Note the distinction between the vector
�a, b� and the point .1a, b 2
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610 CHAPTER 8 Polar Coordinates and Vectors

DRILL QUESTION

What are the magnitude and direc-
tion of the vector 

Answer

Magnitude , direction 

ALTERNATE EXAMPLE 2ab
Find the magnitude of the vector

.

ANSWER
4

ALTERNATE EXAMPLE 2c
Find the magnitude of the vector

.

ANSWER
1

u = h 12

13
, 

5

13
i

u = 84, 09

p

4
312

3i + 3j?

IN-CLASS MATERIALS

Ask students to find r and s such that . Repeat for .
Ask students if there is a vector such that we cannot find r and s with .
Note that this kind of question becomes very important in linear algebra.

8x, y9 = r81, 19 + s80, 498x, y9
83, 29 = r81, 19 - s80, 4983, 29 = r81, 19 + s80, 49

610 CHAPTER 8 Polar Coordinates and Vectors

(b) Let the terminal point of v be . Then

So x � 2 � 3 and y � 4 � 7, or x � 5 and y � 11. The terminal point is
.

(c) Representations of the vector w are sketched in Figure 9. ■

We now give analytic definitions of the various operations on vectors that we have
described geometrically. Let’s start with equality of vectors. We’ve said that two 
vectors are equal if they have equal magnitude and the same direction. For the vec-
tors u � �a1, b1� and v � �a2, b2�, this means that a1 � a2 and b1 � b2. In other words,
two vectors are equal if and only if their corresponding components are equal. 
Thus, all the arrows in Figure 7(b) represent the same vector, as do all the arrows in
Figure 9.

Applying the Pythagorean Theorem to the triangle in Figure 10, we obtain the fol-
lowing formula for the magnitude of a vector.

15,  11 2
8x � 2, y � 49 � 83,  79
1x, y 2

x

y

20

4

w
w

w

w

Figure 9

x

y

a

b
v= a, b��

|v |=œ∑∑∑∑∑∑a™+b™

0

Figure 10

Magnitude of a Vector

The magnitude or length of a vector v � �a, b� is

0 v 0 � 2a 
2 � b 

2

Example 2 Magnitudes of Vectors

Find the magnitude of each vector.

(a) u � �2, �3� (b) v � �5, 0� (c) w � � �
Solution

(a)

(b)

(c) ■

The following definitions of addition, subtraction, and scalar multiplication of
vectors correspond to the geometric descriptions given earlier. Figure 11 shows how
the analytic definition of addition corresponds to the geometric one.

0 w 0 � 3 A35B2 � A45B2 � 3
9

25 � 16
25 � 1

0 v 0 � 252 � 02 � 125 � 5

0 u 0 � 222 � 1�3 2 2 � 113

3
5,  

4
5

u

v
u+v

b¤

b⁄

a¤a⁄

Figure 11

Algebraic Operations on Vectors

If u � �a1, b1� and v � �a2, b2�, then

 cu � 8ca1,  cb1�,  c � �

 u � v � 8a1 � a2,  b1 � b29
 u � v � 8a1 � a2,  b1 � b29
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CHAPTER 8 Polar Coordinates and Vectors 611

ALTERNATE EXAMPLE 3
If and ,
find 2u, -3v, and 3u - 2v.

ANSWER
(8, 10), (9, -12), (18, -23)

IN-CLASS MATERIALS

Go over the properties of vectors
from both algebraic and geometric
perspectives.

ALTERNATE EXAMPLE 4
If and ,
write 2u + 5v in terms of i and j.

ANSWER
-10i + 36j

v = 8-4, 69u = 85, 39

v = 8-3, 49u = 84, 59

IN-CLASS MATERIALS

Assume and are in standard position. Demonstrate that the vector can be viewed as the
vector with initial point and terminal point . Draw this picture in and (if you can) in .�3�2v1v2

v3 = v1 - v2v2v1

SECTION 8.4 Vectors 611

Example 3 Operations with Vectors

If u � �2, �3� and v � ��1, 2�, find u � v, u � v, 2u, �3v, and 2u � 3v.

Solution By the definitions of the vector operations, we have

■

The following properties for vector operations can be easily proved from the
definitions. The zero vector is the vector 0 � �0, 0�. It plays the same role for addi-
tion of vectors as the number 0 does for addition of real numbers.

2u � 3v � 282,  �39 � 38�1,  29 � 84,  �69 � 8�3,  69 � 81,  09

 �3v � �38�1,  29 � 83,  �69

 2u � 282,  �39 � 84,  �69

 u � v � 82,  �39 � 8�1,  29 � 83,  �59

 u � v � 82,  �39 � 8�1,  29 � 81,  �19

Properties of Vectors

Vector addition Multiplication by a scalar

u � v � v � u

u � 0 � u

1u � u

Length of a vector 0u � 0

c0 � 00 cu 0 � 0 c 0  0 u 0

u � 1�u2 � 0

1cd 2u � c1du 2 � d1cu 2

1c � d 2u � cu � duu � 1v � w2 � 1u � v 2 � w

c1u � v 2 � cu � cv

Vectors in Terms of i and j

The vector v � �a, b� can be expressed in terms of i and j by

v � 8a,  b9 � ai � bj

Example 4 Vectors in Terms of i and j

(a) Write the vector u � �5, �8� in terms of i and j.

(b) If u � 3i � 2 j and v � �i � 6 j, write 2u � 5v in terms of i and j.

Solution

(a) u � 5i � 1�8 2 j � 5i � 8j

A vector of length 1 is called a unit vector. For instance, in Example 2(c), the vec-
tor w � � � is a unit vector. Two useful unit vectors are i and j, defined by

These vectors are special because any vector can be expressed in terms of them.

i � 81,  09   j � 80,  19

3
5, 

4
5
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612 CHAPTER 8 Polar Coordinates and Vectors

ALTERNATE EXAMPLE 5a
A vector v has length 4 and
direction . Write v in terms of i
and j by finding its horizontal and
vertical components.

ANSWER
213i + 2j

p

6

(b) The properties of addition and scalar multiplication of vectors show that we can
manipulate vectors in the same way as algebraic expressions. Thus

■

Let v be a vector in the plane with its initial point at the origin. The direction of v
is u, the smallest positive angle in standard position formed by the positive x-axis and
v (see Figure 12). If we know the magnitude and direction of a vector, then Figure 12
shows that we can find the horizontal and vertical components of the vector.

 � i � 34 j

 � 16i � 4 j 2 � 1�5i � 30 j 2
 2u � 5v � 213i � 2 j 2 � 51�i � 6 j 2

612 CHAPTER 8 Polar Coordinates and Vectors

Horizontal and Vertical Components of a Vector

Let v be a vector with magnitude and direction u.0 v 0

Example 5 Components and Direction of a Vector

(a) A vector v has length 8 and direction p/3. Find the horizontal and vertical 
components, and write v in terms of i and j.

(b) Find the direction of the vector .

Solution

(a) We have v � �a, b�, where the components are given by

Thus, .

