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CHAPTER 4 Exponential and Logarithmic Functions 327

Chapter Overview

In this chapter we study a new class of functions called exponential functions. For 
example,

is an exponential function (with base 2). Notice how quickly the values of this 
function increase:

Compare this with the function , where . The point is,
when the variable is in the exponent, even a small change in the variable can cause a
dramatic change in the value of the function.

In spite of this incomprehensibly huge growth, exponential functions are 
appropriate for modeling population growth for all living things, from bacteria to ele-
phants. To understand how a population grows, consider the case of a single bac-
terium, which divides every hour. After one hour we would have 2 bacteria, after two
hours 22 or 4 bacteria, after three hours 23 or 8 bacteria, and so on. After x hours we
would have 2x bacteria. This leads us to model the bacteria population by the func-
tion .

The principle governing population growth is the following: The larger the popu-
lation, the greater the number of offspring. This same principle is present in many
other real-life situations. For example, the larger your bank account, the more inter-
est you get. So we also use exponential functions to find compound interest.

We use logarithmic functions, which are inverses of exponential functions, to help
us answer such questions as, When will my investment grow to $100,000? In Focus
on Modeling (page 386) we explore how to fit exponential and logarithmic models 
to data.

0 1 2 3 4 5 6

f 1x 2 � 2x

g130 2 � 302 � 900g1x 2 � x2

 f 130 2 � 230 � 1,073,741,824

 f 110 2 � 210 � 1024

 f 13 2 � 23 � 8

f 1x 2 � 2x
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4.1 Exponential Functions

4.2 Logarithmic Functions

4.3 Laws of Logarithms

4.4 Exponential and Logarithmic Equations

4.5 Modeling with Exponential and Logarithmic Functions
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328 CHAPTER 4 Exponential and Logarithmic Functions

SUGGESTED TIME

AND EMPHASIS

1–1 classes.

Essential material.

POINTS TO STRESS

1. The definition of an exponen-
tial function, including what it
means to raise an irrational
number to a power.

2. The geometry of exponential
functions and their
transformations.

3. The base e.
4. Periodically and continuously

compounded interest.

1
2

4.1 Exponential Functions

So far, we have studied polynomial and rational functions. We now study one of the
most important functions in mathematics, the exponential function. This function is
used to model such natural processes as population growth and radioactive decay.

Exponential Functions

In Section 1.2 we defined ax for a � 0 and x a rational number, but we have not yet
defined irrational powers. So, what is meant by or 2p? To define ax when x is ir-
rational, we approximate x by rational numbers. For example, since

is an irrational number, we successively approximate by the following rational
powers:

Intuitively, we can see that these rational powers of a are getting closer and closer to
. It can be shown using advanced mathematics that there is exactly one number

that these powers approach. We define to be this number.
For example, using a calculator we find

The more decimal places of we use in our calculation, the better our approxima-
tion of .

It can be proved that the Laws of Exponents are still true when the exponents are
real numbers.

513
13

 � 16.2411. . .

 513 � 51.732

a13
a13

a1.7, a1.73, a1.732, a1.7320, a1.73205, . . .

a13

13 � 1.73205. . .

513

328 CHAPTER 4 Exponential and Logarithmic Functions

Exponential Functions

The exponential function with base a is defined for all real numbers x by

where and .a � 1a � 0

f 1x 2 � ax

We assume a � 1 because the function is just a constant function.
Here are some examples of exponential functions:

Base 10Base 3Base 2

h1x 2 � 10 xg1x 2 � 3xf 1x 2 � 2x

f1x 2 � 1x � 1

The Laws of Exponents are listed 
on page 14.
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CHAPTER 4 Exponential and Logarithmic Functions 329

ALTERNATE EXAMPLE 1
Let f (x) � 1.5x and evaluate the
following:

(a) f (3)
(b) f (�1)

(c)

ANSWERS
(a) 3.375
(b) or approximately 0.6667
(c) approximately 0.8791

ALTERNATE EXAMPLE 2
Draw the graph of each function
by plotting points.

(a) f (x) = 10x

(b) g (x) = (1�10)x

(c) draw f (x) where the x and
y scales are the same

ANSWERS
(Note that the x and y scales are
vastly different for parts (a) and (b).)

(a)

(b)

(c)

x

y

420_2_4

1

21_1_2

10

100

x

y

0

x

y

210_1_2

10

100

2
3

f A12 - 13 B

SAMPLE QUESTION

Text Question

Sketch a graph of 

Answer

1

2

_2 _1 10 x

3
y

y = A12 B x.

Example 1 Evaluating Exponential Functions

Let and evaluate the following:

(a) (b) (c) (d)

Solution We use a calculator to obtain the values of f.

Calculator keystrokes Output

(a)

(b)

(c)

(d)
■

Graphs of Exponential Functions

We first graph exponential functions by plotting points. We will see that the graphs of
such functions have an easily recognizable shape.

Example 2 Graphing Exponential Functions 

by Plotting Points

Draw the graph of each function.

(a) (b)

Solution We calculate values of and and plot points to sketch the
graphs in Figure 1.

g1x 2f 1x 2

g1x 2 � a
1

3
b

x

f 1x 2 � 3x

4.7288043ENTER21^3f A12 B � 312 � 4.7288

31.5442807ENTERP^3f 1p 2 � 3p � 31.544

0.4807498ENTER)3�2(_)(^3fA� 2 

3 B � 3�2/3 � 0.4807

9ENTER2^3f 12 2 � 32 � 9

f 112 2f 1p 2f 1� 
2
3 2f 12 2

f 1x 2 � 3x

SECTION 4.1 Exponential Functions 329

x

�3 27

�2 9

�1 3
0 1 1
1 3

2 9

3 27 1
 27 

1
 9 

1
 3 

1
 3 

1
 9 

1
 27 

g1x 2 � A 1
 3 
B
xf 1x 2 � 3x

0 x

y

1

1

y=3˛y=!  @˛1
3

Figure 1

Notice that

and so we could have obtained the graph of g from the graph of f by reflecting in
the y-axis. ■

g1x 2 � a
1

3
b

x

�
1

3x � 3�x � f 1�x 2

Reflecting graphs is explained in 
Section 2.4.
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330 CHAPTER 4 Exponential and Logarithmic Functions

Figure 2 shows the graphs of the family of exponential functions 
for various values of the base a. All of these graphs pass through the point 
because a0 � 1 for a � 0. You can see from Figure 2 that there are two kinds of 
exponential functions: If 0 � a � 1, the exponential function decreases rapidly. 
If a � 1, the function increases rapidly (see the margin note).

The x-axis is a horizontal asymptote for the exponential function . 
This is because when a � 1, we have ax � 0 as x � �q, and when 0 � a � 1, we
have ax � 0 as x � q (see Figure 2). Also, ax � 0 for all , so the function

has domain and range . These observations are summarized in the
following box.

10, q 2�f 1x 2 � ax
x � �

f 1x 2 � ax

10, 1 2
f 1x 2 � ax

330 CHAPTER 4 Exponential and Logarithmic Functions

Graphs of Exponential Functions

The exponential function

has domain and range . The line y � 0 (the x-axis) is a horizontal 
asymptote of f. The graph of f has one of the following shapes.

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

10, q 2�

f 1x 2 � ax   1a � 0, a � 1 2

0 x

y

1

2

y=2˛

y=5˛y=10 ˛
y=3˛y=!  @˛1

5
y=!  @˛1

2

y=!  @˛1
3

y=!  @˛1
10

Figure 2

A family of exponential functions

To see just how quickly 
increases, let’s perform the following
thought experiment. Suppose we start
with a piece of paper a thousandth of an
inch thick, and we fold it in half 50
times. Each time we fold the paper, the
thickness of the paper stack doubles, so
the thickness of the resulting stack
would be 250/1000 inches. How thick
do you think that is? It works out to be
more than 17 million miles!

f 1x 2 � 2x

See Section 3.6, page 301, where 
the “arrow notation” used here is 
explained.
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CHAPTER 4 Exponential and Logarithmic Functions 331

ALTERNATE EXAMPLE 3
Find the coordinates of the points
with x � �3, �2, �1, 0, 1, 2,
and 3, on the curve of equation
f (x) � 4x.

ANSWER

(0, 1), (1, 4), (2, 16), (3, 64)

ALTERNATE EXAMPLE 4
Find the exponential function
f (x) � ax whose graph is given.

ANSWER

f (x) = a1

2
b x

y

2

4

6

2-2-6 4 60 x

(3,  1)-8

a -3, 
1

64
b , a -2, 

1

16
b , a -1, 

1

4
b ,

IN-CLASS MATERIALS

Start to draw a graph of y � 2x, using a carefully measured scale of 1 in. per unit on both axes. Point out
that after 1 ft, the height would be over 100 yards (the length of a football field). After 2 ft, the height
would be 264 miles, after 3 ft it would be 1,000,000 miles (four times the distance to the moon), after
3.5 ft it would be in the heart of the sun. If the graph extended 5 ft to the right, x � 60, then y would be
over 1 light year up.

Example 3 Identifying Graphs of Exponential Functions

Find the exponential function whose graph is given.

Solution

(a) Since , we see that the base is a � 5. So .

(b) Since , we see that the base is . So . ■

In the next example we see how to graph certain functions, not by plotting points,
but by taking the basic graphs of the exponential functions in Figure 2 and 
applying the shifting and reflecting transformations of Section 2.4.

Example 4 Transformations of Exponential Functions

Use the graph of to sketch the graph of each function.

(a) (b) (c)

Solution

(a) To obtain the graph of , we start with the graph of 
and shift it upward 1 unit. Notice from Figure 3(a) that the line y � 1 is now 
a horizontal asymptote.

(b) Again we start with the graph of , but here we reflect in the x-axis to
get the graph of shown in Figure 3(b).

(c) This time we start with the graph of and shift it to the right by 1 unit,
to get the graph of shown in Figure 3(c).k1x 2 � 2x�1

f 1x 2 � 2x

h1x 2 � �2x
f 1x 2 � 2x

f 1x 2 � 2xg1x 2 � 1 � 2x

k1x 2 � 2x�1h1x 2 � �2xg1x 2 � 1 � 2x

f 1x 2 � 2x

f 1x 2 � A12B
x

a � 1
2f 13 2 � a3 � 1

8

f 1x 2 � 5xf 12 2 � a2 � 25

0 x

y
(2, 25)

5

_1 1 2 0 x

y

1

_3

1
8!3,   @

3

f 1x 2 � a 
x

SECTION 4.1 Exponential Functions 331

The Gateway Arch in St. Louis,
Missouri, is shaped in the form of
the graph of a combination of expo-
nential functions (not a parabola, as
it might first appear). Specifically,
it is a catenary, which is the graph
of an equation of the form

(see Exercise 57). This shape was
chosen because it is optimal for
distributing the internal structural
forces of the arch. Chains and ca-
bles suspended between two points
(for example, the stretches of cable
between pairs of telephone poles)
hang in the shape of a catenary.

y � a1ebx � e�bx 2

0 x

y

(c)

1

y=2˛

y=2˛–¡11

0 x

y

(b)

1

y=2˛

y=_2˛_1
0 x

y

y=2˛

(a)

1

y=1+2˛

2

Horizontal
asymptote

Ga
rry

 M
cM

ic
ha

el
/P

ho
to

 R
es

ea
rc

he
rs

 In
c.

Figure 3 ■

Shifting and reflecting of graphs is 
explained in Section 2.4.

(a) (b)
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332 CHAPTER 4 Exponential and Logarithmic Functions

ALTERNATE EXAMPLE 5
In what direction and how many
units is it necessary to move the
graph of the equation f (x) � 5x to
obtain the graph of the equation
g (x) � 5x � 2?

ANSWER
Downward, 2

IN-CLASS MATERIALS

Point out this contrast between exponential and linear functions: For equally spaced x-values, linear
functions have constant differences in y-values, while pure exponential functions have constant ratios in
y-values. Use this fact to show that the following table describes an exponential function, not a linear one.

Example 5 Comparing Exponential and Power Functions

Compare the rates of growth of the exponential function and the power
function by drawing the graphs of both functions in the following view-
ing rectangles.

(a) 30, 34 by 30, 84 (b) 30, 64 by 30, 254

(c) 30, 204 by 30, 10004

Solution

(a) Figure 4(a) shows that the graph of catches up with, and becomes
higher than, the graph of at x � 2.

(b) The larger viewing rectangle in Figure 4(b) shows that the graph of 
overtakes that of when x � 4.

(c) Figure 4(c) gives a more global view and shows that, when x is large,
is much larger than .g1x 2 � x 2f 1x 2 � 2x

g1x 2 � x2
f 1x 2 � 2x

f 1x 2 � 2x
g1x 2 � x2

g1x 2 � x2
f 1x 2 � 2x

332 CHAPTER 4 Exponential and Logarithmic Functions

8

0 3

(a)

˝=≈
Ï=2x

1000

0 20

(c)

˝=≈

Ï=2x

25

0 6

(b)

˝=≈
Ï=2x

Figure 4 ■

The Natural Exponential Function

Any positive number can be used as the base for an exponential function, but some
bases are used more frequently than others. We will see in the remaining sections of
this chapter that the bases 2 and 10 are convenient for certain applications, but the
most important base is the number denoted by the letter e.

The number e is defined as the value that approaches as n becomes
large. (In calculus this idea is made more precise through the concept of a limit. See
Exercise 55.) The table in the margin shows the values of the expression 
for increasingly large values of n. It appears that, correct to five decimal places,
e � 2.71828; in fact, the approximate value to 20 decimal places is

It can be shown that e is an irrational number, so we cannot write its exact value in
decimal form.

Why use such a strange base for an exponential function? It may seem at first that
a base such as 10 is easier to work with. We will see, however, that in certain appli-
cations the number e is the best possible base. In this section we study how e occurs
in the description of compound interest.

e � 2.71828182845904523536

11 � 1/n 2 n

11 � 1/n 2 n

n

1 2.00000
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828

a 1 �
1
n
b

n

The notation e was chosen by Leon-
hard Euler (see page 288), probably 
because it is the first letter of the word
exponential.

x y
�6.2 0.62000
�2.4 0.65100

1.4 0.68355
5.2 0.71773
9.0 0.75361

12.8 0.79129
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CHAPTER 4 Exponential and Logarithmic Functions 333

ALTERNATE EXAMPLE 6
How many points of interception
have the graphs of the functions f (x)
� 2x and g (x) � x2 drawing in the
viewing rectangle [0, 3] by [0, 8]?

ANSWER
1

ALTERNATE EXAMPLE 7
Evaluate the expression correct to
five decimal places: e3.7

ANSWER
40.4473

EXAMPLE
A shifted exponential curve:

_2

_1
0

1

_4 _3 _2 _1 1

f(x)=-2x-3+1

2 3 4 x

2
y

IN-CLASS MATERIALS

Estimate where 3x � x3 and where 2x � x8 using technology. Notice that exponential functions start by
growing slower than polynomial functions, and then wind up growing much faster. For example, if one
were to graph x2 vs x using one inch per unit, then when x � 60, y would be only 100 yards, as opposed to
a light year for y � 2x. (The sun is only 8 light minutes from the earth.)

Since 2 � e � 3, the graph of the natural exponential function lies between the
graphs of y � 2 x and y � 3 x, as shown in Figure 5.

Scientific calculators have a special key for the function . We use this
key in the next example.

Example 6 Evaluating the Exponential Function

Evaluate each expression correct to five decimal places.

(a) e3 (b) 2e�0.53 (c) e4.8

Solution We use the key on a calculator to evaluate the exponential function.

(a) e3 � 20.08554

(b) 2e�0.53 � 1.17721

(c) e4.8 � 121.51042 ■

Example 7 Transformations of the Exponential Function

Sketch the graph of each function.