(b) From Figure 13 we see that the direction u has the property that

Thus, the reference angle for u is p/6. Since the terminal point of the vector
u is in quadrant II, it follows that u � 5p/6. ■

Using Vectors to Model Velocity and Force

The velocity of a moving object is modeled by a vector whose direction is the direc-
tion of motion and whose magnitude is the speed. Figure 14 shows some vectors u,
representing the velocity of wind flowing in the direction N 30 � E, and a vector v, rep-
resenting the velocity of an airplane flying through this wind at the point P. It’s ob-
vious from our experience that wind affects both the speed and the direction of an

tan u �
1

�13
� � 

13

3

v � 84,  4 139 � 4i � 413 j

a � 8 cos  

p

3
� 4  and  b � 8 sin  

p

3
� 413

u � �13 i � j

x

y

u

0

1

_œ∑3

¨

Figure 13

The use of bearings (such as N 30 � E)
to describe directions is explained on
page 511 in Section 6.5.

x

y

|v |
|v | ß ¨

|v | ç ¨
0

¨

Figure 12

Then v � �a, b� � ai � b j, where

Thus, we can express v as

v � 0 v 0  cos u i � 0 v 0  sin u j

a � 0 v 0  cos u  and  b � 0 v 0  sin u
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CHAPTER 8 Polar Coordinates and Vectors 613

ALTERNATE EXAMPLE 6
An airplane heads due north
at 280 mi/h. It experiences a
38 mi/h crosswind flowing in
the direction , as shown
in the figure below. Find the true
velocity of the airplane as a vector
expressed in terms of i and j. Find
the true speed of the airplane.

ANSWER
19i + 312.91j, 313.5

0

60*

x

N

P

u

v

y

N 60 �  E

SECTION 8.4 Vectors 613

airplane. Figure 15 indicates that the true velocity of the plane (relative to the ground)
is given by the vector w � u � v.

0

60*

y

x

N

P
u

v

0

y

x
P

u

v

w=u+v

Figure 14 Figure 15

Example 6 The True Speed and Direction of an Airplane

An airplane heads due north at 300 mi/h. It experiences a 40 mi/h crosswind flow-
ing in the direction N 30 � E, as shown in Figure 14.

(a) Express the velocity v of the airplane relative to the air, and the velocity u of
the wind, in component form.

(b) Find the true velocity of the airplane as a vector.

(c) Find the true speed and direction of the airplane.

Solution

(a) The velocity of the airplane relative to the air is v � 0i � 300 j � 300 j.
By the formulas for the components of a vector, we find that the velocity of

the wind is

(b) The true velocity of the airplane is given by the vector w � u � v.

(c) The true speed of the airplane is given by the magnitude of w.

The direction of the airplane is the direction u of the vector w. The angle u has
the property that tan u � 334.64/20 � 16.732 and so u � 86.6�. Thus, the 
airplane is heading in the direction N 3.4 � E. ■

0 w 0 � 2120 2 2 � 1334.64 2 2 � 335.2 mi/h

 � 20i � 334.64 j

 � 20i � 12013 � 300 2 j
 w � u � v � 120i � 2013 j 2 � 1300 j 2

 � 20i � 34.64 j

 � 20i � 2013 j

 u � 140 cos 60° 2 i � 140 sin 60° 2 j
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ALTERNATE EXAMPLE 7
A woman launches a boat from
one shore of a straight river and
wants to land at the point directly
on the opposite shore. If the
speed of the boat (in still water)
is 16 mi/h and the river is flowing
east at the rate of 8 mi/h, in what
direction (you should find the
angle u) should she head the boat
in order to arrive at the desired
landing point?

ANSWER

ALTERNATE EXAMPLE 8

Two forces F1 and F2 with magni-
tudes 6 and 24 lb, respectively, act
on an object at a point P as shown
in the figure below. Find the resul-
tant force acting at P as a vector
expressed in terms of i and j.
Round the horizontal and vertical
components of the vector to the
nearest integer.

ANSWER
-8i + 25j

0

45*
120*

x

P

F1

F2
y

120 �

N

x

y

u

wv

¨

0

614 CHAPTER 8 Polar Coordinates and Vectors

Example 7 Calculating a Heading

A woman launches a boat from one shore of a straight river and wants to land 
at the point directly on the opposite shore. If the speed of the boat (relative to the
water) is 10 mi/h and the river is flowing east at the rate of 5 mi/h, in what direction
should she head the boat in order to arrive at the desired landing point?

Solution We choose a coordinate system with the origin at the initial position of
the boat as shown in Figure 16. Let u and v represent the velocities of the river and
the boat, respectively. Clearly, u � 5i and, since the speed of the boat is 10 mi/h,
we have , so

where the angle u is as shown in Figure 16. The true course of the boat is given by
the vector w � u � v. We have

Since the woman wants to land at a point directly across the river, her direction
should have horizontal component 0. In other words, she should choose u in such a
way that

Thus, she should head the boat in the direction u � 120� (or N 30 � W). ■

Force is also represented by a vector. Intuitively, we can think of force as de-
scribing a push or a pull on an object, for example, a horizontal push of a book across
a table or the downward pull of the earth’s gravity on a ball. Force is measured in
pounds (or in newtons, in the metric system). For instance, a man weighing 200 lb 
exerts a force of 200 lb downward on the ground. If several forces are acting on 
an object, the resultant force experienced by the object is the vector sum of these
forces.

Example 8 Resultant Force

Two forces F1 and F2 with magnitudes 10 and 20 lb, respectively, act on an object
at a point P as shown in Figure 17. Find the resultant force acting at P.

Solution We write F1 and F2 in component form:

 � �1013i � 10 j

 F2 � 120 cos 150° 2 i � 120 sin 150° 2j � �20  

13

2
  i � 20 a 1

2
b j

 F1 � 110 cos 45° 2 i � 110 sin 45° 2j � 10  

12

2
  i � 10  

12

2
  j � 512i � 512 j

 u � 120°

 cos u � � 
1
2

 5 � 10 cos u � 0

 � 15 � 10 cos u 2 i � 110 sin u 2 j
 w � u � v � 5i � 110 cos u 2 i � 110 sin u 2 j

v � 110 cos u 2 i � 110 sin u 2 j
0 v 0 � 10

N

x

y

u

wv

¨

0

Figure 16

y

x0

F¤ F⁄
150*

45*

P

Figure 17
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SECTION 8.4 Vectors 615

1–6 ■ Sketch the vector indicated. (The vectors u and v are
shown in the figure.)

1. 2u

2. �v

3. u � v

4. u � v

5. v � 2u

6. 2u � v

7–16 ■ Express the vector with initial point P and terminal
point Q in component form.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16. P1�8,  �6 2 , Q1�1,  �1 2
P1�1,  �1 2 , Q1�1,  1 2

P1�1,  3 2 , Q1�6,  �1 2P15,  3 2 , Q11,  0 2
P11,  1 2 , Q19,  9 2P13,  2 2 , Q18,  9 2

P

y

x

Q

0 1

1P

Q

y

x0 1

1

y

x

P

Q

0 1

1

Q
y

x

P

0 1

1

y

x

u
v

0 1

17–22 ■ Find 2u, �3v, u � v, and 3u � 4v for the given 
vectors u and v.

17.

18.

19.

20.

21. 22.

23–26 ■ Find , , , , , , and
.

23.

24.

25.

26.

27–32 ■ Find the horizontal and vertical components of the
vector with given length and direction, and write the vector in
terms of the vectors i and j.

27. 28.

29. 30.

31. 32.

33–38 ■ Find the magnitude and direction (in degrees) of the
vector.