(a) (b)

Solution

(a) We start with the graph of y � ex and reflect in the y-axis to obtain the graph of
y � e�x as in Figure 6.

(b) We calculate several values, plot the resulting points, then connect the points
with a smooth curve. The graph is shown in Figure 7.

g1x 2 � 3e 0.5xf 1x 2 � e�x

eX

f 1x 2 � e x

SECTION 4.1 Exponential Functions 333

The Natural Exponential Function

The natural exponential function is the exponential function

with base e. It is often referred to as the exponential function.

f 1x 2 � e x

0 x

y

1

y=3˛

1

y=2˛

y=e ˛

Figure 5

Graph of the natural exponential
function

0 x

y

1

1

y=e ˛y=e–˛

Figure 6

x

�3 0.67
�2 1.10
�1 1.82

0 3.00
1 4.95
2 8.15
3 13.45

f 1x 2 � 3e0.5x

0 x

y

3

3

y=3e0.5x

_3

6

9

12

Figure 7 ■
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334 CHAPTER 4 Exponential and Logarithmic Functions

ALTERNATE EXAMPLE 8
For the graph of the function
g (x) � 4 e0.4x, find the
coordinates of the points with 
x � �3, �2, �1, 0, 1, 2, 3.
Round each value to two decimal
places. 

ANSWER
(�3, 1.2), (�2, 1.8), (�1, 2.68),
(0, 4), (1, 5.97), (2, 8.9), (3, 13.28)

IN-CLASS MATERIALS

Have your students fill out the following table, using their calculators, to give them a feel for y � ex.

(c) From the graph in Figure 8, we see that the number of infected people first rises
slowly; then rises quickly between day 3 and day 8, and then levels off when
about 2000 people are infected. ■

The graph in Figure 8 is called a logistic curve or a logistic growth model. Curves
like it occur frequently in the study of population growth. (See Exercises 69–72.)

Compound Interest

Exponential functions occur in calculating compound interest. If an amount of money
P, called the principal, is invested at an interest rate i per time period, then after one
time period the interest is Pi, and the amount A of money is

If the interest is reinvested, then the new principal is , and the amount after
another time period is . Similarly, after a third
time period the amount is . In general, after k periods the amount is

Notice that this is an exponential function with base 1 � i.
If the annual interest rate is r and if interest is compounded n times per year, then

in each time period the interest rate is i � r/n, and there are nt time periods in t years.
This leads to the following formula for the amount after t years.

A � P11 � i 2 k

A � P11 � i 2 3
A � P11 � i 2 11 � i 2 � P11 � i 2 2

P11 � i 2

A � P � Pi � P11 � i 2

Example 8 An Exponential Model for the Spread 

of a Virus

An infectious disease begins to spread in a small city of population 10,000. After 
t days, the number of persons who have succumbed to the virus is modeled by 
the function

(a) How many infected people are there initially (at time t � 0)?

(b) Find the number of infected people after one day, two days, and five days.

(c) Graph the function √ and describe its behavior.

Solution

(a) Since , we conclude that 
8 people initially have the disease.

(b) Using a calculator, we evaluate , and , and then round off to 
obtain the following values.

√ 15 2√ 11 2 , √ 12 2

√ 10 2 � 10,000/15 � 1245e0 2 � 10,000/1250 � 8

√ 1t 2 �
10,000

5 � 1245e�0.97t

334 CHAPTER 4 Exponential and Logarithmic Functions

Days Infected people

1 21
2 54
5 678

3000

0 12

Figure 8

√1t 2 �
10,000

5 � 1245e�0.97t

x 2x 3x ex

�2 L 0.135

�1 L 0.368
0 1 1 1
1 2 3 L 2.718
2 4 9 L 7.389
3 8 27 L 20.086

1
3 L 0.3331

2 = 0.5

1
9 L 0.1111

4 = 0.25
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CHAPTER 4 Exponential and Logarithmic Functions 335

ALTERNATE EXAMPLE 9
An infectious disease begins
to spread in a small city with a
population of 8000. After t days,
the number of persons who have
succumbed to the virus is modeled
by the function

How many infected people are
there initially (at time t � 0)?
Determine the number of infected
people after one day, two days,
and six days.

ANSWER
5, 13, 33, 857

v(t) =
8000

4 + 1596e-0.95t

IN-CLASS MATERIALS

Anticipate the next section by having
students sketch the graphs of the in-
verse functions of and ex by
reflecting them across the line 
y � x.

2x

Example 9 Calculating Compound Interest

A sum of $1000 is invested at an interest rate of 12% per year. Find the amounts 
in the account after 3 years if interest is compounded annually, semiannually,
quarterly, monthly, and daily.

Solution We use the compound interest formula with P � $1000, r � 0.12,
and t � 3.

Compounding n Amount after 3 years

Annual 1

Semiannual 2

Quarterly 4

Monthly 12

Daily 365
■

We see from Example 9 that the interest paid increases as the number of com-
pounding periods n increases. Let’s see what happens as n increases indefinitely. If
we let m � n/r, then

Recall that as m becomes large, the quantity approaches the number e.
Thus, the amount approaches A � Pert. This expression gives the amount when the
interest is compounded at “every instant.”

11 � 1/m 2m

A1t 2 � P a1 �
r
n
b

nt

� P c a1 �
r
n
b

n/r

d
rt

� P c a1 �
1
m
b

m

d
rt

1000 a1 �
0.12

365
b

365132 

� $1433.24

1000 a1 �
0.12

12
b

12132  

� $1430.77

1000 a1 �
0.12

4
b

4132  

� $1425.76

1000 a1 �
0.12

2
b

2132  

� $1418.52

1000 a1 �
0.12

1
b

1132  

� $1404.93

SECTION 4.1 Exponential Functions 335

Compound Interest

Compound interest is calculated by the formula

where

 t � number of years

 n � number of times interest is compounded per year

 r � interest rate per year

 P � principal

 A1t 2 � amount after t  years

A1t 2 � P a1 �
r
n
b

nt

r is often referred to as the nominal 
annual interest rate.

_4

_2

2

4

_4 _2 2 4

y=2x

x

y

_4

_2

2

4

_4 _2 2 4

y=ex

x

y

EXAMPLE
A comparison of compounding
rates: $2000 is put in an IRA that
earns 7%. Its worth after 10 years is
given in the following table.

Compounded $3934.30
annually

Compounded $3979.58
semi-annually

Compounded monthly $4019.32
Compounded weekly $4025.61
Compounded daily $4027.24
Compounded hourly $4027.50
Compounded $4027.51

instantaneously

Note: Most calculators will not be
able to determine the amount
earned if the interest is com-
pounded, say, every tenth of a
second. Underflow errors in the
microprocessor will make the
computation difficult.
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336 CHAPTER 4 Exponential and Logarithmic Functions

DRILL QUESTION

Find the total amount of money
in an account after 2 years if $100
is invested at an interest rate of
5.5% per year, compounded
continuously.

Answer

$111.63

ALTERNATE EXAMPLE 10
Find the amount after 4 years if
$1100 is invested at an interest
rate of 11% per year, compounded
continuously. Round to the nearest
cent.

ANSWER
$1707.98

Example 10 Calculating Continuously Compounded Interest

Find the amount after 3 years if $1000 is invested at an interest rate of 12% per
year, compounded continuously.

Solution We use the formula for continuously compounded interest with 
P � $1000, r � 0.12, and t � 3 to get

Compare this amount with the amounts in Example 9. ■

4.1 Exercises

A13 2 � 1000e10.1223 � 1000e0.36 � $1433.33

336 CHAPTER 4 Exponential and Logarithmic Functions

1–4 ■ Use a calculator to evaluate the function at the indicated
values. Round your answers to three decimals.

1.

2.

3.

4.

5–10 ■ Sketch the graph of the function by making a table of
values. Use a calculator if necessary.

5. 6.

7. 8.

9. 10.

11–14 ■ Graph both functions on one set of axes.

11.

12.

13.

14. f 1x 2 � A23B
x
 and g1x 2 � A43B

x

f 1x 2 � 4x and g1x 2 � 7x

f 1x 2 � 3�x and g1x 2 � A13B
x

f 1x 2 � 2x and g1x 2 � 2�x

h1x 2 � 2e�0.5xg1x 2 � 3e x

h1x 2 � 11.1 2 xf 1x 2 � A13B
x

g1x 2 � 8xf 1x 2 � 2x

g1x 2 � A34B
2x; g10.7 2 , g117/2 2 , g11/p 2 , gA23B

g1x 2 � A23B
x�1; g11.3 2 , g115 2 , g12p 2 , gA� 

1
2B

f 1x 2 � 3x�1; f 1�1.5 2 , f 113 2 , f 1e 2 , f A� 
5
4B

f 1x 2 � 4x; f 10.5 2 , f 112 2 , f 1p 2 , f A13B

15–18 ■ Find the exponential function whose graph
is given.

15. 16.

17. 18.

0 x

y

3
1

_3

(_3, 8)

1
16!2,    @

0 x

y

3

1

_3

0 x

y

3

1

_3

1
5!_1,   @

0 x

y

3

1

_3

(2, 9)

f 1x 2 � ax

Continuously Compounded Interest

Continuously compounded interest is calculated by the formula

where

 t � number of years

 r � interest rate per year

 P � principal

 A1t 2 � amount after t years

A1t 2 � Pe rt
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19–24 ■ Match the exponential function with one of the graphs
labeled I–VI.

19. 20.

21. 22.

23. 24.

25–38 ■ Graph the function, not by plotting points, but by start-
ing from the graphs in Figures 2 and 5. State the domain, range,
and asymptote.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. y � 1 � ex

35. y � e�x � 1 36.

37. 38. y � ex�3 � 4f 1x 2 � e 
x�2

f 1x 2 � �e�x

f 1x 2 � �e x

f 1x 2 � � A15B
x

f 1x 2 � 10x�3

h1x 2 � 6 � 3xh1x 2 � 4 � A12B
x

g1x 2 � 2x�3g1x 2 � 2x � 3

f 1x 2 � 10�xf 1x 2 � �3x

III IV

x

y

3_3

(_1, _3)

0

1

x

y

(0, 1)

_3 30

V VI

x

y

(0, _1)

_3 3

x

y

0

(0, 4)

3_3

I II

0 x

y

(_1, 5)

_3 3

1

0 x

y

(3, 1)

5

1

f 1x 2 � 5x�1 � 4f 1x 2 � 5x�3

f1x 2 � 5x � 3f 1x 2 � 5�x

f 1x 2 � �5xf 1x 2 � 5x

39–40 ■ Find the function of the form whose graph
is given.

39. 40.

41. (a) Sketch the graphs of and .

(b) How are the graphs related?

42. (a) Sketch the graphs of and .

(b) Use the Laws of Exponents to explain the relationship
between these graphs.

43. If , show that

44. Compare the functions and by evalu-
ating both of them for x � 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,
and 20. Then draw the graphs of f and g on the same set
of axes.

45. The hyperbolic cosine function is defined by

Sketch the graphs of the functions and on
the same axes and use graphical addition (see Section 2.7)
to sketch the graph of .

46. The hyperbolic sine function is defined by

Sketch the graph of this function using graphical addition as
in Exercise 45.

47–50 ■ Use the definitions in Exercises 45 and 46 to prove the
identity.

47.

48.

49.

50. sinh1x � y 2 � sinh1x 2cosh1y 2 � cosh1x 2sinh1y 2

3cosh1x 2 4 2 � 3sinh1x 2 4 2 � 1

sinh1�x 2 � �sinh1x 2

cosh1�x 2 � cosh1x 2

sinh1x 2 �
e x � e�x

2

y � cosh1x 2

y � 1
2  
e�xy � 1

2  
e x

cosh1x 2 �
e x � e�x

2

g1x 2 � 3xf 1x 2 � x 3

f 1x � h 2 � f 1x 2
h

� 10x a
10h � 1

h
b

f 1x 2 � 10x

g1x 2 � 3xf 1x 2 � 9x/2

g1x 2 � 312x 2f 1x 2 � 2x

0 x

y

3

5

_3

(_1, 15)

0 x

y

3

3

_3

(2, 12)

f 1x 2 � Cax
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51. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions
in the following viewing rectangles.

(i) 30, 54 by 30, 204

(ii) 30, 254 by 30, 1074

(iii) 30, 504 by 30, 1084

(b) Find the solutions of the equation 2 x � x 5, correct to
one decimal place.

52. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions
in the following viewing rectangles:

(i) 3�4, 44 by 30, 204 (ii) 30, 104 by 30, 50004

(iii) 30, 204 by 30, 1054

(b) Find the solutions of the equation 3 x � x 4, correct to
two decimal places.  

53–54 ■ Draw graphs of the given family of functions for
c � 0.25, 0.5, 1, 2, 4. How are the graphs related?

53. 54.

55. Illustrate the definition of the number e by graphing the
curve and the line y � e on the same screen
using the viewing rectangle 30, 404 by 30, 44.

56. Investigate the behavior of the function

as x �q by graphing f and the line y � 1/e on the same
screen using the viewing rectangle 30, 204 by 30, 14.

57. (a) Draw the graphs of the family of functions

for a � 0.5, 1, 1.5, and 2.

(b) How does a larger value of a affect the graph?

58–59 ■ Graph the function and comment on vertical and 
horizontal asymptotes.

58. y � 21/x 59.

60–61 ■ Find the local maximum and minimum values of the
function and the value of x at which each occurs. State each 
answer correct to two decimal places.

60. 61.

62–63 ■ Find, correct to two decimal places, (a) the intervals
on which the function is increasing or decreasing, and (b) the
range of the function.

62. 63. y � xe�xy � 10x�x2

g1x 2 � e x � e�3xg1x 2 � x x  1x � 0 2

y �
e x

x

f 1x 2 �
a

2
 1ex/a � e�x/a 2

f 1x 2 � a 1 �
1
x
b

x

y � 11 � 1/x 2 x

f 1x 2 � 2cxf 1x 2 � c2x

g1x 2 � x 4
f 1x 2 � 3x

g1x 2 � x 5
f 1x 2 � 2x

Applications

64. Medical Drugs When a certain medical drug is adminis-
tered to a patient, the number of milligrams remaining in the
patient’s bloodstream after t hours is modeled by

How many milligrams of the drug remain in the patient’s
bloodstream after 3 hours?

65. Radioactive Decay A radioactive substance decays in
such a way that the amount of mass remaining after t days is
given by the function

where is measured in kilograms.

(a) Find the mass at time t � 0.

(b) How much of the mass remains after 45 days?

66. Radioactive Decay Radioactive iodine is used by 
doctors as a tracer in diagnosing certain thyroid gland 
disorders. This type of iodine decays in such a way that 
the mass remaining after t days is given by the function

where is measured in grams.

(a) Find the mass at time t � 0.

(b) How much of the mass remains after 20 days?

67. Sky Diving A sky diver jumps from a reasonable height
above the ground. The air resistance she experiences is pro-
portional to her velocity, and the constant of proportionality
is 0.2. It can be shown that the downward velocity of the sky
diver at time t is given by

where t is measured in seconds and is measured in feet
per second (ft/s).

(a) Find the initial velocity of the sky diver.

(b) Find the velocity after 5 s and after 10 s.

(c) Draw a graph of the velocity function .

(d) The maximum velocity of a falling object with wind 
resistance is called its terminal velocity. From the graph
in part (c) find the terminal velocity of this sky diver.

√(t)=80(1-e_º.™t)

√1t 2

√ 1t 2

√ 1t 2 � 8011 � e�0.2t 2

m1t 2

m1t 2 � 6e�0.087t

m1t 2

m1t 2 � 13e�0.015t

D1t 2 � 50e�0.2t
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68. Mixtures and Concentrations A 50-gallon barrel is
filled completely with pure water. Salt water with a concen-
tration of 0.3 lb/gal is then pumped into the barrel, and the
resulting mixture overflows at the same rate. The amount of
salt in the barrel at time t is given by

where t is measured in minutes and is measured in
pounds.

(a) How much salt is in the barrel after 5 min?

(b) How much salt is in the barrel after 10 min?

(c) Draw a graph of the function .

(d) Use the graph in part (c) to determine the value that the
amount of salt in the barrel approaches as t becomes
large. Is this what you would expect?

69. Logistic Growth Animal populations are not capable 
of unrestricted growth because of limited habitat and food
supplies. Under such conditions the population follows a 
logistic growth model

where c, d, and k are positive constants. For a certain fish
population in a small pond d � 1200, k � 11, c � 0.2, and t
is measured in years. The fish were introduced into the pond
at time t � 0.

(a) How many fish were originally put in the pond?

(b) Find the population after 10, 20, and 30 years.

(c) Evaluate for large values of t. What value does the
population approach as t �q? Does the graph shown
confirm your calculations?

t

P

0 10 20 4030

1200

1000

800

600

400

200

P1t 2

P1t 2 �
d

1 � ke�ct

Q(t)=15(1-e_º.º¢ t)

Q1t 2

Q1t 2

Q1t 2 � 1511 � e�0.04t 2

70. Bird Population The population of a certain species of
bird is limited by the type of habitat required for nesting.
The population behaves according to the logistic
growth model

where t is measured in years.

(a) Find the initial bird population.

(b) Draw a graph of the function .

(c) What size does the population approach as time 
goes on?

71. Tree Diameter For a certain type of tree the diameter 
D (in feet) depends on the tree’s age t (in years) according
to the logistic growth model

Find the diameter of a 20-year-old tree.

72. Rabbit Population Assume that a population of rabbits
behaves according to the logistic growth model

where n0 is the initial rabbit population.

(a) If the initial population is 50 rabbits, what will the pop-
ulation be after 12 years?

(b) Draw graphs of the function for n0 � 50, 500,
2000, 8000, and 12,000 in the viewing rectangle 30, 154
by 30, 12,0004.

(c) From the graphs in part (b), observe that, regardless of
the initial population, the rabbit population seems to 
approach a certain number as time goes on. What is that
number? (This is the number of rabbits that the island
can support.)

n1t 2

n1t 2 �
300

0.05 � a
300
n0

� 0.05 b e�0.55t

t

D

0 100 700300 500

5

4

3

2

1

D1t 2 �
5.4

1 � 2.9e�0.01t

n1t 2

n1t 2 �
5600

0.5 � 27.5e�0.044t
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73–74 ■ Compound Interest An investment of $5000 is 
deposited into an account in which interest is compounded
monthly. Complete the table by filling in the amounts to which
the investment grows at the indicated times or interest rates.

73. r � 4% 74. t � 5 years

75. Compound Interest If $10,000 is invested at an interest
rate of 10% per year, compounded semiannually, find the
value of the investment after the given number of years.

(a) 5 years

(b) 10 years

(c) 15 years

76. Compound Interest If $4000 is borrowed at a rate of
16% interest per year, compounded quarterly, find the
amount due at the end of the given number of years.

(a) 4 years

(b) 6 years

(c) 8 years

77. Compound Interest If $3000 is invested at an interest
rate of 9% per year, find the amount of the investment 
at the end of 5 years for the following compounding 
methods.

(a) Annual

(b) Semiannual

(c) Monthly

(d) Weekly

(e) Daily

(f) Hourly

(g) Continuously

78. Compound Interest If $4000 is invested in an account
for which interest is compounded quarterly, find the amount
of the investment at the end of 5 years for the following 
interest rates.

(a) 6% (b) 6 %

(c) 7% (d) 8%

1
2

79. Compound Interest Which of the given interest rates
and compounding periods would provide the best 
investment?

(i) 8 % per year, compounded semiannually

(ii) 8 % per year, compounded quarterly

(iii) 8% per year, compounded continuously

80. Compound Interest Which of the given interest rates
and compounding periods would provide the better 
investment?

(i) 9 % per year, compounded semiannually

(ii) 9% per year, compounded continuously

81. Present Value The present value of a sum of money is
the amount that must be invested now, at a given rate of 
interest, to produce the desired sum at a later date.

(a) Find the present value of $10,000 if interest is paid at a
rate of 9% per year, compounded semiannually, for 
3 years.

(b) Find the present value of $100,000 if interest is paid 
at a rate of 8% per year, compounded monthly, for 
5 years.

82. Investment A sum of $5000 is invested at an interest rate
of 9% per year, compounded semiannually.

(a) Find the value of the investment after t years.

(b) Draw a graph of .

(c) Use the graph of to determine when this invest-
ment will amount to $25,000.

Discovery • Discussion

83. Growth of an Exponential Function Suppose you are
offered a job that lasts one month, and you are to be very
well paid. Which of the following methods of payment is
more profitable for you?

(a) One million dollars at the end of the month

(b) Two cents on the first day of the month, 4 cents on the
second day, 8 cents on the third day, and, in general, 2 n

cents on the nth day

84. The Height of the Graph of an Exponential Function

Your mathematics instructor asks you to sketch a graph of
the exponential function

for x between 0 and 40, using a scale of 10 units to one inch.
What are the dimensions of the sheet of paper you will need
to sketch this graph?

f 1x 2 � 2x

A1t 2

A1t 2

A1t 2

1
4

1
4

1
2

Rate 
per year Amount

1%
2%
3%
4%
5%
6%

Time 
(years) Amount

1
2
3
4
5
6
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Exponential Explosion

To help us grasp just how explosive exponential growth is, let’s try a thought 
experiment.

Suppose you put a penny in your piggy bank today, two pennies tomorrow,
four pennies the next day, and so on, doubling the number of pennies you add to
the bank each day (see the table). How many pennies will you put in your piggy
bank on day 30? The answer is 230 pennies. That’s simple, but can you guess
how many dollars that is? 230 pennies is more than 10 million dollars!

D I S C O V E R Y
P R O J E C T

SECTION 4.1 Exponential Functions 341

Day Pennies

0 1
1 2
2 4
3 8
4 16
. .. .. .
n 2n

. .. .. .

As you can see, the exponential function grows extremely fast.
This is the principle behind atomic explosions. An atom splits releasing two 
neutrons, which cause two atoms to split, each releasing two neutrons, causing
four atoms to split, and so on. At the nth stage 2n atoms split—an exponential
explosion!

Populations also grow exponentially. Let’s see what this means for a type 
of bacteria that splits every minute. Suppose that at 12:00 noon a single bac-
terium colonizes a discarded food can. The bacterium and his descendants are 
all happy, but they fear the time when the can is completely full of bacteria—
doomsday.

1. How many bacteria are in the can at 12:05? At 12:10?

2. The can is completely full of bacteria at 1:00 P.M. At what time was the can
only half full of bacteria?

3. When the can is exactly half full, the president of the bacteria colony reas-
sures his constituents that doomsday is far away—after all, there is as much
room left in the can as has been used in the entire previous history of the
colony. Is the president correct? How much time is left before doomsday?

4. When the can is one-quarter full, how much time remains till doomsday?

5. A wise bacterium decides to start a new colony in another can and slow down
splitting time to 2 minutes. How much time does this new colony have?

f 1x 2 � 2x
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SUGGESTED TIME

AND EMPHASIS 

1 class.
Essential material.

POINTS TO STRESS

1. Definition of the logarithm
function as the inverse of the
exponential function, from
both a numeric and geometric
perspective.

2. Properties of the logarithm
function, emphasizing the nat-
ural and common logarithms.

ALTERNATE EXAMPLE 1
Write the following equation in
exponential form: log3 9 � 2

ANSWER
32 = 9

SAMPLE QUESTION

Text Question

It is a fact that 10p 1385.46. Is it possible to approximate log 1385.46 without the use of a calculator? If
so, then approximate this number. If not, why not?

Answer

log10 1385.46 pL

L

4.2 Logarithmic Functions

In this section we study the inverse of exponential functions.

Logarithmic Functions

Every exponential function , with a � 0 and a � 1, is a one-to-one function
by the Horizontal Line Test (see Figure 1 for the case a � 1) and therefore has an 
inverse function. The inverse function f�1 is called the logarithmic function with base
a and is denoted by loga. Recall from Section 2.8 that f�1 is defined by

This leads to the following definition of the logarithmic function.

f�11x 2 � y 3  f 1y 2 � x

f 1x 2 � ax

342 CHAPTER 4 Exponential and Logarithmic Functions

0 x

y
f(x)=a ,̨
a>1

Figure 1

is one-to-onef 1x 2 � ax

Definition of the Logarithmic Function

Let a be a positive number with a � 1. The logarithmic function with base
a, denoted by loga, is defined by

So, loga x is the exponent to which the base a must be raised to give x.

loga x � y 3  ay � x

When we use the definition of logarithms to switch back and forth between the
logarithmic form loga x � y and the exponential form ay � x, it’s helpful to notice
that, in both forms, the base is the same:

Logarithmic form Exponential form

loga x � y ay � x

Example 1 Logarithmic and Exponential Forms

The logarithmic and exponential forms are equivalent equations—if one is true,
then so is the other. So, we can switch from one form to the other as in 
the following illustrations.

■

It’s important to understand that loga x is an exponent. For example, the numbers
in the right column of the table in the margin are the logarithms (base 10) of the 

Exponent Exponent

BaseBase

Logarithmic form Exponential form

log10 100,000 � 5 105 � 100,000

log28 � 3 23 � 8

log2 !�
1
8�@ � �3 2�3 � �

1
8�

log5 s � r 5r � s

We read loga x � y as “log base a of 
x is y.”

By tradition, the name of the logarith-
mic function is loga, not just a single
letter. Also, we usually omit the paren-
theses in the function notation and
write

loga1x 2 � loga x
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ALTERNATE EXAMPLE 2
Evaluate the following logarithm:
log10 100,000

ANSWER
5

ALTERNATE EXAMPLE 3a
In what direction and how many
units is it necessary to move the
graph of the function g(x) � log5 x
to obtain the graph of the function
f(x) � �4 � log5 x?

ANSWER
Downward, 4

ALTERNATE EXAMPLE 3b
In what direction and how many
units is it necessary to move the
graph of the function h(x) �
log10 x to obtain the graph of the
function g(x) � log10(x - 2)?

ANSWER
Right, 2

DRILL QUESTION

Compute .

Answer

�3

log4 
1

64

numbers in the left column. This is the case for all bases, as the following example 
illustrates.

Example 2 Evaluating Logarithms

(a) log10 1000 � 3 because 103 � 1000

(b) log2 32 � 5 because 25 � 32

(c) log10 0.1 � �1 because 10�1 � 0.1

(d) because 161/2 � 4 ■

When we apply the Inverse Function Property described on page 227 to 
and , we get

We list these and other properties of logarithms discussed in this section.

 aloga 
x � x  x � 0

 loga1a
x 2 � x  x � �

f �11x 2 � loga x
f 1x 2 � ax

log16 4 � 1
2

SECTION 4.2 Logarithmic Functions 343

x log10 x

104 4
103 3
102 2
10 1
1 0

10�1 �1
10�2 �2
10�3 �3
10�4 �4

Properties of Logarithms

Property Reason

1. loga 1 � 0 We must raise a to the power 0 to get 1.

2. loga a � 1 We must raise a to the power 1 to get a.

3. loga ax � x We must raise a to the power x to get ax.

4. loga x is the power to which a must be raised to get x.aloga 
x � x

Example 3 Applying Properties of Logarithms

We illustrate the properties of logarithms when the base is 5.

Property 1 Property 2

Property 3 Property 4 ■

Graphs of Logarithmic Functions

Recall that if a one-to-one function f has domain A and range B, then its inverse func-
tion f�1 has domain B and range A. Since the exponential function with 
a � 1 has domain and range , we conclude that its inverse function,

, has domain and range .
The graph of is obtained by reflecting the graph of in

the line y � x. Figure 2 shows the case a � 1. The fact that y � ax (for a � 1) is a
very rapidly increasing function for x � 0 implies that y � loga x is a very slowly in-
creasing function for x � 1 (see Exercise 84).

Since loga 1 � 0, the x-intercept of the function y � loga x is 1. The y-axis is a ver-
tical asymptote of y � loga x because loga x � �q as x � 0�.

f 1x 2 � axf �11x 2 � loga x
�10, q 2f �11x 2 � loga x

10, q 2�

f 1x 2 � ax

5log5 12 � 12log5 58 � 8

log5 5 � 1log5 1 � 0

y=a ,̨  a>1

y=log a x

y=x

x

y

1

1

Figure 2

Graph of the logarithmic function
f 1x 2 � loga x

Inverse Function Property:

f1f�11x 22 � x

f�11f 1x 22 � x

Arrow notation is explained on 
page 301.
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ALTERNATE EXAMPLE 4
Evaluate log5 514 and 

ANSWER
14, 15

5log515.

IN-CLASS MATERIALS

When the logarithm function is
graphed on a calculator, it appears
to have a horizontal asymptote.
Point out that the graph is mis-
leading in that way. Start a graph
of y � log10 x on the blackboard,
noting the domain and the vertical
asymptote. Using the scale of
1 in. � 1 unit (on the x-axis) and
1 ft � 1 unit (on the 
y-axis), plot some points:

Example 4 Graphing a Logarithmic Function

by Plotting Points

Sketch the graph of .

Solution To make a table of values, we choose the x-values to be powers of 
2 so that we can easily find their logarithms. We plot these points and connect 
them with a smooth curve as in Figure 3.

f 1x 2 � log2 x

344 CHAPTER 4 Exponential and Logarithmic Functions

x log2 x

23 3
22 2
2 1
1 0
2�1 �1
2�2 �2
2�3 �3
2�4 �4

x

y

1
2
3

1 2 4 6 8_1
_2
_3
_4

f(x)=log¤ x

Figure 4 shows the graphs of the family of logarithmic functions with bases 
2, 3, 5, and 10. These graphs are drawn by reflecting the graphs of y � 2x, y � 3x,
y � 5x, and y � 10 x (see Figure 2 in Section 4.1) in the line y � x. We can also plot
points as an aid to sketching these graphs, as illustrated in Example 4.

y=log‹ x

y=log¤ x

y=logfi x
y=log⁄‚ x

0 x

y

1

1

Figure 4

A family of logarithmic functions

In the next two examples we graph logarithmic functions by starting with the ba-
sic graphs in Figure 4 and using the transformations of Section 2.4.

Figure 3 ■

Mathematics in 

the Modern World

Law Enforcement

Mathematics aids law enforcement
in numerous and surprising ways,
from the reconstruction of bullet
trajectories, to determining the time
of death, to calculating the proba-
bility that a DNA sample is from a
particular person. One interesting
use is in the search for missing per-
sons. If a person has been missing
for several years, that person may
look quite different from their most
recent available photograph. This
is particularly true if the missing
person is a child. Have you ever
wondered what you will look like
5, 10, or 15 years from now?