33. v � �3, 4� 34.

35. v � ��12, 5� 36. v � �40, 9�

37. 38. v � i � j

Applications

39. Components of a Force A man pushes a lawn mower
with a force of 30 lb exerted at an angle of 30� to the

v � i � 13  j

v � h� 

12

2
,  � 

12

2
i

0 v 0 � 13, u � 300°0 v 0 � 4, u � 10°

0 v 0 � 800, u � 125°0 v 0 � 1, u � 225°

0 v 0 � 50, u � 120°0 v 0 � 40, u � 30°

u � 8�6, 69, v � 8�2, �19
u � 810, �19, v � 8�2, �29
u � �2i � 3 j, v � i � 2 j

u � 2i � j, v � 3i � 2 j

0 u 0 � 0 v 0
0 u � v 00 u � v 00 12v 00 2u 00 v 00 u 0

u � i � j,  v � i � ju � 2i, v � 3i � 2 j

u � i,  v � �2 j

u � 80,  �19, v � 8�2,  09
u � 8�2,  59, v � 82,  �89
u � 82,  79,     v � 83,  19

So the resultant force F is

The resultant force F is shown in Figure 18. ■

8.4 Exercises

 � �10i � 17j

 � 1512 � 1013 2 i � 1512 � 10 2 j
 � 1512i � 512 j 2 � 1�1013i � 10j 2

 F � F1 � F2

y

x0

F¤ F⁄

P

F

Figure 18
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616 CHAPTER 8 Polar Coordinates and Vectors

ground. Find the horizontal and vertical components of the
force.

40. Components of a Velocity A jet is flying in a direction
N 20� E with a speed of 500 mi/h. Find the north and east
components of the velocity.

41. Velocity A river flows due south at 3 mi/h. A swimmer 
attempting to cross the river heads due east swimming at 
2 mi/h relative to the water. Find the true velocity of the
swimmer as a vector.

42. Velocity A migrating salmon heads in the direction 
N 45� E, swimming at 5 mi/h relative to the water. The 
prevailing ocean currents flow due east at 3 mi/h. Find the
true velocity of the fish as a vector.

43. True Velocity of a Jet A pilot heads his jet due east. The
jet has a speed of 425 mi/h relative to the air. The wind is
blowing due north with a speed of 40 mi/h.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a
vector in component form.

(c) Find the true velocity of the jet as a vector.

(d) Find the true speed and direction of the jet.

44. True Velocity of a Jet A jet is flying through a wind 
that is blowing with a speed of 55 mi/h in the direction 
N 30� E (see the figure). The jet has a speed of 765 mi/h 
relative to the air, and the pilot heads the jet in the direction
N 45� E.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a
vector in component form.

(c) Find the true velocity of the jet as a vector.

2 mi/h

3 mi/h

(d) Find the true speed and direction of the jet.

45. True Velocity of a Jet Find the true speed and direction
of the jet in Exercise 44 if the pilot heads the plane in the 
direction N 30 � W.

46. True Velocity of a Jet In what direction should the pilot
in Exercise 44 head the plane for the true course to be due
north?

47. Velocity of a Boat A straight river flows east at a speed
of 10 mi/h. A boater starts at the south shore of the river and
heads in a direction 60� from the shore (see the figure). The
motorboat has a speed of 20 mi/h relative to the water.

(a) Express the velocity of the river as a vector in compo-
nent form.

(b) Express the velocity of the motorboat relative to the 
water as a vector in component form.

(c) Find the true velocity of the motorboat.

(d) Find the true speed and direction of the motorboat.

48. Velocity of a Boat The boater in Exercise 47 wants to 
arrive at a point on the north shore of the river directly 
opposite the starting point. In what direction should the 
boat be headed?

49. Velocity of a Boat A boat heads in the direction N 72 � E.
The speed of the boat relative to the water is 24 mi/h. The
water is flowing directly south. It is observed that the true
direction of the boat is directly east.

(a) Express the velocity of the boat relative to the water as
a vector in component form.

60*

N

N

30°

45°
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CHAPTER 8 Polar Coordinates and Vectors 617

SUGGESTED TIME

AND EMPHASIS

1 class.
Essential material.

POINTS TO STRESS

1. The dot product and its properties.
2. Definition of orthogonality.
3. Length of a vector.
4. Projections and their applications to computer science.

SECTION 8.5 The Dot Product 617

8.5 The Dot Product

In this section we define an operation on vectors called the dot product. This concept is
especially useful in calculus and in applications of vectors to physics and engineering.

The Dot Product of Vectors

We begin by defining the dot product of two vectors.

(b) Find the speed of the water and the true speed of the
boat.

50. Velocity A woman walks due west on the deck of an
ocean liner at 2 mi/h. The ocean liner is moving due north at
a speed of 25 mi/h. Find the speed and direction of the
woman relative to the surface of the water.

51–56 ■ Equilibrium of Forces The forces F1, F2, . . . , Fn

acting at the same point P are said to be in equilibrium if the 
resultant force is zero, that is, if F1 � F2 � . . . � Fn � 0. Find
(a) the resultant forces acting at P, and (b) the additional force
required (if any) for the forces to be in equilibrium.

51. F1 � �2, 5�, F2 � �3, �8�

52. F1 � �3, �7�, F2 � �4, �2�, F3 � ��7, 9�

53. F1 � 4i � j, F2 � 3i � 7 j, F3 � �8i � 3 j,
F4 � i � j

54. F1 � i � j, F2 � i � j, F3 � �2i � j

55.

56. y

x

P

0

F¤

F‹
F⁄

F›

1 3 5

2

4

y

x

F⁄

0

10

60*

8

6

F¤

F‹

30*

20*

57. Equilibrium of Tensions A 100-lb weight hangs from a
string as shown in the figure. Find the tensions T1 and T2 in
the string.

58. Equilibrium of Tensions The cranes in the figure are lift-
ing an object that weighs 18,278 lb. Find the tensions T1

and T2.

Discovery • Discussion

59. Vectors That Form a Polygon Suppose that n vectors
can be placed head to tail in the plane so that they form a
polygon. (The figure shows the case of a hexagon.) Explain
why the sum of these vectors is 0.

41.5*22.3*

T⁄ T¤

100

50* 30*

T⁄ T¤
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ALTERNATE EXAMPLE 1
Compute .

(a)

(b)

ANSWERS
(a) -17 (b) -10

ALTERNATE EXAMPLE 1b
Calculate the dot product of 
u and v. 

and 

ANSWER
-11

v = 87, 89u = 83, -49

a = 86i + 2j9 b = 8- i -2j9
a = 83, -59 b = 81, 49

a # b

IN-CLASS MATERIALS

Demonstrate the proper formation of statements involving dot products. For example, the statement
makes sense, while the statements and do not.c # ad # (a # b)c (a # b)

618 CHAPTER 8 Polar Coordinates and Vectors

Thus, to find the dot product of u and v we multiply corresponding components and
add. The dot product is not a vector; it is a real number, or scalar.

Example 1 Calculating Dot Products

(a) If u � �3, �2� and v � �4, 5� then

(b) If u � 2i � j and v � 5i � 6 j, then

■

The proofs of the following properties of the dot product follow easily from the
definition.

u # v � 12 2 15 2 � 11 2 1�6 2 � 4

u # v � 13 2 14 2 � 1�2 2 15 2 � 2

Definition of the Dot Product

If u � �a1, b1� and v � �a2, b2� are vectors, then their dot product, denoted
by u �v, is defined by

u # v � a1a2 � b1b2

Properties of the Dot Product

1.