Researchers have found that
different parts of the body grow at
different rates. For example, you
have no doubt noticed that a baby’s
head is much larger relative to its
body than an adult’s. As another
example, the ratio of arm length to
height is �

1
3� in a child but about �5

2
� in

an adult. By collecting data and an-
alyzing the graphs, researchers are
able to determine the functions that
model growth. As in all growth
phenomena, exponential and loga-
rithmic functions play a crucial role.
For instance, the formula that re-
lates arm length l to height h is 
l � aekh where a and k are con-
stants. By studying various physical
characteristics of a person, mathe-
matical biologists model each char-
acteristic by a function that de-
scribes how it changes over time.
Models of facial characteristics can 

(continued)

Bettmann /Corbis Hulton /Deutch Collection /
Corbis

Now ask how many inches we would have to go out to get up to y � 2 ft. (Answer: 100 in., or ft.) If the
blackboard is large enough, plot the point (100, 2). Then ask how far we would have to go to get up to
y � 5 ft. (Answer: 1.57 miles.) Note how it turns out to take close to a mile and a half to go from y � 4
to y � 5, and that (if you graphed it out) it would look a lot like there is a horizontal asymptote. Find the 
distance from your classroom to a city or landmark in another state, and ask the class to estimate the log 
of that distance, using the same scale.

81
3

x 0.1 1 2 3 4 5 6 7 8 9 10
log10 x �1 0 0.30 0.47 0.60 0.70 0.78 0.85 0.90 0.95 1

IN-CLASS MATERIALS

Sketch a graph of
f (x) � 2log2 (x � 3). Sketch the
inverse function, then find an
algebraic formula for the inverse.
Foreshadow the next section by
showing that the graph of f (x) is
the same as that of 

0

2
2

y=f 
_1(x)

y=f(x)

x

y

f 
_1(x)=2x/2-3

g(x) = log2 A (x + 3)2 B .
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ALTERNATE EXAMPLE 5
Sketch the graph of each function: 
(a)
(b)

ANSWERS
(a)

(b)

ALTERNATE EXAMPLE 6
Sketch the graph of each function: 
(a)
(b)

ANSWERS
(a)

(b)

_5

_8 _2 81

5

x

y

_ln(x) ln(x)

_5

_8 810

5

x

y

ln(x)

3+ln(x)

g(x) = ln (3 + x)
g(x) = 3 + ln (x)

_4

_8 8
0

x

y

_ln(x) ln(x)

1

1
0

_1

_ln(x)

ln(x)

_2
_3
_4

2
3
4

x

y

g(x) = ln (-x)
g(x) = - ln (x)

IN-CLASS MATERIALS

Ask your students if they have ever had to deal with recharging a battery, for example the battery to a music
device or a laptop. Assume that the battery is dead, and it takes an hour to charge it up halfway. Ask them how
much it will be charged in two hours. (The answer is 75%
charged.) They may have noticed that, when charging
older laptop batteries, the power meter rarely says “100%
charged.” It turns out that the time it takes to charge the
battery to n% is given by ; in our
example k � 1.4427. Have students compute how long
it would take the battery to get a 97% charge, a 98%
charge, and a 99% charge. (Remind them that it took
only an hour to go from 0% to 50%.) Graph t versus n to
demonstrate that the battery will never be fully charged.

t = -k ln 11 - n
1002

Example 5 Reflecting Graphs of Logarithmic Functions

Sketch the graph of each function.

(a) (b)

Solution

(a) We start with the graph of and reflect in the x-axis to get the
graph of in Figure 5(a).

(b) We start with the graph of and reflect in the y-axis to get the
graph of in Figure 5(b).h1x 2 � log21�x 2

f 1x 2 � log2 x

g1x 2 � �log2 x
f 1x 2 � log2 x

h1x 2 � log21�x 2g1x 2 � �log2 x

SECTION 4.2 Logarithmic Functions 345

Example 6 Shifting Graphs of Logarithmic Functions

Find the domain of each function, and sketch the graph.

(a) (b)

Solution

(a) The graph of g is obtained from the graph of (Figure 4) by 
shifting upward 2 units (see Figure 6). The domain of f is .10, q 2

f 1x 2 � log5 x

h1x 2 � log101x � 3 2g1x 2 � 2 � log5 x

f(x)=log¤ x f(x)=log¤ x

h(x)=log¤(−x)
g(x)=−log ¤ x

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

Figure 5 ■

3

0 x

y

1

1

2

g(x)=2+logfi x

f(x)=logfi x

Figure 6

(b) The graph of h is obtained from the graph of (Figure 4) by 
shifting to the right 3 units (see Figure 7 on the next page). The line x � 3 
is a vertical asymptote. Since log10 x is defined only when x � 0, the domain 

f 1x 2 � log10 x

be programmed into a computer to
give a picture of how a person’s ap-
pearance changes over time. These
pictures aid law enforcement agen-
cies in locating missing persons.

0

5

10

15

20

10 20 30 40 50 60 70 80

Full
Charge

90 100 n

t
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ALTERNATE EXAMPLE 7
Find appropriate values of f (x) �
log x, if x � 0.1, 1, 4, and 10. Use
a calculator to evaluate the
function for those values of x that
are not powers of 10. 

ANSWER
(0.1, -1), (1, 0), (4, 0.602), (10, 1)

IN-CLASS MATERIALS

Show students semilog graph paper (available from the web, university bookstores, or your friendly neigh-
borhood physics teacher). Point out how the distance between the y-axis lines is based on the logarithm of
the y-coordinate, not on the y-coordinate itself. Have them graph y � 2x on semilog graph paper.

of is

■

Common Logarithms

We now study logarithms with base 10.

f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1
Asymptote
x = 3

5x 0  x � 3 � 06 � 5x 0  x � 36 � 13, q 2

h1x 2 � log101x � 3 2

346 CHAPTER 4 Exponential and Logarithmic Functions

Figure 7

Common Logarithm

The logarithm with base 10 is called the common logarithm and is denoted
by omitting the base:

log x � log10 x

From the definition of logarithms we can easily find that

But how do we find log 50? We need to find the exponent y such that 10 y � 50.
Clearly, 1 is too small and 2 is too large. So

To get a better approximation, we can experiment to find a power of 10 closer to 50.
Fortunately, scientific calculators are equipped with a key that directly gives
values of common logarithms.

Example 7 Evaluating Common Logarithms

Use a calculator to find appropriate values of and use the values to
sketch the graph.

Solution We make a table of values, using a calculator to evaluate the function
at those values of x that are not powers of 10. We plot those points and connect
them by a smooth curve as in Figure 8.

f 1x 2 � log x

LOG

1 � log 50 � 2

log 10 � 1  and  log 100 � 2

John Napier (1550–1617) was a
Scottish landowner for whom
mathematics was a hobby. We
know him today because of his key
invention—logarithms, which he
published in 1614 under the title A
Description of the Marvelous Rule
of Logarithms. In Napier’s time,
logarithms were used exclusively
for simplifying complicated calcu-
lations. For example, to multiply
two large numbers we would write
them as powers of 10. The expo-
nents are simply the logarithms of
the numbers. For instance,

The idea is that multiplying powers
of 10 is easy (we simply add their
exponents). Napier produced ex-
tensive tables giving the loga-
rithms (or exponents) of numbers.
Since the advent of calculators 
and computers, logarithms are no
longer used for this purpose. The
logarithmic functions, however,
have found many applications,
some of which are described in this
chapter.

Napier wrote on many topics.
One of his most colorful works is a
book entitled A Plaine Discovery
of the Whole Revelation of Saint
John, in which he predicted that the
world would end in the year 1700.

� 261,872,564

� 108.41809

� 103.65629 � 104.76180

4532 � 57783
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ALTERNATE EXAMPLE 8
Find the decibel level of a sound
whose physical intensity I is 1000
times that of I0.

ANSWER

Compare 

this result with the example in the
text—an increase of 10 in the
decibel level reflected the
intensity going from 100I0 to
1000I0.

10 log a1000I0

I0
b = 30.

EXAMPLE
A shifted logarithmic curve:

_10

_5
0

5

10

15

2 4 6 8 10

y= 5 ln(x-2)-2

12 14 16 18

y

x

SECTION 4.2 Logarithmic Functions 347

x log x

0.01 �2
0.1 �1
0.5 �0.301
1 0
4 0.602
5 0.699

10 1

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

Figure 8 ■

Scientists model human response to stimuli (such as sound, light, or pressure) us-
ing logarithmic functions. For example, the intensity of a sound must be increased
manyfold before we “feel” that the loudness has simply doubled. The psychologist
Gustav Fechner formulated the law as

where S is the subjective intensity of the stimulus, I is the physical intensity of the
stimulus, I0 stands for the threshold physical intensity, and k is a constant that is dif-
ferent for each sensory stimulus.

Example 8 Common Logarithms and Sound

The perception of the loudness B (in decibels, dB) of a sound with physical 
intensity I (in W/m2) is given by

where I0 is the physical intensity of a barely audible sound. Find the decibel level
(loudness) of a sound whose physical intensity I is 100 times that of I0.

Solution We find the decibel level B by using the fact that I � 100I0.

Definition of B

I � 100I0

Cancel I0

Definition of log

The loudness of the sound is 20 dB. ■

Natural Logarithms

Of all possible bases a for logarithms, it turns out that the most convenient choice for
the purposes of calculus is the number e, which we defined in Section 4.1.

 � 10 # 2 � 20

 � 10  log 100

 � 10  log a
100I0

I0
b

 B � 10  log a
I

I0
b

B � 10  log a
I

I0
b

S � k log a
I

I0
b

Human response to sound and
light intensity is logarithmic.

0
1
2 3 4

5
6

We study the decibel scale in more 
detail in Section 4.5.
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ALTERNATE EXAMPLE 9
Evaluate the following:
(a) ln(e5)

(b)
(c) ln(2.72)

ANSWERS
(a) 5
(b)

(c) ln(2.72) � 1.0006

7
3

ln A23 e7 B

The natural logarithmic function y � ln x is the inverse function of the exponen-
tial function y � ex. Both functions are graphed in Figure 9. By the definition of in-
verse functions we have

If we substitute a � e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.

348 CHAPTER 4 Exponential and Logarithmic Functions

Natural Logarithm

The logarithm with base e is called the natural logarithm and is denoted 
by ln:

ln x � loge x

Properties of Natural Logarithms

Property Reason

1. ln 1 � 0 We must raise e to the power 0 to get 1.

2. ln e � 1 We must raise e to the power 1 to get e.

3. ln ex � x We must raise e to the power x to get ex.

4. eln x � x ln x is the power to which e must be raised to get x.

Calculators are equipped with an key that directly gives the values of natural
logarithms.

Example 9 Evaluating the Natural Logarithm Function

(a) ln e8 � 8 Definition of natural logarithm

(b) Definition of natural logarithm

(c) ln 5 � 1.609 Use key on calculator ■LN

ln a
1

e 2 b � ln e�2 � �2

LN

Figure 9

Graph of the natural 
logarithmic function

The notation ln is an abbreviation for
the Latin name logarithmus naturalis.

ln x � y 3  e y � x

y=x

y=e˛

y=ln x

x

y

1

1
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ALTERNATE EXAMPLE 10
Find the domain of the function
f(x) � ln(x2 - 9).

ANSWER

ALTERNATE EXAMPLE 11
Draw the graph of y � ln (x)�x
and use it to find the asymptotes
and local extreme values. 
There is a vertical asymptote at 
x � 0, and a horizontal one at y �
0. There is a local maximum at
about x � 2.718, and its value is
about 0.3679. (Using calculus, we
can find the exact values: x � e,
y � 1/e.)

2 4 6 8 10

1

0

-3

x

y

(- q , -3) h  (3, q )

Example 10 Finding the Domain of a Logarithmic Function

Find the domain of the function .

Solution As with any logarithmic function, ln x is defined when x � 0. Thus,
the domain of f is

@

■

Example 11 Drawing the Graph of a Logarithmic Function

Draw the graph of the function and use it to find the asymptotes
and local maximum and minimum values.

Solution As in Example 10 the domain of this function is the interval ,
so we choose the viewing rectangle 3�3, 34 by 3�3, 34. The graph is shown in Figure
10, and from it we see that the lines x � �2 and x � 2 are vertical asymptotes.

The function has a local maximum point to the right of x � 1 and a local 
minimum point to the left of x � �1. By zooming in and tracing along the graph
with the cursor, we find that the local maximum value is approximately 1.13 and
this occurs when x � 1.15. Similarly (or by noticing that the function is odd), we
find that the local minimum value is about �1.13, and it occurs when x � �1.15. ■

4.2 Exercises

1�2, 2 2

y � x ln14 � x2 2

 � 5x 0  �2 � x � 26 � 1�2, 2 2

0 x 0 � 26 5x 0  4 � x2 � 06 � 5x 0  x2 � 46 � 5x

f 1x 2 � ln14 � x2 2

SECTION 4.2 Logarithmic Functions 349

3

_3

_3 3

Figure 10

y � x ln14 � x2 2

1–2 ■ Complete the table by finding the appropriate logarithmic
or exponential form of the equation, as in Example 1.

3–8 ■ Express the equation in exponential form.

3. (a) log5 25 � 2 (b) log5 1 � 0

4. (a) log10 0.1 � �1 (b) log8 512 � 3

5. (a) (b)

6. (a) log3 81 � 4 (b)

7. (a) ln 5 � x (b) ln y � 5

8. (a) (b)

9–14 ■ Express the equation in logarithmic form.

9. (a) 53 � 125 (b) 10�4 � 0.0001

10. (a) 103 � 1000 (b) 811/2 � 9

11. (a) (b)

12. (a) 4�3/2 � 0.125 (b) 73 � 343

13. (a) ex � 2 (b) e 3 � y

14. (a) ex�1 � 0.5 (b) e0.5x � t

15–24 ■ Evaluate the expression.

15. (a) log3 3 (b) log3 1 (c) log3 32

16. (a) log5 54 (b) log4 64 (c) log9 9

2�3 � 1
88�1 � 1

8

ln1x � 1 2 � 4ln1x � 1 2 � 2

log8 4 � 2
3

log2A
1
8B � �3log8 2 � 1

3

Logarithmic Exponential 
form form

log8 8 � 1

log8 64 � 2

82/3 � 4

83 � 512

8�2 � 1
64

log8 A18B � �1

Logarithmic Exponential 
form form

43 � 64

43/2� 8

4�5/2 � 1
32

log4 A12B � �1
2

log4 A 1
16B  � �2

log 4 2 � 1
2

1.

2.
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17. (a) log6 36 (b) log9 81 (c) log7 710

18. (a) log2 32 (b) log8 817 (c) log6 1

19. (a) (b) (c) log5 0.2

20. (a) log5 125 (b) log49 7 (c)

21. (a) (b) (c)

22. (a) eln p (b) 10log 5 (c) 10log 87

23. (a) log8 0.25 (b) ln e4 (c)

24. (a) (b) (c) log4 8

25–32 ■ Use the definition of the logarithmic function to find x.

25. (a) log2 x � 5 (b) log2 16 � x

26. (a) log5 x � 4 (b) log10 0.1 � x

27. (a) log3 243 � x (b) log3 x � 3

28. (a) log4 2 � x (b) log4 x � 2

29. (a) log10 x � 2 (b) log5 x � 2

30. (a) logx 1000 � 3 (b) logx 25 � 2

31. (a) logx 16 � 4 (b)

32. (a) (b)

33–36 ■ Use a calculator to evaluate the expression, correct to
four decimal places.

33. (a) log 2 (b) log 35.2 (c)

34. (a) log 50 (b) (c)

35. (a) ln 5 (b) ln 25.3 (c)

36. (a) ln 27 (b) ln 7.39 (c) ln 54.6

37–40 ■ Find the function of the form y � loga x whose graph
is given.

37. 38.

39. 40.

0 x

y

1 963

(9, 2)

1

0 x

y

1 3

1 !3,   @1
2

0 x

y

1

!   , _1@1
2

_1

1

x

y

0 1 5

(5, 1)
1

ln11 � 13 2

log13 12 2log 12

logA23B

logx 3 � 1
3logx 6 � 1

2

logx 8 � 3
2

log4A
1
2Blog4 12

ln11/e 2

e ln153log3 82log2 37

log9 13

log10 110log3A
1

 27 
B

41–46 ■ Match the logarithmic function with one of the graphs
labeled I–VI.