2.

3.

4. 0 u 0 2 � u # u
1u � v 2 # w � u # w � v # w
1au 2 # v � a1u # v 2 � u # 1av 2
u # v � v # u

■ Proof We prove only the last property. The proofs of the others are left as 
exercises. Let u � �a, b�. Then

■

Let u and v be vectors and sketch them with initial points at the origin. We define
the angle u between u and v to be the smaller of the angles formed by these repre-
sentations of u and v (see Figure 1). Thus, 0 � u � p. The next theorem relates the
angle between two vectors to their dot product.

u # u � 8a,  b9 # 8a,  b9 � a 
2 � b 

2 � 0 u 0 2

The Dot Product Theorem

If u is the angle between two nonzero vectors u and v, then

u # v � 0 u 0 0 v 0  cos u

y

x0

v

u
¨

Figure 1
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CHAPTER 8 Polar Coordinates and Vectors 619

ALTERNATE EXAMPLE 2
Calculate the dot product of 
u and v.

ANSWER
19

u = 4i + j and v = 6i - 5j

IN-CLASS MATERIALS

Demonstrate the distributive property in general. Note that while the dot product is commutative and
distributive, the associative property makes no sense, as it is not possible to take the dot product of three
vectors.

SECTION 8.5 The Dot Product 619

■ Proof The proof is a nice application of the Law of Cosines. Applying the
Law of Cosines to triangle AOB in Figure 2 gives

Using the properties of the dot product, we write the left-hand side as follows:

Equating the right-hand sides of the displayed equations, we get

This proves the theorem. ■

The Dot Product Theorem is useful because it allows us to find the angle between
two vectors if we know the components of the vectors. The angle is obtained simply
by solving the equation in the Dot Product Theorem for cos u. We state this important
result explicitly.

 u # v � 0 u 0 0 v 0  cos u

 �21u # v 2 � �2 0 u 0 0 v 0  cos u

 0 u 0 2 � 21u # v 2 � 0 v 0 2 � 0 u 0 2 � 0 v 0 2 � 2 0 u 0 0 v 0  cos u

 � 0 u 0 2 � 21u # v 2 � 0 v 0 2
 � u # u � u # v � v # u � v # v

 0 u � v 0 2 � 1u � v 2 # 1u � v 2

0 u � v 0 2 � 0 u 0 2 � 0 v 0 2 � 2 0 u 0 0 v 0  cos u

y

x0

v

u
¨

u-v

B

A

Figure 2

Angle between Two Vectors

If u is the angle between two nonzero vectors u and v, then

cos u �
u # v
0 u 0 0 v 0

Example 2 Finding the Angle between Two Vectors

Find the angle between the vectors u � �2, 5� and v � �4, �3�.

Solution By the formula for the angle between two vectors, we have

Thus, the angle between u and v is

■

Two nonzero vectors u and v are called perpendicular, or orthogonal, if the
angle between them is p/2. The following theorem shows that we can determine if
two vectors are perpendicular by finding their dot product.

u � cos�1 a �7

5 129
b � 105.1°

cos u �
u # v
0 u 0 0 v 0 �

12 2 14 2 � 15 2 1�3 2
14 � 25 116 � 9

�
�7

5 129

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if and only if u �v � 0.
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620 CHAPTER 8 Polar Coordinates and Vectors

ALTERNATE EXAMPLE 3
Determine whether the pair of
vectors are perpendicular.

(a)
(b)

ANSWERS
(a) , so they are 

perpendicular.

(b) , so they are not
perpendicular.
a # b = 7 Z 0

a # b = 0

a = 83, 49�b = 8-3, 49
a = 81, 69�b = 812, -29

DRILL QUESTION

Consider the following pairs of vectors, all of which have length l:

Put the following quantities in order, from smallest to largest: 

Answer

e # f, c # d, a # b, g # h

a # b  c # d  e # f  g # h

b

a

d

c

f

e

h

g

620 CHAPTER 8 Polar Coordinates and Vectors

■ Proof If u and v are perpendicular, then the angle between them is p/2 and so

Conversely, if u �v � 0, then

Since u and v are nonzero vectors, we conclude that cos u � 0, and so u � p/2.
Thus, u and v are orthogonal. ■

Example 3 Checking Vectors for Perpendicularity

Determine whether the vectors in each pair are perpendicular.

(a) u � �3, 5� and v � �2, �8� (b) u � �2, 1� and v � ��1, 2�

Solution

(a) , so u and v are not perpendicular.

(b) , so u and v are perpendicular. ■

The Component of u Along v

The component of u along v (or the component of u in the direction of v) is defined
to be

where u is the angle between u and v. Figure 3 gives a geometric interpretation of this
concept. Intuitively, the component of u along v is the magnitude of the portion of u
that points in the direction of v. Notice that the component of u along v is negative if
p/2 � u � p.

When analyzing forces in physics and engineering, it’s often helpful to express 
a vector as a sum of two vectors lying in perpendicular directions. For example,
suppose a car is parked on an inclined driveway as in Figure 4. The weight of the car
is a vector w that points directly downward. We can write

where u is parallel to the driveway and v is perpendicular to the driveway. The vector
u is the force that tends to roll the car down the driveway, and v is the force experienced

w � u � v

v

u

¨

|u| cos ¨

v

u
¨

|u| cos ¨Figure 3

0 u 0  cos u

u # v � 12 2 1�1 2 � 11 2 12 2 � 0

u # v � 13 2 12 2 � 15 2 1�8 2 � �34 � 0

0 u 0 0 v 0  cos u � 0

u # v � 0 u 0 0 v 0  cos 
p

2
� 0

Note that the component of u along v is
a scalar, not a vector.
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CHAPTER 8 Polar Coordinates and Vectors 621

SAMPLE QUESTION

Text Question

Compute .

Answer

5

ALTERNATE EXAMPLE 4
Find the angle between the vectors 

and .
Please round the answer to the
nearest tenth of a degree.

ANSWER

IN-CLASS MATERIALS

This is a nice, direct application of
vector projections. It is clear that a
weight will slide more quickly
down ramp 2 than down ramp 1:

ramp 2

ramp 1

48.2 �

v = 840, -99u = 87, 59

83, 49 # 8-1, 29

Gravity is the same in both cases, yet there is a definite difference in speed. The reason behind this is
interesting. Gravity is doing two things at once: It is letting the weight slide down, and it is also preventing
the weight from floating off the ramp and flying into outer space. We can draw a “free body diagram”
that shows how the gravity available to let the weight slide down is affected by the angle of the ramp.

A block slides faster on a steeper slope because the projection of 
the gravitational force in the direction of the slope is larger.
There is more force pushing the block down the slope, and less
of a force holding it to the surface of the slope.

SECTION 8.5 The Dot Product 621

by the surface of the driveway. The magnitudes of these forces are the components of
w along u and v, respectively.

Example 4 Resolving a Force into Components

A car weighing 3000 lb is parked on a driveway that is inclined 15 � to the hori-
zontal, as shown in Figure 5.

(a) Find the magnitude of the force required to prevent the car from rolling down
the driveway.