41. 42.

43. 44.

45. 46. f 1x 2 � �ln1�x 2f 1x 2 � ln12 � x 2

f 1x 2 � ln1�x 2f 1x 2 � 2 � ln x

f 1x 2 � ln1x � 2 2f 1x 2 � �ln x

V VI

x

y

10

x=2
y

(3, 0)

x1 30

x=2

(1, 0)

y

(_1, 0)
x_1

(1, 0)
x

y

10

I II

y

(1, 2)

x0 1

2

y

x_1

(_1, 0)

III IV

47. Draw the graph of y � 4x, then use it to draw the graph of 
y � log4 x.

48. Draw the graph of y � 3x, then use it to draw the graph of 
y � log3 x.

49–58 ■ Graph the function, not by plotting points, but by 
starting from the graphs in Figures 4 and 9. State the domain,
range, and asymptote.

49. 50.

51. 52.

53. y � 2 � log3 x 54.

55. y � 1 � log10 x 56.

57. 58. y � ln 0  x 0y � 0  ln x 0

y � 1 � ln1�x 2

y � log31x � 1 2 � 2

g1x 2 � ln1x � 2 2g1x 2 � log51�x 2

f 1x 2 � �log10 xf 1x 2 � log21x � 4 2
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SECTION 4.2 Logarithmic Functions 351

59–64 ■ Find the domain of the function.

59. 60.

61. 62.

63.

64.

65–70 ■ Draw the graph of the function in a suitable viewing
rectangle and use it to find the domain, the asymptotes, and the
local maximum and minimum values.

65. 66.

67. 68.

69. 70.

71. Compare the rates of growth of the functions 
and by drawing their graphs on a common
screen using the viewing rectangle 3�1, 304 by 3�1, 64.

72. (a) By drawing the graphs of the functions

in a suitable viewing rectangle, show that even when 
a logarithmic function starts out higher than a root 
function, it is ultimately overtaken by the root function.

(b) Find, correct to two decimal places, the solutions of the
equation .

73–74 ■ A family of functions is given.

(a) Draw graphs of the family for c � 1, 2, 3, and 4.

(b) How are the graphs in part (a) related?

73. 74.

75–76 ■ A function is given.

(a) Find the domain of the function f.

(b) Find the inverse function of f.

75.

76.

77. (a) Find the inverse of the function .

(b) What is the domain of the inverse function?

Applications

78. Absorption of Light A spectrophotometer measures the
concentration of a sample dissolved in water by shining a
light through it and recording the amount of light that
emerges. In other words, if we know the amount of light 
absorbed, we can calculate the concentration of the sample.

f 1x 2 �
2x

1 � 2x

f 1x 2 � ln1ln1ln x 22

f 1x 2 � log21log10 x 2

f 1x 2

f 1x 2 � c log xf 1x 2 � log1cx 2

1x � 1 � ln11 � x 2

f 1x 2 � 1 � ln11 � x 2     and    g1x 2 � 1x

g1x 2 � 1x
f 1x 2 � ln x

y � x log101x � 10 2y �
ln x

x

y � x1ln x 2 2y � x � ln x

y � ln1x2 � x 2y � log1011 � x2 2

h1x 2 � 1x � 2 � log5110 � x 2

h1x 2 � ln x � ln12 � x 2

g1x 2 � ln1x � x2 2g1x 2 � log31x
2 � 1 2

f 1x 2 � log518 � 2x 2f 1x 2 � log101x � 3 2

For a certain substance, the concentration (in moles/ liter) 
is found using the formula

where I0 is the intensity of the incident light and I is the 
intensity of light that emerges. Find the concentration of the
substance if the intensity I is 70% of I0.

79. Carbon Dating The age of an ancient artifact can be 
determined by the amount of radioactive carbon-14 
remaining in it. If D0 is the original amount of carbon-14
and D is the amount remaining, then the artifact’s age A
(in years) is given by

Find the age of an object if the amount D of carbon-14 that
remains in the object is 73% of the original amount D0.

80. Bacteria Colony A certain strain of bacteria divides
every three hours. If a colony is started with 50 bacteria,
then the time t (in hours) required for the colony to grow to
N bacteria is given by

Find the time required for the colony to grow to a million
bacteria.

81. Investment The time required to double the amount of an
investment at an interest rate r compounded continuously is
given by

Find the time required to double an investment at 6%, 7%,
and 8%.

82. Charging a Battery The rate at which a battery charges
is slower the closer the battery is to its maximum charge C0.
The time (in hours) required to charge a fully discharged
battery to a charge C is given by

where k is a positive constant that depends on the battery.
For a certain battery, k � 0.25. If this battery is fully 
discharged, how long will it take to charge to 90% of its
maximum charge C0?

t � �k ln a1 �
C

C0
b

t �
ln 2

r

t � 3 

log1N/50 2

log 2

A � �8267 ln a
D

D0
b

I0 I

C � �2500 ln a
I

I0
b
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SUGGESTED TIME

AND EMPHASIS

1-2 classes.
Essential material.

POINT TO STRESS

The laws of logarithms, including the change of base formula.

352 CHAPTER 4 Exponential and Logarithmic Functions

83. Difficulty of a Task The difficulty in “acquiring a target”
(such as using your mouse to click on an icon on your 
computer screen) depends on the distance to the target and
the size of the target. According to Fitts’s Law, the index 
of difficulty (ID) is given by

where W is the width of the target and A is the distance to
the center of the target. Compare the difficulty of clicking
on an icon that is 5 mm wide to one that is 10 mm wide. In
each case, assume the mouse is 100 mm from the icon.

ID �
log12A/W 2

log 2

Discovery • Discussion

84. The Height of the Graph of a Logarithmic Function

Suppose that the graph of y � 2x is drawn on a coordinate
plane where the unit of measurement is an inch.

(a) Show that at a distance 2 ft to the right of the origin the
height of the graph is about 265 mi.

(b) If the graph of y � log2 x is drawn on the same set of
axes, how far to the right of the origin do we have to go
before the height of the curve reaches 2 ft?

85. The Googolplex A googol is 10100, and a googolplex is
10googol. Find

and

86. Comparing Logarithms Which is larger, log4 17 or
log5 24? Explain your reasoning.

87. The Number of Digits in an Integer Compare log 1000
to the number of digits in 1000. Do the same for 10,000.
How many digits does any number between 1000 and
10,000 have? Between what two values must the common
logarithm of such a number lie? Use your observations to
explain why the number of digits in any positive integer 
x is “log x‘ � 1. (The symbol “n‘ is the greatest integer 
function defined in Section 2.2.) How many digits does the
number 2100 have?

log1log1log1googolplex 222log1log1googol 22

4.3 Laws of Logarithms

In this section we study properties of logarithms. These properties give logarithmic
functions a wide range of applications, as we will see in Section 4.5.

Laws of Logarithms

Since logarithms are exponents, the Laws of Exponents give rise to the Laws of 
Logarithms.

Laws of Logarithms

Let a be a positive number, with a � 1. Let A, B, and C be any real numbers
with A � 0 and B � 0.

Law Description

1. The logarithm of a product of numbers is
the sum of the logarithms of the numbers.

2.
The logarithm of a quotient of numbers is
the difference of the logarithms of the
numbers.

3. The logarithm of a power of a number is
the exponent times the logarithm of the
number.

 loga1A
C 2 � C loga A

 loga a
A

B
b � loga A � loga B

 loga1AB 2 � loga A � loga B
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SAMPLE QUESTION

Text Question

Given that log2 3 1.58496,
approximately what is log2 9?

Answer

log2 9 3.16992

ALTERNATE EXAMPLE 1
Find the solution of the equation
3x+3 = 5. If necessary, correct the
result to six decimal places.

ANSWER
-1.535026

ALTERNATE EXAMPLE 2
Use the laws of logarithms to
expand each expression:

(a) log3(9x)

(b) log10(x3 y4)

(c)

ANSWERS
(a) log3 9 � log3 x � 2 � log3 x
(b) 3 log10 x � 4 log10 y

(c) ln a +
1

2
 ln b - 8 ln c

lnaa1b

c8 b

L

L

■ Proof We make use of the property loga ax � x from Section 4.2.

Law 1. Let . When written in exponential form, these
equations become

Thus

Law 2. Using Law 1, we have

so

Law 3. Let loga A � u. Then au � A, so

■

Example 1 Using the Laws of Logarithms 

to Evaluate Expressions

Evaluate each expression.

(a) log4 2 � log4 32 (b) log2 80 � log2 5 (c)

Solution

(a) Law 1

Because 64 � 43

(b) Law 2

Because 16 � 24

(c) Law 3

Property of negative exponents

Calculator ■

Expanding and Combining Logarithmic Expressions

The laws of logarithms allow us to write the logarithm of a product or a quotient as
the sum or difference of logarithms. This process, called expanding a logarithmic 
expression, is illustrated in the next example.

Example 2 Expanding Logarithmic Expressions

Use the Laws of Logarithms to expand each expression.

(a) (b) (c)

Solution

(a) Law 1 log216x 2 � log2 6 � log2 x

ln a
ab

13 c
blog51x

3y6 2log216x 2

 � �0.301

 � logA12B

 � 
1
3 log 8 � log 8�1/3

 � log2 16 � 4

 log2 80 � log2 5 � log2A
 80 

5 B

 � log4 64 � 3

 log4 2 � log4 32 � log412 # 32 2

� 
1
3 log 8

loga1A
C 2 � loga1a

u 2C � loga1a
uC 2 � uC � C loga A

loga a
A

B
b � loga A � loga B

loga A � loga c a
A

B
bB d � loga a

A

B
b � loga B

� u � √ � loga A � loga B

loga1AB 2 � loga1a
ua√ 2 � loga1a

u�√ 2

au � A  and  a√ � B

loga A � u and loga B � √

SECTION 4.3 Laws of Logarithms 353
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354 CHAPTER 4 Exponential and Logarithmic Functions

ALTERNATE EXAMPLE 3
Combine 3 ln (x) � ln (x � 3)
into a single logarithm.

ANSWER

ALTERNATE EXAMPLE 4
Combine log (x) � 3 log (y) �
log (x � y) into a single logarithm.

ANSWER

DRILL QUESTION

Express 5 log (x � 2) log x

as a single logarithm.

Answer

EXAMPLE
A set of logarithms that can be
combined:

a ln (b � c) (ln a - ln b) �

lna (b + c)a 4 A aa

b
b3b

+
3

4

loga (x + 2)51x3 b

-  
1

3

loga x (x + y)

y3 b

ln Ax32(x + 3)3 B

3
2

(b) Law 1

Law 3

(c) Law 2

Law 1

Law 3 ■

The laws of logarithms also allow us to reverse the process of expanding done in
Example 2. That is, we can write sums and differences of logarithms as a single log-
arithm. This process, called combining logarithmic expressions, is illustrated in the
next example.

Example 3 Combining Logarithmic Expressions

Combine into a single logarithm.

Solution

Law 3

Law 1 ■

Example 4 Combining Logarithmic Expressions

Combine into a single logarithm.

Solution

Law 3

Law 1

Law 2 ■

WARNING Although the Laws of Logarithms tell us how to compute the log-
arithm of a product or a quotient, there is no corresponding rule for the logarithm of
a sum or a difference. For instance,

In fact, we know that the right side is equal to . Also, don’t improperly sim-
plify quotients or powers of logarithms. For instance,

Logarithmic functions are used to model a variety of situations involving human
behavior. One such behavior is how quickly we forget things we have learned. For ex-
ample, if you learn algebra at a certain performance level (say 90% on a test) and then
don’t use algebra for a while, how much will you retain after a week, a month, or a
year? Hermann Ebbinghaus (1850–1909) studied this phenomenon and formulated
the law described in the next example.

log 6

log 2
� log a

6

2
b  and  1log2 x 2 3 � 3 log2 x

loga1xy 2

loga1x � y 2 � loga x � loga y

 � ln a
s31t

1t 
2 � 1 2 4

b

 � ln1s3t1/2 2 � ln1t 
2 � 1 2 4

 3 ln s � 1
2 ln t � 4 ln1t 

2 � 1 2 � ln s3 � ln t1/2 � ln1t 
2 � 1 2 4

3 ln s � 1
2 ln t � 4 ln1t 

2 � 1 2

 � log1x31x � 1 2 1/2 2

 3 log x � 1
2 log1x � 1 2 � log x3 � log1x � 1 2 1/2

3 log x � 1
2 log1x � 1 2

 � ln a � ln b � 1
3 ln c

 � ln a � ln b � ln c1/3

 ln a
ab

13 c
b � ln1ab 2 � ln 13 c

 � 3 log5 x � 6 log5 y

 log51x
3y6 2 � log5 x3 � log5 y6

354 CHAPTER 4 Exponential and Logarithmic Functions

IN-CLASS MATERIALS

Make sure your students do not neglect the warning after Example 4. Perhaps have them
write out all the rules of logarithms they have learned so far, organized as shown in the 
figure at right. Perhaps if your students memorize the non-rules, they will be less likely
to indulge in algebraic mischief under exam pressure.

The Equivalence Definition y = logm x is equivalent to x � my

The Conversion Rule logm (expression) =

The Combining Rules logm (mexpression) = expression

The Arithmetic Rules logm 1 = 0
logm (ab) = logm a + logm b

logm = logm a - logm b

logm (ab) = blogm a

The Non-Rules logm (a + b) = logm (a + b)

(logm a)b = (logm a)b

logm a

logm b
=

logm a

logm b

aa

b
b

mlogm (expression) = expression

logn (expression)

logn (m)
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CHAPTER 4 Exponential and Logarithmic Functions 355

ALTERNATE EXAMPLE 5
A student memorizes the Latin
terms for 50 animals in 9th grade.
One year later, she still knows
40 of them. According to
Ebbinghaus’ Law of Forgetting,
how many will she know two
years after that—when she is in
12th grade?

ANSWER
First we need to find c:
log 40 � log 50 � c log(13).
So c � 0.087.

Next, we use our value of c in 
the Ebbinghaus’ equation:
log P � log 50 � 0.087 log (37).
So P is between 36 and 37 Latin
terms.

EXAMPLE
A set of logarithms that can be
expanded:
Given ln 2 0.693 and ln 3

1.099, compute ln .

ANSWER

� (2 3)1/5

ln 2 �

2 ln 3 � (ln 2 � ln 3)

0.240569L

1

5

lna8

9
 516b = 3

#=
23

32
516

8

9

516
8

9

LL

IN-CLASS MATERIALS

Note, without necessarily emphasizing, the importance of domains when applying the log rules. For 

example, ln is not equal to ln(�5) � ln(�6).a -5

-6
b

Example 5 The Law of Forgetting

Ebbinghaus’ Law of Forgetting states that if a task is learned at a performance level
P0, then after a time interval t the performance level P satisfies

where c is a constant that depends on the type of task and t is measured in months.

(a) Solve for P.

(b) If your score on a history test is 90, what score would you expect to get on a
similar test after two months? After a year? (Assume c � 0.2.)

Solution

(a) We first combine the right-hand side.

Given equation

Law 3

Law 2

Because log is 
one-to-one

(b) Here P0 � 90, c � 0.2, and t is measured in months.

Your expected scores after two months and one year are 72 and 54,
respectively. ■

Change of Base

For some purposes, we find it useful to change from logarithms in one base to 
logarithms in another base. Suppose we are given loga x and want to find logb x. Let

We write this in exponential form and take the logarithm, with base a, of each 
side.

Exponential form

Take loga of each side

Law 3

Divide by loga b

This proves the following formula.

 y �
loga x

loga b

 y loga b � loga x

 loga1b
y 2 � loga x

 by � x

y � logb x

 In one year:     t � 12     and     P �
90

112 � 1 2 0.2 � 54

 In two months:     t � 2     and     P �
90

12 � 1 2 0.2 � 72

 P �
P0

1t � 1 2 c

 log P � log 
P0

1t � 1 2 c

 log P � log P0 � log1t � 1 2 c

 log P � log P0 � c log1t � 1 2

log P � log P0 � c log1t � 1 2

SECTION 4.3 Laws of Logarithms 355

Forgetting what we’ve learned
depends logarithmically on how
long ago we learned it.
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ALTERNATE EXAMPLE 6
Use the change of base formula
and common or natural logarithms
to evaluate each logarithm, correct
to 5 decimal places.

(a) log2 268, 435, 456
(b) log8 1000

ANSWERS
(a) 28
(b) 3.32193

ALTERNATE EXAMPLE 7
Use a graphing calculator to graph
f(x) � �3 log6 (x � 8).

ANSWER
Using the identity log6 (x � 8) 

� we obtain the graph:

8
0

20 40 60

8

_8

x

y

ln (x - 8)

ln (6)

In particular, if we put x � a, then loga a � 1 and this formula becomes

We can now evaluate a logarithm to any base by using the Change of Base For-
mula to express the logarithm in terms of common logarithms or natural logarithms
and then using a calculator.

Example 6 Evaluating Logarithms with the

Change of Base Formula

Use the Change of Base Formula and common or natural logarithms to evaluate
each logarithm, correct to five decimal places.

(a) log8 5 (b) log9 20

Solution

(a) We use the Change of Base Formula with b � 8 and a � 10:

(b) We use the Change of Base Formula with b � 9 and a � e:

■

Example 7 Using the Change of Base Formula 

to Graph a Logarithmic Function

Use a graphing calculator to graph .

Solution Calculators don’t have a key for log6, so we use the Change of Base
Formula to write

Since calculators do have an key, we can enter this new form of the function
and graph it. The graph is shown in Figure 1. ■

4.3 Exercises

LN

f 1x 2 � log6 x �
ln x

ln 6

f 1x 2 � log6 x

log9 20 �
ln 20

ln 9
� 1.36342

log8 5 �
log10 5

log10 8
� 0.77398

logb a �
1

loga b

356 CHAPTER 4 Exponential and Logarithmic Functions

Change of Base Formula

logb x �
loga x

loga b

1–12 ■ Evaluate the expression.

1. 2. log2 160 � log2 5

3. log 4 � log 25 4. log 
1

11000

log3 127
5. log4 192 � log4 3 6. log12 9 � log12 16

7. log2 6 � log2 15 � log2 20

8. log3 100 � log3 18 � log3 50

2

_1

0 36

Figure 1

f 1x 2 � log6 x �
ln x

ln 6

We get the same answer whether we
use log10 or ln:

log8 5 �
ln 5

ln 8
� 0.77398

We may write the Change of Base 
Formula as

So, logb x is just a constant multiple 

of loga x; the constant is .
1

loga b

logb x � a
1

loga b
b loga x

IN-CLASS MATERIALS

Mention how logarithms were used
to do calculations before the wide-
spread availability of calculators.
For example, every scientist had a
table like this one:

x ln x
4.4 1.48160
4.5 1.50408
4.6 1.52606
4.7 1.54756
4.8 1.56862

x ln x
9.8 2.28238
9.9 2.29253

10.0 2.30259
10.1 2.31254
10.2 2.32239

Now let’s say a scientist wanted to find . He would write 

� 102�3

ln ( )� ln (102�3)

ln (10)

Then he would look up ln (10) from the table to get

ln 

1.53506
And to find , he would try to find 1.53506 in the right-hand column of the table. The result is that  is between 4.6 and 4.7. In practice,
the distance between table entries was much closer than 0.1. For a quicker, less accurate estimate, a slide rule was used.

3110031100
L

( 31100) L
2

3
 (2.30259)

=
2

3

31100

31100

31100
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SECTION 4.3 Laws of Logarithms 357

9. log4 16100 10. log2 833

11. 12.

13–38 ■ Use the Laws of Logarithms to expand the expression.

13. 14.

15. 16.

17. log 610 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39–48 ■ Use the Laws of Logarithms to combine the 
expression.

39. log3 5 � 5 log3 2 40.

41. log2 A � log2 B � 2 log2 C

42.

43.

44.

45.

46.

47.

48. loga b � c loga d � r loga s

49–56 ■ Use the Change of Base Formula and a calculator to
evaluate the logarithm, correct to six decimal places. Use either
natural or common logarithms.

49. log2 5 50. log5 2

51. log3 16 52. log6 92

1
3 log12x � 1 2 � 1

2 3 log1x � 4 2 � log1x4 � x2 � 1 2 4

21log5 x � 2  log5 y � 3 log5 z 2

ln 5 � 2  ln x � 3  ln1x2 � 5 2

ln1a � b 2 � ln1a � b 2 � 2  ln c

4  log x � 1
3  log1x2 � 1 2 � 2  log1x � 1 2

log51x
2 � 1 2 � log51x � 1 2

log 12 � 1
2  log 7 � log 2

log a
10x

x1x2 � 1 2 1x4 � 2 2
bln a

x3
 1x � 1

3x � 4
b

log 3x2y1zlog B
x2 � 4

1x2 � 1 2 1x3 � 7 2 2

log a
x

13 1 � x
blog 24 x2 � y2

ln 
3x2

1x � 1 2 10ln a x B
y

z
b

log5 B
x � 1

x � 1
log2 a

x1x2 � 1 2

2x2 � 1
b

log a
a2

b4
 1c
blog a

x3y4

z6 b

ln 23 3r 2sln 1ab

loga a
x2

yz3 blog5 23 x2 � 1

log21xy 2 10log31x 1y 2

log6 14 17log21AB2 2

ln 1 z

log5 
x

2
log21x1x � 1 22

log315y 2log212x 2

ln1ln ee200

2log1log 1010,000 2

53. log7 2.61 54. log6 532

55. log4 125 56. log12 2.5

57. Use the Change of Base Formula to show that

Then use this fact to draw the graph of the function
.

58. Draw graphs of the family of functions y � loga x for 
a � 2, e, 5, and 10 on the same screen, using the 
viewing rectangle 30, 54 by 3�3, 34. How are these graphs 
related?

59. Use the Change of Base Formula to show that

60. Simplify:

61. Show that .

Applications

62. Forgetting Use the Ebbinghaus Forgetting Law 
(Example 5) to estimate a student’s score on a biology 
test two years after he got a score of 80 on a test covering
the same material. Assume c � 0.3 and t is measured in
months.

63. Wealth Distribution Vilfredo Pareto (1848–1923) 
observed that most of the wealth of a country is owned 
by a few members of the population. Pareto’s Principle is

where W is the wealth level (how much money a person has)
and P is the number of people in the population having that
much money.

(a) Solve the equation for P.

(b) Assume k � 2.1, c � 8000, and W is measured in 
millions of dollars. Use part (a) to find the number of
people who have $2 million or more. How many people
have $10 million or more?

64. Biodiversity Some biologists model the number of 
species S in a fixed area A (such as an island) by the 
Species-Area relationship

where c and k are positive constants that depend on the type
of species and habitat.

(a) Solve the equation for S.

log S � log c � k log A

log P � log c � k log W

�ln1x � 2x2 � 1 2 � ln1x � 2x2 � 1 2

1log2 5 2 1log5 7 2

log e �
1

ln 10

f 1x 2 � log3 x

log3 x �
ln x

ln 3
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SUGGESTED TIME

AND EMPHASIS 

–1 class.

Essential material. Can be com-
bined with Section 4.5.

1
2

POINT TO STRESS

Solving equations involving exponential and logarithmic functions, algebraically and graphically.

358 CHAPTER 4 Exponential and Logarithmic Functions

(b) Use part (a) to show that if k � 3 then doubling the area
increases the number of species eightfold.

65. Magnitude of Stars The magnitude M of a star is a 
measure of how bright a star appears to the human eye. It 
is defined by 

where B is the actual brightness of the star and B0 is a 
constant.

(a) Expand the right-hand side of the equation.

(b) Use part (a) to show that the brighter a star, the less its
magnitude.

(c) Betelgeuse is about 100 times brighter than Albiero.
Use part (a) to show that Betelgeuse is 5 magnitudes
less than Albiero.

Discovery • Discussion

66. True or False? Discuss each equation and determine
whether it is true for all possible values of the variables. 
(Ignore values of the variables for which any term is
undefined.)

M � �2.5 log a
B

B0
b

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

( j)

67. Find the Error What is wrong with the following 
argument?

68. Shifting, Shrinking, and Stretching Graphs of 

Functions Let . Show that , and
explain how this shows that shrinking the graph of f
horizontally has the same effect as stretching it vertically.
Then use the identities e2�x � e2ex and 
to show that for , a horizontal shift is the same as a
vertical stretch and for , a horizontal shrinking is
the same as a vertical shift.

h1x 2 � ln x
g1x 2 � ex

ln12x 2 � ln 2 � ln x

f 12x 2 � 4f 1x 2f 1x 2 � x2

 0.1 � 0.01

 log 0.1 � log 0.01

 � log 0.01

 � log10.1 2 2

 log 0.1 � 2 log 0.1

�ln a
1

A
b � ln A

log1x � y 2 �
log x

log y

loga aa � a

1log2 7 2 x � x log2 7

log a

log b
� log a � log b

1log P 2 1log Q 2 � log P � log Q

log 2z � z log 2

log5 a
a

b2 b � log5 a � 2 log5 b

log21x � y 2 � log2 x � log2 y

log a
x

y
b �

log x

log y

4.4 Exponential and Logarithmic Equations

In this section we solve equations that involve exponential or logarithmic functions.
The techniques we develop here will be used in the next section for solving applied
problems.

Exponential Equations

An exponential equation is one in which the variable occurs in the exponent. For 
example,

The variable x presents a difficulty because it is in the exponent. To deal with this 

2x � 7
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SAMPLE QUESTION

Text Question

Solve the equation 
4 � 3 log(2x) � 16.

Answer

x � 5000

ALTERNATE EXAMPLE 1
Find the solution of the equation 
3x�3 � 5. If necessary, correct the
result to six decimal places.

ANSWER
�1.535026

SECTION 4.4 Exponential and Logarithmic Equations 359

difficulty, we take the logarithm of each side and then use the Laws of Logarithms to
“bring down x” from the exponent.

Given equation

Take ln of each side

Law 3 (bring down exponent)

Solve for x

Calculator

Recall that Law 3 of the Laws of Logarithms says that loga AC � C loga A.
The method we used to solve 2x � 7 is typical of how we solve exponential 

equations in general.

 � 2.807

 x �
ln 7

ln 2

 x ln 2 � ln 7

 ln 2x � ln 7

 2x � 7

Guidelines for Solving Exponential Equations

1. Isolate the exponential expression on one side of the equation.

2. Take the logarithm of each side, then use the Laws of Logarithms to “bring
down the exponent.”

3. Solve for the variable.

Example 1 Solving an Exponential Equation

Find the solution of the equation 3x�2 � 7, correct to six decimal places.

Solution We take the common logarithm of each side and use Law 3.

Given equation

Take log of each side

Law 3 (bring down exponent)

Divide by log 3

Subtract 2

Calculator ■

Check Your Answer Substituting x � �0.228756 into the original equation and using a 
calculator, we get

31�0.2287562�2 � 7

 � �0.228756

 x �
log 7

log 3
� 2

 x � 2 �
log 7

log 3

 1x � 2 2 log 3 � log 7

 log13x�2 2 � log 7

 3x�2 � 7

We could have used natural logarithms
instead of common logarithms. In 
fact, using the same steps, we get

x �
ln 7

ln 3
� 2 � �0.228756
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ALTERNATE EXAMPLE 2
Solve the equation 8 e2x � 24.
Please round the answer to the
nearest thousandth.

ANSWER
0.549

EXAMPLE
Solve (ln x � 2)3 �
4 (ln x � 2) � 0.

ANSWER
x � 1, e2, e4

ALTERNATE EXAMPLE 3
Solve the equation e5 � 2x � 3.
Please round the answer to the
nearest thousandth.

ANSWER
1.951

Example 2 Solving an Exponential Equation

Solve the equation 8e2x � 20.

Solution We first divide by 8 in order to isolate the exponential term on one 
side of the equation.

Given equation

Divide by 8

Take ln of each side

Property of ln

Divide by 2

Calculator ■

Example 3 Solving an Exponential Equation

Algebraically and Graphically

Solve the equation e3�2x � 4 algebraically and graphically.

Solution 1: Algebraic

Since the base of the exponential term is e, we use natural logarithms to solve this
equation.

Given equation

Take ln of each side

Property of ln

You should check that this answer satisfies the original equation.

Solution 2: Graphical

We graph the equations y � e3�2x and y � 4 in the same viewing rectangle as in
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point
of intersection of the two graphs, we see that x � 0.81. ■

 x � 1
2 13 � ln 4 2 � 0.807

 2x � 3 � ln 4

 3 � 2x � ln 4

 ln1e3�2x 2 � ln 4

 e3�2x � 4

 � 0.458

 x �
ln 2.5

2

 2x � ln 2.5

 ln e2x � ln 2.5

 e2x � 20
8

 8e2x � 20
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Check Your Answer Substituting x � 0.458 into the original equation and using a
calculator, we get

8e210.4582 � 20

Radiocarbon dating is a method
archeologists use to determine the
age of ancient objects. The carbon
dioxide in the atmosphere always
contains a fixed fraction of ra-
dioactive carbon, carbon-14 ,
with a half-life of about 5730 years.
Plants absorb carbon dioxide from
the atmosphere, which then makes
its way to animals through the food
chain. Thus, all living creatures
contain the same fixed proportions
of 14C to nonradioactive 12C as the
atmosphere.

After an organism dies, it stops
assimilating 14C, and the amount of
14C in it begins to decay exponen-
tially. We can then determine the
time elapsed since the death of the
organism by measuring the amount
of 14C left in it.

For example, if a donkey bone
contains 73% as much 14C as a liv-
ing donkey and it died t years ago,
then by the formula for radioactive
decay (Section 4.5),

We solve this exponential equation
to find t � 2600, so the bone is
about 2600 years old.

0.73 � 11.00 2e�1t ln 22/5730

114C 2

5

0
2

y=4

y=e3_2x

Figure 1
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ALTERNATE EXAMPLE 4
Solve the equation 
e2x - ex - 2 = 0. Please round the
answer to four decimal places.

ANSWER
0.6931

ALTERNATE EXAMPLE 5
Solve the equation 
5x4 ex - x5 ex = 0.

ANSWER
x = 0, x = 5

IN-CLASS MATERIALS

Review the concept of inverse functions. Have students find the inverse of functions such as f(x) = 2x3+ 1

and f(x) = ln(x - 5) + e3.

Example 4 An Exponential Equation of Quadratic Type

Solve the equation e2x � ex � 6 � 0.

Solution To isolate the exponential term, we factor.

Given equation

Law of Exponents

Factor (a quadratic in ex)

Zero-Product Property

The equation ex � 3 leads to x � ln 3. But the equation ex � �2 has no solution 
because ex � 0 for all x. Thus, x � ln 3 � 1.0986 is the only solution. You should
check that this answer satisfies the original equation. ■

Example 5 Solving an Exponential Equation

Solve the equation 3xex � x 2ex � 0.

Solution First we factor the left side of the equation.

Given equation

Factor out common factors

Divide by ex (because ex � 0)

Zero-Product Property

Thus, the solutions are x � 0 and x � �3. ■

Logarithmic Equations

A logarithmic equation is one in which a logarithm of the variable occurs. For 
example,

To solve for x, we write the equation in exponential form.