(b) Find the magnitude of the force experienced by the driveway due to the weight
of the car.

Solution The car exerts a force w of 3000 lb directly downward. We resolve w
into the sum of two vectors u and v, one parallel to the surface of the driveway and
the other perpendicular to it, as shown in Figure 5.

(a) The magnitude of the part of the force w that causes the car to roll down the
driveway is

Thus, the force needed to prevent the car from rolling down the driveway is
about 776 lb.

(b) The magnitude of the force exerted by the car on the driveway is

The force experienced by the driveway is about 2898 lb. ■

The component of u along v can be computed using dot products:

We have shown the following.

0 u 0  cos u �
0 v 0 0 u 0  cos u

0 v 0
�

u # v
0 v 0

0 v 0 � component of w along v � 3000 cos 15 ° � 2898

0 u 0 � component of w along u � 3000 cos 75 ° � 776

u

w

v

u

w v
u

w

v

w

Figure 4

u
15*

15*

75*

w v

Figure 5

Calculating Components

The component of u along v is .
u # v
0 v 0

force causing weight
to move

ramp 1

force causing weight
to move

ramp 2
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ALTERNATE EXAMPLE 5
Determine whether the vectors 
in the pair and

are perpendicular.

ANSWER
No 

EXAMPLES
■

■ Two vectors that are orthogonal:
, 

■ Projections: If 
and , then 

, 

,

and |a| = 16.

projb a = h 3

62
, 

1

31
, -

7

62
i

proja b = h 1

3
, 

1

6
, 

1

6
i

b = 83, 2, 79
a = 82, 1, -19

b = h1, -1, 
1

2
i

a = 85, 6, 29
85, 6, 29 # 8-3, 1, 09 = -9

v = 84, -89
u = 83, 29

IN-CLASS MATERIALS

Assume that and Pose the question, “Is it necessarily true that ” When you’ve
convinced the students (perhaps by example) that the answer is “no,” the next logical question to ask is,
“What can we say about b and c?” It can be shown that b and c have the same projection onto a, since
a � (b - c).

b = c?a Z 0.a # b = a # c

622 CHAPTER 8 Polar Coordinates and Vectors

Example 5 Finding Components

Let u � �1, 4� and v � ��2, 1�. Find the component of u along v.

Solution We have

■

The Projection of u onto v

Figure 6 shows representations of the vectors u and v. The projection of u onto v, de-
noted by projv u, is the vector whose direction is the same as v and whose length is
the component of u along v. To find an expression for projv u, we first find a unit vec-
tor in the direction of v and then multiply it by the component of u along v.

We often need to resolve a vector u into the sum of two vectors, one parallel to v
and one orthogonal to v. That is, we want to write u � u1 � u2 where u1 is parallel
to v and u2 is orthogonal to v. In this case, u1 � projv u and u2 � u � projv u (see 
Exercise 37).

 � a u # v
0 v 0 b  

v
0 v 0 � a u # v

0 v 0 2 bv

 projv u � 1component of u along v 2 1unit vector in direction of v 2

component of u along v �
u # v
0 v 0 �

11 2 1�2 2 � 14 2 11 2
14 � 1

�
2

15

v

u

projv u

v

u

projv u

Figure 6

Calculating Projections

The projection of u onto v is the vector projv u given by

If the vector u is resolved into u1 and u2, where u1 is parallel to v and u2 is
orthogonal to v, then

u1 � projv u  and  u2 � u � projv u

projv u � a u # v
0 v 0 2 bv

Example 6 Resolving a Vector into Orthogonal Vectors

Let u � ��2, 9� and v � ��1, 2�.
(a) Find projv u.

(b) Resolve u into u1 and u2, where u1 is parallel to v and u2 is orthogonal to v.

Solution

(a) By the formula for the projection of one vector onto another we have

Formula for projection

Definition of u and v

 � 4 8�1,  29 � 8�4,  89
 � a 8�2,  99 # 8�1,  29

1�1 2 2 � 22 b 8�1,  29

 projv u � a u # v
0 v 0 2 bv

57050_08_ch08_p580-633.qxd  08/04/2008  11:07 AM  Page 622



CHAPTER 8 Polar Coordinates and Vectors 623

ALTERNATE EXAMPLE 7
A force is given by the vector

and moves an object
from the point (2, 1) to the point
(5, 6). Find the work done.

ANSWER
51

F = 87, 69

SECTION 8.5 The Dot Product 623

(b) By the formula in the preceding box we have u � u1 � u2, where

From part (a)

■

Work

One use of the dot product occurs in calculating work. In everyday use, the term work
means the total amount of effort required to perform a task. In physics, work has a tech-
nical meaning that conforms to this intuitive meaning. If a constant force of magnitude
F moves an object through a distance d along a straight line, then the work done is

If F is measured in pounds and d in feet, then the unit of work is a foot-pound (ft-lb).
For example, how much work is done in lifting a 20-lb weight 6 ft off the ground?
Since a force of 20 lb is required to lift this weight and since the weight moves
through a distance of 6 ft, the amount of work done is

This formula applies only when the force is directed along the direction of motion. In
the general case, if the force F moves an object from P to Q, as in Figure 7, then only
the component of the force in the direction of affects the object. Thus, the
effective magnitude of the force on the object is

So, the work done is

We have derived the following simple formula for calculating work.

W � force � distance � 1 0 F 0  cos u 2 0 D 0 � 0 F 0 0 D 0  cos u � F # D

component of F along D � 0 F 0  cos u

D � PQ
!

W � Fd � 120 2 16 2 � 120 ft-lb

W � Fd  or  work � force � distance

 u2 � u � projv u � 8�2,  99 � 8�4,  89 � 82,  19
 u1 � projv u � 8�4,  89

F

¨

D|F| cos ¨

R

P
Q

Figure 7

Work

The work W done by a force F in moving along a vector D is

W � F # D

Example 7 Calculating Work

A force is given by the vector F � �2, 3� and moves an object from the point 
to the point . Find the work done.

Solution The displacement vector is

So the work done is

If the unit of force is pounds and the distance is measured in feet, then the work
done is 26 ft-lb. ■

W � F # D � 82,  39 # 84,  69 � 26

D � 85 � 1,  9 � 39 � 84,  69

15,  9 2 11,  3 2
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624 CHAPTER 8 Polar Coordinates and Vectors

ALTERNATE EXAMPLE 8
A man pulls a wagon horizontally
by exerting a force of 30 lb on the
handle. If the handle makes an
angle of with the horizontal,
find the work done in moving the
wagon 200 ft.

ANSWER

F # D = 205.2 ft-lb
D = 200i
F = (30 cos 70 �)i + (30 sin 70 �)j

70 �

624 CHAPTER 8 Polar Coordinates and Vectors

1–8 ■ Find (a) u � v and (b) the angle between u and v to the
nearest degree.

1. u � �2, 0�, v � �1, 1�

2.

3. u � �2, 7�, v � �3, 1�

4. u � ��6, 6�, v � �1, �1�

5. u � �3, �2�, v � �1, 2�

6. u � 2i � j, v � 3i � 2 j

7.

8. u � i � j, v � i � j

9–14 ■ Determine whether the given vectors are orthogonal.