Exponential form

Solve for x

Another way of looking at the first step is to raise the base, 2, to each side of the 
equation.

Raise 2 to each side

Property of logarithms

Solve for x

The method used to solve this simple problem is typical. We summarize the steps as
follows.

 x � 32 � 2 � 30

 x � 2 � 25

 2log21x�22 � 25

 x � 32 � 2 � 30

 x � 2 � 25

log21x � 2 2 � 5

x � 0  or  3 � x � 0

 x13 � x 2 � 0

 x13 � x 2e x � 0

 3xe x � x2e x � 0

e x � �2 e x � 3

e x � 3 � 0  or  e x � 2 � 0

 1ex � 3 2 1ex � 2 2 � 0

 1ex 2 2 � ex � 6 � 0

 e2x � ex � 6 � 0

SECTION 4.4 Exponential and Logarithmic Equations 361

Check Your Answers

:

x � �3:

� �9e�3 � 9e�3 � 0

31�3 2e�3 � 1�3 2 2e�3

310 2e0 � 02e0 � 0

x � 0

If we let „ � ex, we get the quadratic
equation

which factors as

1„ � 3 2 1„ � 2 2 � 0

„2 � „ � 6 � 0
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ALTERNATE EXAMPLE 6a
Solve the equation ln x = 3.
Round the answer to the nearest
integer.

ANSWER
20

ALTERNATE EXAMPLE 6b
Solve the equation 
log2(22 - x) = 3.

ANSWER
x = 14

ALTERNATE EXAMPLE 7
Solve the equation 
5 + 4 log(6x) = 25. Round non-
integer answers to the nearest
hundredth.

ANSWER
x � 16666.67

Example 6 Solving Logarithmic Equations

Solve each equation for x.

(a) ln x � 8 (b)

Solution

(a) Given equation

Exponential form

Therefore, x � e8 � 2981.
We can also solve this problem another way:

Given equation

Raise e to each side

Property of ln

(b) The first step is to rewrite the equation in exponential form.

Given equation

Exponential form (or raise 2 to each side)

■

Example 7 Solving a Logarithmic Equation

Solve the equation .

Solution We first isolate the logarithmic term. This allows us to write the 
equation in exponential form.

Given equation

Subtract 4

Divide by 3

Exponential form (or raise 10 to each side)

Divide by 2 ■ x � 5000

 2x � 104

 log12x 2 � 4

 3 log12x 2 � 12

 4 � 3 log12x 2 � 16

4 � 3 log12x 2 � 16

 x � 25 � 8 � 17

 25 � x � 8

 25 � x � 23

 log2125 � x 2 � 3

 x � e8

 eln x � e8

 ln x � 8

 x � e8

 ln x � 8

log2125 � x 2 � 3

362 CHAPTER 4 Exponential and Logarithmic Functions

Guidelines for Solving Logarithmic Equations

1. Isolate the logarithmic term on one side of the equation; you may first need
to combine the logarithmic terms.

2. Write the equation in exponential form (or raise the base to each side of the
equation).

3. Solve for the variable.

Check Your Answer

If x � 17, we get

log2125 � 17 2 � log2 8 � 3

Check Your Answer

If x � 5000, we get

 � 16

 � 4 � 314 2

 4 � 3 log 215000 2 � 4 � 3 log 10,000
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ALTERNATE EXAMPLE 8
Solve the equation 
log(x + 8) + log(x - 1) = 1. 

ANSWER
x = 2

EXAMPLE
Solve log(x2 - 1) - log(x + 1) = 3.

ANSWER
x = 1001

ALTERNATE EXAMPLE 9
Solve the equation x2 =
15 ln(x + 5) to the nearest integer.

ANSWER
-3, 6

IN-CLASS MATERIALS

At this point students know the algebraic rules for working with exponential and logarithmic functions.
Stress that if these rules do not suffice to solve an equation, there is a good chance that they cannot find an
exact solution. Give students an equation such as x2 = 2 ln(x + 2) (Example 9) and have them try to solve it
algebraically. The correct answer is that students cannot do so, but you will find that many make up rules
and somehow wind up with a solution.

Example 8 Solving a Logarithmic Equation 

Algebraically and Graphically

Solve the equation algebraically and graphically.

Solution 1: Algebraic

We first combine the logarithmic terms using the Laws of Logarithms.

Law 1

Exponential form (or raise 10 to each side)

Expand left side

Subtract 10

Factor

We check these potential solutions in the original equation and find that x � �4 
is not a solution (because logarithms of negative numbers are undefined), but x � 3
is a solution. (See Check Your Answers.)

Solution 2: Graphical

We first move all terms to one side of the equation:

Then we graph

as in Figure 2. The solutions are the x-intercepts of the graph. Thus, the only 
solution is x � 3.

■

Example 9 Solving a Logarithmic Equation Graphically

Solve the equation .

Solution We first move all terms to one side of the equation

Then we graph

y � x2 � 2 ln1x � 2 2

x2 � 2 ln1x � 2 2 � 0

x2 � 2 ln1x � 2 2

3

0 6

_3Figure 2

y � log1x � 2 2 � log1x � 1 2 � 1

log1x � 2 2 � log1x � 1 2 � 1 � 0

x � �4  or  x � 3

 1x � 4 2 1x � 3 2 � 0

 x2 � x � 12 � 0

 x2 � x � 2 � 10

 1x � 2 2 1x � 1 2 � 10

 log 3 1x � 2 2 1x � 1 2 4 � 1

log1x � 2 2 � log1x � 1 2 � 1

SECTION 4.4 Exponential and Logarithmic Equations 363

Check Your Answers

x � �4:

undefined

x � 3:

� log 10 � 1

� log 5 � log 2 � log15 # 2 2
log13 � 2 2 � log13 � 1 2

� log1�2 2 � log1�5 2

log1�4 � 2 2 � log1�4 � 1 2

In Example 9, it’s not possible to 
isolate x algebraically, so we must 
solve the equation graphically.
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ALTERNATE EXAMPLE 10
For a certain lake, the light
intensity goes from 20 lumens at
the surface to 18 lumens at a
depth of 5 feet.

(a) Find the value of k.
(b) What will the intensity be at a

depth of 40 feet?

ANSWERS

(a) Therefore

(b)

Solving for I gives
lumens.I L 8.5997426

-
1

0.0211
 ln a I

20
b = 40.

k L 0.0211.

-
1

k
 ln a18

20
b = 5.

as in Figure 3. The solutions are the x-intercepts of the graph. Zooming in on the 
x-intercepts, we see that there are two solutions:

■

Logarithmic equations are used in determining the amount of light that reaches
various depths in a lake. (This information helps biologists determine the types of life
a lake can support.) As light passes through water (or other transparent materials such
as glass or plastic), some of the light is absorbed. It’s easy to see that the murkier the
water the more light is absorbed. The exact relationship between light absorption and
the distance light travels in a material is described in the next example.

Example 10 Transparency of a Lake

If I0 and I denote the intensity of light before and after going through a material 
and x is the distance (in feet) the light travels in the material, then according to the
Beer-Lambert Law

where k is a constant depending on the type of material.

(a) Solve the equation for I.

(b) For a certain lake k � 0.025 and the light intensity is I0 � 14 lumens (lm). Find
the light intensity at a depth of 20 ft.

Solution

(a) We first isolate the logarithmic term.

Given equation

Multiply by �k

Exponential form

Multiply by I0

(b) We find I using the formula from part (a).

From part (a)

I0 � 14, k � 0.025, x � 20

Calculator

The light intensity at a depth of 20 ft is about 8.5 lm. ■

 � 8.49

 � 14e1�0.02521202

 I � I0e
�kx

 I � I0e
�kx

 
I

I0
� e�kx

 ln a
I

I0
b � �kx

 � 

1

k
 ln a

I

I0
b � x

� 

1

k
 ln a

I

I0
b � x

2

_2 3

_2Figure 3

x � �0.71  and  x � 1.60
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The intensity of light in a lake
diminishes with depth.
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ALTERNATE EXAMPLE 11
A sum of $2000 is invested at an
interest rate of 3.25% per year.
Find the time for the money to
double if the interest is
compounded according to the
following method:

(a) Semiannual
(b) Monthly
(c) Continuous

ANSWERS
(a) Approximately 21.500 years
(b) Approximately 21.356 years
(c) Approximately 21.328 years

IN-CLASS MATERIALS

Build up some tough problems from simple ones. For example, first have students solve x2 + 2x - 15 = 0.
Then have them solve (ex - 1)2 + 2(ex - 1) - 15 = 0. One can even belabor the point with
ln 1(ex - 1)2 + 2(ex - 1) - 142 = 0.

Compound Interest

Recall the formulas for interest that we found in Section 4.1. If a principal P is 
invested at an interest rate r for a period of t years, then the amount A of the invest-
ment is given by

Simple interest (for one year)

Interest compounded n times per year

Interest compounded continuously

We can use logarithms to determine the time it takes for the principal to increase
to a given amount.

Example 11 Finding the Term for an Investment to Double

A sum of $5000 is invested at an interest rate of 5% per year. Find the time required
for the money to double if the interest is compounded according to the following
method.

(a) Semiannual (b) Continuous

Solution

(a) We use the formula for compound interest with P � $5000, A(t) � $10,000,
r � 0.05, n � 2, and solve the resulting exponential equation for t.

Divide by 5000

Take log of each side

Law 3 (bring down the exponent)

Divide by 2 log 1.025

Calculator

The money will double in 14.04 years.

(b) We use the formula for continuously compounded interest with P � $5000,
, r � 0.05, and solve the resulting exponential equation for t.

Pert � A

Divide by 5000

Take ln of each side

Property of ln

Divide by 0.05

Calculator

The money will double in 13.86 years. ■

 t � 13.86

 t �
ln 2

0.05

 0.05t � ln 2

 ln e0.05t � ln 2

 e0.05t � 2

 5000e0.05t � 10,000

A1t 2 � $10,000

 t � 14.04

 t �
log 2

2 log 1.025

 2t log 1.025 � log 2

 log 1.0252t � log 2

 11.025 2 2t � 2

P a 1 �
r
n
b

nt

� A  5000 a1 �
0.05

2
b

2t

� 10,000

 A1t 2 � Pert

 A1t 2 � P a1 �
r
n
b

nt

 A � P11 � r 2
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ALTERNATE EXAMPLE 12
A sum of $4000 is invested at an
interest rate of 9% per year. Find
the time required for the money to
double if the interest is
compounded continuously.

ANSWER
7.7

ALTERNATE EXAMPLE 13
Find the annual percentage yield
for an investment that earns
interest at a rate of 3% per year,
compounded daily.

ANSWER
3.045%

DRILL QUESTION

If I invest $2000 at an annual interest rate of 3%, compounded continuously, how long will it take the
investment to double?

Answer

ln 2

0.03
L 23 years

Example 12 Time Required to Grow an Investment

A sum of $1000 is invested at an interest rate of 4% per year. Find the time required
for the amount to grow to $4000 if interest is compounded continuously.

Solution We use the formula for continuously compounded interest with 
P � $1000, , r � 0.04, and solve the resulting exponential 
equation for t.

Pert � A

Divide by 1000

Take ln of each side

Divide by 0.04

Calculator

The amount will be $4000 in about 34 years and 8 months. ■

If an investment earns compound interest, then the annual percentage yield
(APY) is the simple interest rate that yields the same amount at the end of one year.

Example 13 Calculating the Annual Percentage Yield

Find the annual percentage yield for an investment that earns interest at a rate of
6% per year, compounded daily.

Solution After one year, a principal P will grow to the amount

The formula for simple interest is

Comparing, we see that 1 � r � 1.06183, so r � 0.06183. Thus the annual 
percentage yield is 6.183%. ■

4.4 Exercises

A � P11 � r 2

A � P a1 �
0.06

365
b

365

� P11.06183 2

 t � 34.66

 t �
ln 4

0.04

 0.04t � ln 4

 e0.04t � 4

 1000e0.04t � 4000

A1t 2 � $4000

366 CHAPTER 4 Exponential and Logarithmic Functions

1–26 ■ Find the solution of the exponential equation, correct to
four decimal places.

1. 10x � 25 2. 10�x � 4

3. e�2x � 7 4. e3x � 12

5. 21�x � 3 6. 32x�1 � 5

7. 3ex � 10 8. 2e12x � 17

9. e1�4x � 2 10.

11. 4 � 35x � 8 12. 23x � 34

411 � 105x 2 � 9

13. 80.4x � 5 14. 3x/14 � 0.1

15. 5�x/100 � 2 16. e3�5x � 16

17. e2x�1 � 200 18.

19. 5 x � 4x�1 20. 101�x � 6x

21. 23x�1 � 3 x�2 22. 7x/2 � 51�x

23. 24.

25. 26. 11.00625 2 12t � 210011.04 2 2t � 300

10

1 � e�x � 2
50

1 � e�x � 4

A14B
x

� 75
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SECTION 4.4 Exponential and Logarithmic Equations 367

27–34 ■ Solve the equation.

27. x 22x � 2x � 0 28.

29. 4x 3e�3x � 3x 4e�3x � 0 30. x 2ex � xex � ex � 0

31. e2x � 3ex � 2 � 0 32. e2x � ex � 6 � 0

33. e4x � 4e 2x � 21 � 0 34. ex � 12e�x � 1 � 0

35–50 ■ Solve the logarithmic equation for x.

35. ln x � 10 36.

37. log x � �2 38.

39. 40.

41. 42.

43.

44.

45.

46.

47.

48.

49.

50.

51. For what value of x is the following true?

52. For what value of x is it true that ?

53. Solve for x:

54. Solve for x:

55–62 ■ Use a graphing device to find all solutions of the 
equation, correct to two decimal places.

55. ln x � 3 � x

56. log x � x 2 � 2

57.

58.

59. ex � �x

60. 2�x � x � 1

61.

62.

63–66 ■ Solve the inequality.

63.

64. 3 	 log2 x 	 4

65. 2 � 10 x � 5 66. x 2ex � 2ex � 0

log1x � 2 2 � log19 � x 2 � 1

ex2

� 2 � x3 � x

4�x � 1x

x � ln14 � x2 2

x3 � x � log1x � 1 2

log2 1log3 x 2 � 4

22/log5 x � 1
16

1log x 2 3 � 3 log x

log1x � 3 2 � log x � log 3

ln1x � 1 2 � ln1x � 2 2 � 1

log9 1x � 5 2 � log9 1x � 3 2 � 1

log x � log1x � 3 2 � 1

log51x � 1 2 � log51x � 1 2 � 2

log5 x � log51x � 1 2 � log5 20

log x � log1x � 1 2 � log14x 2

2 log x � log 2 � log13x � 4 2

log2 3 � log2 x � log2 5 � log21x � 2 2

log21x
2 � x � 2 2 � 22 � ln13 � x 2 � 0

log312 � x 2 � 3log13x � 5 2 � 2

log1x � 4 2 � 3

ln12 � x 2 � 1

x210x � x10x � 2110x 2

Applications

67. Compound Interest A man invests $5000 in an account
that pays 8.5% interest per year, compounded quarterly.

(a) Find the amount after 3 years.

(b) How long will it take for the investment to double?

68. Compound Interest A man invests $6500 in an 
account that pays 6% interest per year, compounded 
continuously.

(a) What is the amount after 2 years?

(b) How long will it take for the amount to be $8000?

69. Compound Interest Find the time required for an invest-
ment of $5000 to grow to $8000 at an interest rate of 7.5%
per year, compounded quarterly.

70. Compound Interest Nancy wants to invest $4000 in 
saving certificates that bear an interest rate of 9.75% 
per year, compounded semiannually. How long a time 
period should she choose in order to save an amount of
$5000?