9. u � �6, 4�, v � ��2, 3� 10. u � �0, �5�, v � �4, 0�

11. u � ��2, 6�, v � �4, 2� 12. u � 2i, v � �7j

13. u � 2i � 8 j, v � �12i � 3j

14. u � 4i, v � �i � 3j

15–18 ■ Find the indicated quantity, assuming 
u � 2i � j, v � i � 3 j, and w � 3i � 4 j.

15. u�v � u�w 16.

17. 18. 1u # v 2 1u # w 21u � v 2 # 1u � v 2
u # 1v � w 2

u � �5 j, v � �i � 13 j

u � i � 13 j, v � �13 i � j

19–22 ■ Find the component of u along v.

19. u � �4, 6�, v � �3, �4�

20.

21. u � 7i � 24 j, v � j

22. u � 7i, v � 8i � 6 j

23–28 ■ (a) Calculate projv u. (b) Resolve u into u1 and u2,
where u1 is parallel to v and u2 is orthogonal to v.

23. u � ��2, 4�, v � �1, 1�

24. u � �7, �4�, v � �2, 1�

25. u � �1, 2�, v � �1, �3�

26. u � �11, 3�, v � ��3, �2�

27. u � �2, 9�, v � ��3, 4�

28. u � �1, 1�, v � �2, �1�

29–32 ■ Find the work done by the force F in moving an object
from P to Q.

29. F � 4i � 5 j;

30. F � 400i � 50 j;

31. F � 10i � 3 j;

32. F � �4i � 20 j; P10, 10 2 , Q15, 25 2
P12,  3 2 , Q16,  �2 2

P1�1,  1 2 , Q1200,  1 2
P10,  0 2 , Q13,  8 2

u � 8�3,  59, v � 81/12,  1/129

Example 8 Calculating Work

A man pulls a wagon horizontally by exerting a force of 20 lb on the handle. If the
handle makes an angle of 60� with the horizontal, find the work done in moving the
wagon 100 ft.

Solution We choose a coordinate system with the origin at the initial position of
the wagon (see Figure 8). That is, the wagon moves from the point to the
point . The vector that represents this displacement is

The force on the handle can be written in terms of components (see Section 8.4) as

Thus, the work done is

■

8.5 Exercises

W � F # D � 110 i � 1013 j 2 # 1100 i 2 � 1000 ft-lb

F � 120 cos 60° 2 i � 120 sin 60° 2 j � 10 i � 1013 j

D � 100 i

Q1100,  0 2 P10,  0 2Q(100, 0)

y

xP(0, 0)

60*

Figure 8
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SECTION 8.5 The Dot Product 625

33–36 ■ Let u, v, and w be vectors and let a be a scalar. Prove
the given property.

33. u�v � v�u

34.

35.

36.

37. Show that the vectors projv u and u � projv u are 
orthogonal.

38. Evaluate v�projv u.

Applications

39. Work The force F � 4i � 7j moves an object 4 ft along
the x-axis in the positive direction. Find the work done if the
unit of force is the pound.

40. Work A constant force F � �2, 8� moves an object along a
straight line from the point to the point . Find
the work done if the distance is measured in feet and the
force is measured in pounds.

41. Work A lawn mower is pushed a distance of 200 ft along
a horizontal path by a constant force of 50 lb. The handle of
the lawn mower is held at an angle of 30� from the horizontal
(see the figure). Find the work done.

42. Work A car drives 500 ft on a road that is inclined 12�
to the horizontal, as shown in the figure. The car weighs
2500 lb. Thus, gravity acts straight down on the car with a
constant force F � �2500j. Find the work done by the car
in overcoming gravity.

43. Force A car is on a driveway that is inclined 25� to the
horizontal. If the car weighs 2755 lb, find the force required
to keep it from rolling down the driveway.

12*

_2500j

30*

111,  13 212,  5 2

1u � v 2 # 1u � v 2 � 0 u 0 2 � 0 v 0 2
1u � v 2 # w � u # w � v # w
1au 2 # v � a1u # v 2 � u # 1av 2

44. Force A car is on a driveway that is inclined 10� to the
horizontal. A force of 490 lb is required to keep the car from
rolling down the driveway.

(a) Find the weight of the car.

(b) Find the force the car exerts against the driveway.

45. Force A package that weighs 200 lb is placed on an 
inclined plane. If a force of 80 lb is just sufficient to keep
the package from sliding, find the angle of inclination of 
the plane. (Ignore the effects of friction.)

46. Force A cart weighing 40 lb is placed on a ramp inclined
at 15� to the horizontal. The cart is held in place by a rope
inclined at 60� to the horizontal, as shown in the figure. Find
the force that the rope must exert on the cart to keep it from
rolling down the ramp.

Discovery • Discussion

47. Distance from a Point to a Line Let L be the line 
2x � 4y � 8 and let P be the point .

(a) Show that the points and lie on L.

(b) Let and , as shown in the figure. Find
w � projv u.

(c) Sketch a graph that explains why is the 
distance from P to L. Find this distance.

(d) Write a short paragraph describing the steps you 
would take to find the distance from a given point 
to a given line.

y

x

P

0

u

v
Q R

L

0 u � w 0
v � QR

!
u � QP

! R12,  1 2Q10,  2 2
13,  4 2

15*

60*
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Sailing Against the Wind

Sailors depend on the wind to propel their boats. But what if the wind is blow-
ing in a direction opposite to that in which they want to travel? Although it is 
obviously impossible to sail directly against the wind, it is possible to sail at an
angle into the wind. Then by tacking, that is, zig-zagging on alternate sides of
the wind direction, a sailor can make headway against the wind (see Figure 1).

How should the sail be aligned to propel the boat in the desired direction into
the wind? This question can be answered by modeling the wind as a vector and
studying its components along the keel and the sail.

For example, suppose a sailboat headed due north has its sail inclined in the
direction N 20� E. The wind is blowing into the sail in the direction S 45� W
with a force of magnitude F (see Figure 2).

1. Show that the effective force of the wind on the sail is F sin 25�. You can do
this by finding the components of the wind parallel to the sail and perpen-
dicular to the sail. The component parallel to the sail slips by and does not
propel the boat. Only the perpendicular component pushes against the sail.

2. If the keel of the boat is aligned due north, what fraction of the force F actu-
ally drives the boat forward? Only the component of the force found in Prob-
lem 1 that is parallel to the keel drives the boat forward.

(In real life, other factors, including the aerodynamic properties of the sail,
influence the speed of the sailboat.)

3. If a boat heading due north has its sail inclined in the direction N a� E,
and the wind is blowing with force F in the direction S b� W where 
0 � a � b� 180, find a formula for the magnitude of the force that 
actually drives the boat forward.

Figure 1

Tacking

626 CHAPTER 8 Polar Coordinates and Vectors
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CHAPTER 8 Polar Coordinates and Vectors 627

1–6 ■ A point is given in polar coordinates.
(a) Plot the point P. (b) Find rectangular coordinates for P.

1. 2.

3. 4.

5. 6.

7–12 ■ A point is given in rectangular coordinates.

(a) Plot the point P.

(b) Find polar coordinates for P with r 
 0.

(c) Find polar coordinates for P with r � 0.

7. 8.

9. 10.

11. 12. 14,  �4 21�3,  13 2
1313,  3 21�612,  �612 2
1�12,  16 218,  8 2

P1x, y 2
A�612,  � 

p
4 BA413,  � 

5p
3 B

A�13,  
2p
3 BA�3,  

7p
4 B

A8,  � 
3p
4 BA12,  

p
6 B

P1r, u 2 13–16 ■ (a) Convert the equation to polar coordinates and 
simplify. (b) Graph the equation. [Hint: Use the form of the
equation that you find easier to graph.]

13. x � y � 4 14. xy � 1

15. x 2 � y 2 � 4x � 4y 16.

17–24 ■ (a) Sketch the graph of the polar equation. 
(b) Express the equation in rectangular coordinates.

17. r � 3 � 3 cos u 18. r � 3 sin u

19. r � 2 sin 2u 20. r � 4 cos 3u

21. r 2 � sec 2u 22. r 2 � 4 sin 2u

23. r � sin u � cos u 24. r �
4

2 � cos u

1x 
2 � y 

2 2 2 � 2xy

1. Describe how polar coordinates represent the position of a
point in the plane.

2. (a) What equations do you use to change from polar to
rectangular coordinates?

(b) What equations do you use to change from rectangular
to polar coordinates?

3. How do you sketch the graph of a polar equation ?

4. What type of curve has a polar equation of the given form?

(a) r � a cos u or r � a sin u

(b)

(c) r � a 	 b cos u or r � a 	 b sin u

(d) r � a cos nu or r � a sin nu

5. How do you graph a complex number z? What is the polar
form of a complex number z? What is the modulus of z?
What is the argument of z?

6. (a) How do you multiply two complex numbers if they are
given in polar form?

(b) How do you divide two such numbers?

7. (a) State DeMoivre’s Theorem.

(b) How do you find the nth roots of a complex 
number?

r � a11 	 cos u 2 or r � a11 	 sin  u 2

r � f1u 2

8. (a) What is the difference between a scalar and a vector?

(b) Draw a diagram to show how to add two vectors.

(c) Draw a diagram to show how to subtract two vectors.

(d) Draw a diagram to show how to multiply a vector by
the scalars 2, , �2, and .

9. If u � �a1, b1�, v � �a2, b2� and c is a scalar, write expres-
sions for u � v, u � v, cu, and .

10. (a) If v � �a, b�, write v in terms of i and j.

(b) Write the components of v in terms of the magnitude
and direction of v.

11. If u � �a1, b1� and v � �a2, b2�, what is the dot product u�v?

12. (a) How do you use the dot product to find the angle 
between two vectors?

(b) How do you use the dot product to determine whether
two vectors are perpendicular?

13. What is the component of u along v, and how do you 
calculate it?

14. What is the projection of u onto v, and how do you 
calculate it?

15. How much work is done by the force F in moving an object
along a displacement D?

0 u 0
� 

1
2

1
2

8 Review

Concept Check

CHAPTER 8 Review 627

Exercises
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628 CHAPTER 8 Polar Coordinates and Vectors

50. An airplane heads N 60� E at a speed of 600 mi/h relative to
the air. A wind begins to blow in the direction N 30� W at 
50 mi/h.

(a) Find the velocity of the airplane as a vector.

(b) Find the true speed and direction of the airplane.

51–54 ■ Find , u � u, and u � v.

51. u � �4, �3�, v � �9, �8�

52. u � �5, 12�, v � �10, �4�

53. u � �2i � 2 j, v � i � j

54. u � 10 j, v � 5i � 3 j

55–58 ■ Are u and v orthogonal? If not, find the angle between
them.

55. u � ��4, 2�, v � �3, 6�

56. u � �5, 3�, v � ��2, 6�

57. u � 2i � j, v � i � 3 j

58. u � i � j, v � i � j

59–60 ■ The vectors u and v are given.

(a) Find the component of u along v.

(b) Find projv u.

(c) Resolve u into the vectors u1 and u2, where u1 is parallel to
v and u2 is perpendicular to v.

59. u � �3, 1�, v � �6, �1�

60. u � ��8, 6�, v � �20, 20�

61. Find the work done by the force F � 2i � 9 j in moving an
object from the point to the point .

62. A force F with magnitude 250 lb moves an object in the 
direction of the vector D a distance of 20 ft. If the work
done is 3800 ft-lb, find the angle between F and D.

17,  �1 211,  1 2

0 u 0

30°

60°

50 mi/h

600 mi/h

628 CHAPTER 8 Polar Coordinates and Vectors

25–28 ■ Use a graphing device to graph the polar equation.
Choose the domain of u to make sure you produce the entire
graph.

25. 26.

27.

28. r � u sin u, �6p� u � 6p

29–34 ■ A complex number is given.

(a) Graph the complex number in the complex plane.

(b) Find the modulus and argument.

(c) Write the number in polar form.

29. 4 � 4i 30. �10i

31. 5 � 3i 32.

33. �1 � i 34. �20

35–38 ■ Use DeMoivre’s Theorem to find the indicated power.

35. 36.

37. 38.

39–42 ■ Find the indicated roots.

39. The square roots of �16i

40. The cube roots of 

41. The sixth roots of 1 42. The eighth roots of i

43–44 ■ Find , u � v, u � v, 2u, and 3u � 2v.

43. u � ��2, 3�, v � �8, 1� 44. u � 2i � j, v � i � 2 j

45. Find the vector u with initial point and terminal
point .

46. Find the vector u having length � 20 and direction 
u � 60 �.

47. If the vector 5i � 8 j is placed in the plane with its initial
point at , find its terminal point.

48. Find the direction of the vector 2i � 5 j.

49. Two tugboats are pulling a barge, as shown. One pulls with
a force of 2.0 � 104 lb in the direction N 50� E and the other
with a force of 3.4 � 104 lb in the direction S 75° E.

(a) Find the resultant force on the barge as a vector.

(b) Find the magnitude and direction of the resultant force.

P15,  6 2

0 u 0
Q13,  �1 2

P10,  3 2

0 u 0

4 � 413 i

a 1

2
�
13

2
 i b 20113 � i 2�4

11 � i 2 811 � 13 i 2 4

1 � 13 i

r � 1 � 4 cos1u/3 2
r � sin19u/4 2r � cos1u/3 2
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8 Test

1. (a) Convert the point whose polar coordinates are to rectangular coordinates.

(b) Find two polar coordinate representations for the rectangular coordinate point
, one with r � 0 and one with r � 0, and both with 0 � u � 2p.

2. (a) Graph the polar equation r � 8 cos u. What type of curve is this?

(b) Convert the equation to rectangular coordinates.

3. Let .

(a) Graph z in the complex plane.

(b) Write z in polar form.

(c) Find the complex number z 9.

4. Let .

Find z1z2 and .

5. Find the cube roots of 27i, and sketch these roots in the complex plane.

6. Let u be the vector with initial point and terminal point .

(a) Express u in terms of i and j.

(b) Find the length of u.

7. Let u � �1, 3� and v � ��6, 2�.
(a) Find u � 3v. (b) Find .

(c) Find u � v. (d) Are u and v perpendicular?

8. Let .

(a) Graph u with initial point .

(b) Find the length and direction of u.

9. A river is flowing due east at 8 mi/h. A man heads his motorboat in a direction N 30� E
in the river. The speed of the motorboat relative to the water is 12 mi/h.

(a) Express the true velocity of the motorboat as a vector.

(b) Find the true speed and direction of the motorboat.

10. Let u � 3i � 2 j and v � 5i � j.

(a) Find the angle between u and v.

(b) Find the component of u along v.

(c) Find projv u.

11. Find the work done by the force F � 3i � 5 j in moving an object from the point 12, 22
to the point .17,  �13 2

10,  0 2
u � 8�4 13,  49

0 u � v 0

Q1�3,  9 2P13,  �1 2

z1

z2

z1 � 4 a cos  

7p

12
� i sin  

7p

12
b and z2 � 2 a cos  

5p

12
� i sin  

5p

12
b

z � 1 � 13 i

1�6,  213 2
18,  5p/4 2
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630

The method used to survey and map a town (page 522) works well for small areas.
But mapping the whole world would introduce a new difficulty: How do we represent
the spherical world by a flat map? Several ingenious methods have been developed.

Cylindrical Projection

One method is the cylindrical projection. In this method we imagine a cylinder
“wrapped” around the earth at the equator as in Figure 1. Each point on the earth 
is projected onto the cylinder by a ray emanating from the center of the earth. The
“unwrapped” cylinder is the desired flat map of the world. The process is illustrated
in Figure 2.

Of course, we cannot actually wrap a large piece of paper around the world, so this
whole process must be done mathematically, and the tool we need is trigonometry.
On the unwrapped cylinder we take the x-axis to correspond to the equator and the 
y-axis to the meridian through Greenwich, England (0� longitude). Let R be the radius
of the earth and let P be the point on the earth at a� E longitude and b� N latitude. The
point P is projected to the point on the cylinder (viewed as part of the coor-
dinate plane) where

Formula for length of a circular arc

Definition of tangent

See Figure 2(a). These formulas can then be used to draw the map. (Note that 
West longitude and South latitude correspond to negative values of a and b, re-
spectively.) Of course, using R as the radius of the earth would produce a huge 

 y � R tan b

 x � a p
180
baR

P¿ 1x, y 2

(a) Cylindrical projection (b) Cylindrical projection map

y

xx

y

P'
P'

P

C

x

y

å

∫

Focus on Modeling

Mapping the World

P'

P

C

Figure 1

Point P on the earth is projected
onto point P
 on the cylinder 
by a ray from the center of the
earth C.

Figure 2
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CHAPTER 8 Polar Coordinates and Vectors 631

map, so we replace R by a smaller value to get a map at an appropriate scale as in 
Figure 2(b).

Stereographic Projection

In the stereographic projection we imagine the earth placed on the coordinate plane
with the south pole at the origin. Points on the earth are projected onto the plane by
rays emanating from the north pole (see Figure 3). The earth is placed so that the
prime meridian (0� longitude) corresponds to the polar axis. As shown in Figure 4(a),
a point P on the earth at a� E longitude and b� N latitude is projected onto the point

whose polar coordinates are

Figure 4(b) shows how the first of these formulas is obtained

Figure 5 shows a stereographic map of the southern hemisphere.

Figure 5

Stereographic projection of the southern hemisphere

(a) (b)Stereographic projection Cross-section of
stereographic projection

P

P

S

N

∫+90*

R

R

r

(∫+90*)
1
2

Cequator

∫

r
P'

P

S

N

R

equator

C

polar axis

prime meridian

∫

å

 u � a

 r � 2R tan a b
2

� 45°b
P¿ 1r,  u 2
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Figure 4

P'
S

N

P

Figure 3

Point P on the earth’s surface is
projected onto point P
 on the plane by
a ray from the north pole.
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Problems

1. Cylindrical Projection A map maker wishes to map the earth using a cylindrical
projection. The map is to be 36 inches wide. Thus, the equator is mapped onto a hori-
zontal 36-inch line segment. The radius of the earth is 3960 miles.

(a) What value of R should he use in the cylindrical projection formulas?

(b) How many miles does one inch on the map represent at the equator?

2. Cylindrical Projection To map the entire world using the cylindrical projection, the
cylinder must extend infinitely far in the vertical direction. So a practical cylindrical map
cannot extend all the way to the poles. The map maker in Problem 1 decides that his map
should show the earth between 70� N and 70� S latitudes. How tall should his map be?

3. Cylindrical Projection The map maker in Problem 1 places the y-axis (0� longitude)
at the center of the map as shown in Figure 2(b). Find the x- and y-coordinates of the 
following cities on the map.

(a) Seattle, Washington; 47.6� N, 122.3� W

(b) Moscow, Russia; 55.8� N, 37.6� E

(c) Sydney, Australia; 33.9� S, 151.2� E

(d) Rio de Janeiro, Brazil; 22.9� S, 43.1� W

4. Stereographic Projection A map maker makes a stereographic projection of the
southern hemisphere, from the south pole to the equator. The map is to have a radius of
20 in.

(a) What value of R should he use in the stereographic projection formulas?

(b) Find the polar coordinates of Sydney, Australia (33.9� S, 151.2� E) on his map.

5– 6 ■ The cylindrical projection stretches distances between points not on the equator— the
farther from the equator, the more the distances are stretched. In these problems we find the
factors by which distances are distorted on the cylindrical projection at various locations.

5. Projected Distances Find the ratio of the projected distance on the cylinder to the
actual distance on the sphere between the given latitudes along a meridian (see the figure
at the left).

(a) Between 20� and 21� N latitude

(b) Between 40� and 41� N latitude

(c) Between 80� and 81� N latitude

6. Projected Distances Find the ratio of the projected distance on the cylinder to the
distance on the sphere along the given parallel of latitude between two points that are 1�
longitude apart (see the figure below).

(a) 20� N latitude

(b) 40� N latitude

(c) 80� N latitude

632 Focus on Modeling632 Focus on Modeling
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7–8 ■ The stereographic projection also stretches distances—the farther from the south pole,
the more distances are stretched. In these problems we find the factors by which distances are
distorted on the stereographic projection at various locations.

7. Projected Distances Find the ratio of the projected distance on the plane to the 
actual distance on the sphere between the given latitudes along a meridian (see the figure
at the left).

(a) Between 20� and 21� S latitude

(b) Between 40� and 41� S latitude

(c) Between 80� and 81� S latitude

8. Projected Distances Find the ratio of the projected distance on the plane to the 
distance on the sphere along the given parallel of latitude between two points that are 
1 � longitude apart (see the figure).

(a) 20� S latitude

(b) 40� S latitude

(c) 80� S latitude

9. Lines of Latitude and Longitude In this project we see how projection transfers
lines of latitude and longitude from a sphere to a flat surface. You will need a round glass
bowl, tracing paper, and a light source (a small transparent light bulb). Use a black
marker to draw equally spaced lines of latitude and longitude on the outside of the bowl.

(a) To model the stereographic projection, place the bowl on a sheet of tracing paper
and use the light source as shown in the figure at the left.

(b) To model the cylindrical projection, wrap the tracing paper around the bowl and use
the light source as shown in the figure below.

10. Other Projections There are many other map projections, such as the Albers Conic
Projection, the Azimuthal Projection, the Behrmann Cylindrical Equal-Area Projec-
tion, the Gall Isographic and Orthographic Projections, the Gnomonic Projection, the 
Lambert Equal-Area Projection, the Mercator Projection, the Mollweide Projection, the
Rectangular Projection, and the Sinusoidal Projection. Research one of these projections
in your library or on the Internet and write a report explaining how the map is constructed,
and describing its advantages and disadvantages.

Mapping the World 633
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