71. Doubling an Investment How long will it take for an in-
vestment of $1000 to double in value if the interest rate is
8.5% per year, compounded continuously?

72. Interest Rate A sum of $1000 was invested for 4 years,
and the interest was compounded semiannually. If this sum
amounted to $1435.77 in the given time, what was the 
interest rate?

73. Annual Percentage Yield Find the annual percentage
yield for an investment that earns 8% per year, compounded
monthly.

74. Annual Percentage Yield Find the annual percentage
yield for an investment that earns  5 % per year, com-
pounded continuously.

75. Radioactive Decay A 15-g sample of radioactive iodine
decays in such a way that the mass remaining after t days is
given by where is measured in grams.
After how many days is there only 5 g remaining?

76. Skydiving The velocity of a sky diver t seconds after
jumping is given by . After how many
seconds is the velocity 70 ft/s?

77. Fish Population A small lake is stocked with a certain
species of fish. The fish population is modeled by the 
function

where P is the number of fish in thousands and t is 
measured in years since the lake was stocked.

(a) Find the fish population after 3 years.

P �
10

1 � 4e�0.8t

√ 1t 2 � 8011 � e�0.2t 2

m1t 2m1t 2 � 15e�0.087t

1
2
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(b) After how many years will the fish population reach
5000 fish?

78. Transparency of a Lake Environmental scientists mea-
sure the intensity of light at various depths in a lake to find
the “transparency” of the water. Certain levels of trans-
parency are required for the biodiversity of the submerged
macrophyte population. In a certain lake the intensity of
light at depth x is given by

where I is measured in lumens and x in feet.

(a) Find the intensity I at a depth of 30 ft.

(b) At what depth has the light intensity dropped to I � 5?

79. Atmospheric Pressure Atmospheric pressure P
(in kilopascals, kPa) at altitude h (in kilometers, km) is 
governed by the formula

where k � 7 and P0 � 100 kPa are constants.

(a) Solve the equation for P.

(b) Use part (a) to find the pressure P at an altitude of 4 km.

80. Cooling an Engine Suppose you’re driving your car on a
cold winter day (20 
F outside) and the engine overheats (at
about 220 
F). When you park, the engine begins to cool
down. The temperature T of the engine t minutes after you
park satisfies the equation

(a) Solve the equation for T.

(b) Use part (a) to find the temperature of the engine after
20 min (t � 20).

ln a
T � 20

200
b � �0.11t

ln a
P

P0
b � � 

h

k

I � 10e�0.008x

81. Electric Circuits An electric circuit contains a battery that
produces a voltage of 60 volts (V), a resistor with a resis-
tance of 13 ohms (�), and an inductor with an inductance of
5 henrys (H), as shown in the figure. Using calculus, it can
be shown that the current (in amperes, A) t seconds
after the switch is closed is .

(a) Use this equation to express the time t as a function of
the current I.

(b) After how many seconds is the current 2 A?

82. Learning Curve A learning curve is a graph of a function
that measures the performance of someone learning a

skill as a function of the training time t. At first, the rate of
learning is rapid. Then, as performance increases and ap-
proaches a maximal value M, the rate of learning decreases.
It has been found that the function

where k and C are positive constants and C � M is a 
reasonable model for learning.

(a) Express the learning time t as a function of the per-
formance level P.

(b) For a pole-vaulter in training, the learning curve is
given by

where is the height he is able to pole-vault after
t months. After how many months of training is he able
to vault 12 ft?

(c) Draw a graph of the learning curve in part (b).

P1t 2

P1t 2 � 20 � 14e�0.024t

P1t 2 � M � Ce�kt

P1t 2

60 V

13 �

5 H

Switch

I � 60
13 11 � e�13t/5 2

I � I1t 2
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SUGGESTED TIME

AND EMPHASIS

–1 class.
Recommended material. Can be
combined with Section 4.5.

1
2

POINTS TO STRESS

1. Translating verbal descriptions of problems into mathematical models, and solving the problems using
the models.

2. Certain standard types of problems such as those dealing with exponential growth and decay and
logarithmic scales.

SECTION 4.5 Modeling with Exponential and Logarithmic Functions 369

Discovery • Discussion

83. Estimating a Solution Without actually solving the
equation, find two whole numbers between which the 
solution of 9x � 20 must lie. Do the same for 9x � 100. 
Explain how you reached your conclusions.

84. A Surprising Equation Take logarithms to show that the
equation

has no solution. For what values of k does the equation

x1/log x � k

x1/log x � 5

have a solution? What does this tell us about the graph of
the function ? Confirm your answer using a
graphing device.

85. Disguised Equations Each of these equations can be
transformed into an equation of linear or quadratic type by
applying the hint. Solve each equation.

(a) [Take log of each side.]

(b) log2 x � log4 x � log8 x � 11 [Change all logs to 
base 2.]

(c) 4x � 2x�1 � 3 [Write as a quadratic 
in 2x.]

1x � 1 2 log1x�12 � 1001x � 1 2

f 1x 2 � x1/log x

4.5 Modeling with Exponential  
and Logarithmic Functions

Many processes that occur in nature, such as population growth, radioactive decay,
heat diffusion, and numerous others, can be modeled using exponential functions.
Logarithmic functions are used in models for the loudness of sounds, the intensity of
earthquakes, and many other phenomena. In this section we study exponential and
logarithmic models.

Exponential Models of Population Growth

Biologists have observed that the population of a species doubles its size in a fixed
period of time. For example, under ideal conditions a certain population of bacteria
doubles in size every 3 hours. If the culture is started with 1000 bacteria, then after 
3 hours there will be 2000 bacteria, after another 3 hours there will be 4000, and so
on. If we let be the number of bacteria after t hours, then

From this pattern it appears that the number of bacteria after t hours is modeled by
the function

In general, suppose that the initial size of a population is n0 and the doubling pe-
riod is a. Then the size of the population at time t is modeled by

where c � 1/a. If we knew the tripling time b, then the formula would be 
where c � 1/b. These formulas indicate that the growth of the bacteria is modeled by

n1t 2 � n03
ct

n1t 2 � n02ct

n1t 2 � 1000 # 2t/3

 n112 2 � 11000 # 23 2 # 2 � 1000 # 24

 n19 2 � 11000 # 22 2 # 2 � 1000 # 23

 n16 2 � 11000 # 2 2 # 2 � 1000 # 22

 n13 2 � 1000 # 2
 n10 2 � 1000

n � n1t 2
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ALTERNATE EXAMPLE 1
The initial bacterium count in a
culture is 400. A biologist later
makes a sample count of bacteria
in the culture and finds that the
relative rate of growth is 40% per
hour. Using the exponential
growth model, find a function that
models the number of bacteria
after t hours and use it to estimate
(to the nearest hundred) the
bacterium count after 10 hours.

ANSWER
n(t) = 400e0.4t; 21,800

SAMPLE QUESTION

Text Question

Recall that Newton’s Law of Cooling is given by

T (t) = Ts + D0e-kt

Which of the constants in this law correspond to surrounding temperature? Which represents the initial
difference between the object and its surroundings? How do you know?

Answer

Ts, D0. There is a horizontal asymptote at Ts, which would have to correspond to the surrounding tempera-
ture, because things cool off to the surrounding temperature. Their initial difference is D0, because when
t = 0 we know that T = Ts + D0.

an exponential function. But what base should we use? The answer is e, because then
it can be shown (using calculus) that the population is modeled by

where r is the relative rate of growth of population, expressed as a proportion of the
population at any time. For instance, if r � 0.02, then at any time t the growth rate is
2% of the population at time t.

Notice that the formula for population growth is the same as that for continuously
compounded interest. In fact, the same principle is at work in both cases: The growth
of a population (or an investment) per time period is proportional to the size of the
population (or the amount of the investment). A population of 1,000,000 will increase
more in one year than a population of 1000; in exactly the same way, an investment
of $1,000,000 will increase more in one year than an investment of $1000.

n1t 2 � n0ert

370 CHAPTER 4 Exponential and Logarithmic Functions

In the following examples we assume that the populations grow exponentially.

Example 1 Predicting the Size of a Population

The initial bacterium count in a culture is 500. A biologist later makes a sample
count of bacteria in the culture and finds that the relative rate of growth is 40% 
per hour.

(a) Find a function that models the number of bacteria after t hours.

(b) What is the estimated count after 10 hours?

(c) Sketch the graph of the function .

Solution

(a) We use the exponential growth model with n0 � 500 and r � 0.4 to get

where t is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is

(c) The graph is shown in Figure 1. ■

n110 2 � 500e0.4 1102 � 500e4 � 27,300

n1t 2 � 500e0.4t

n1t 2

Exponential Growth Model

A population that experiences exponential growth increases according to the
model

where � population at time t

n0 � initial size of the population

r � relative rate of growth (expressed as a proportion of the
population)

t � time

n1t 2

n1t 2 � n0e
rt

0

5000

6
500

n(t)=500eº—¢‰

Figure 1
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CHAPTER 4 Exponential and Logarithmic Functions 371

ALTERNATE EXAMPLE 2
In 2000 the population of the
world was 6.3 billion and the
relative rate of growth was 1.4%
per year. It is claimed that a rate
of 1.0% per year would make a
significant difference in the total
population in just a few decades.
Test this claim by estimating to
the nearest tenth of billion the
population of the world in the year
2040 using a relative rate of
growth of

(a) 1.4% per year 
(b) 1% per year

ANSWERS
(a) 11.0
(b) 9.4

ALTERNATE EXAMPLE 3
A certain breed of rabbit was
introduced onto a small island
about 9 years ago. The current
rabbit population on the island is
estimated to be 4700, with a
relative growth rate of 55% per
year. 

(a) What was the initial size of the
rabbit population? 

(b) Estimate the population
11 years from now. 

Round both answers to the nearest
integer.

ANSWERS
(a) 33
(b) 1,975,847

DRILL QUESTIONS

Recall that the pH of a substance is given by -log [H+], where H+ is the concentration of hydrogen ions
measured in moles per liter. Also recall that solutions with a pH of 7 are neutral, those with pH � 7 are
basic, and those with pH � 7 are acidic.

(a) If a sample was measured to have hydrogen concentration of [H+] � 4 * 10-8 M, what would 
the pH be?

(b) What is the hydrogen ion concentration in a neutral substance?

Answers

(a) 7.4
(b) 10-7

Example 2 Comparing Different Rates 

of Population Growth

In 2000 the population of the world was 6.1 billion and the relative rate of 
growth was 1.4% per year. It is claimed that a rate of 1.0% per year would make 
a significant difference in the total population in just a few decades. Test this 
claim by estimating the population of the world in the year 2050 using a relative
rate of growth of (a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative 
growth rates in the same viewing rectangle.

Solution

(a) By the exponential growth model, we have

where is measured in billions and t is measured in years since 2000. 
Because the year 2050 is 50 years after 2000, we find

The estimated population in the year 2050 is about 12.3 billion.

(b) We use the function

and find

The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 2 show that a small change in the relative rate of growth will,
over time, make a large difference in population size. ■

Example 3 Finding the Initial Population

A certain breed of rabbit was introduced onto a small island about 8 years ago. The
current rabbit population on the island is estimated to be 4100, with a relative
growth rate of 55% per year.

(a) What was the initial size of the rabbit population?

(b) Estimate the population 12 years from now.

Solution

(a) From the exponential growth model, we have

and we know that the population at time t � 8 is . We substitute
what we know into the equation and solve for n0:

Thus, we estimate that 50 rabbits were introduced onto the island.

 n0 �
4100

e0.55182
�

4100

81.45
� 50

 4100 � n0e
0.55182

n18 2 � 4100

n1t 2 � n0e
0.55t

 n150 2 � 6.1e0.010 1502 � 6.1e0.50 � 10.1

 n1t 2 � 6.1e0.010t

n150 2 � 6.1e0.014 1502 � 6.1e0.7 � 12.3

n1t 2

n1t 2 � 6.1e0.014t

SECTION 4.5 Modeling with Exponential and Logarithmic Functions 371

30

0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

Figure 2
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372 CHAPTER 4 Exponential and Logarithmic Functions

ALTERNATE EXAMPLE 5
A culture starts with 5000
bacteria. If this population doubles
every 30 minutes, find the number
of bacteria after one hour.

ANSWER
20,000

IN-CLASS MATERIALS

Show that the expression y = ekt can be written as y = at and vice versa. Add that ekt+c is equivalent to Aekt.

(b) Now that we know n0, we can write a formula for population growth:

Twelve years from now, t � 20 and

We estimate that the rabbit population on the island 12 years from now will be
about 3 million. ■

Can the rabbit population in Example 3(b) actually reach such a high number? In
reality, as the island becomes overpopulated with rabbits, the rabbit population
growth will be slowed due to food shortage and other factors. One model that 
takes into account such factors is the logistic growth model described in the Focus on
Modeling, page 392.

Example 4 World Population Projections

The population of the world in 2000 was 6.1 billion, and the estimated relative
growth rate was 1.4% per year. If the population continues to grow at this rate,
when will it reach 122 billion?

Solution We use the population growth function with n0 � 6.1 billion,
r � 0.014, and billion. This leads to an exponential equation, which 
we solve for t.

n0ert � n(t)

Divide by 6.1

Take ln of each side

Property of ln

Divide by 0.014

Calculator

Thus, the population will reach 122 billion in approximately 214 years, that is, in
the year 2000 � 214 � 2214. ■

Example 5 The Number of Bacteria in a Culture

A culture starts with 10,000 bacteria, and the number doubles every 40 min.

(a) Find a function that models the number of bacteria at time t.

(b) Find the number of bacteria after one hour.

(c) After how many minutes will there be 50,000 bacteria?

(d) Sketch a graph of the number of bacteria at time t.

Solution

(a) To find the function that models this population growth, we need to find the 
rate r. To do this, we use the formula for population growth with n0 � 10,000,
t � 40, and , and then solve for r.n1t 2 � 20,000

 t � 213.98

 t �
ln 20

0.014

 0.014t � ln 20

 ln e0.014t � ln 20

 e0.014t � 20

 6.1e0.014t � 122

n1t 2 � 122

n120 2 � 50e0.551202 � 2,993,707

n1t 2 � 50e0.55t

372 CHAPTER 4 Exponential and Logarithmic Functions

Another way to solve part (b) is to let 
t be the number of years from now. In
this case, n0 � 4100 (the current popu-
lation), and the population 12 years
from now will be

n112 2 � 4100e0.551122 � 3 million

Standing Room Only

The population of the world was
about 6.1 billion in 2000, and was
increasing at 1.4% per year. As-
suming that each person occupies
an average of 4 ft2 of the surface of
the earth, the exponential model
for population growth projects that
by the year 2801 there will be stand-
ing room only! (The total land 
surface area of the world is about
1.8 � 1015 ft2.)
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IN-CLASS MATERIALS

One way to measure the growth
of the Internet is to measure the
number of Internet hosts. The
following data show the number
of Internet hosts over time. Try to
determine with students if this is
exponential growth. (Note: Do not
show the students the third column
right away. Let them come up with
the idea of finding growth rates
between data points.)

n0ert � n(t)

Divide by 10,000

Take ln of each side

Property of ln

Divide by 40

Calculator

Now that we know r � 0.01733, we can write the function for the population
growth:

(b) Using the function we found in part (a) with t � 60 min (one hour), we get

Thus, the number of bacteria after one hour is approximately 28,000.

(c) We use the function we found in part (a) with and solve the 
resulting exponential equation for t.

n0ert � n(t)

Divide by 10,000

Take ln of each side

Property of ln

Divide by 0.01733

Calculator

The bacterium count will reach 50,000 in approximately 93 min.

(d) The graph of the function is shown in Figure 3. ■

Radioactive Decay

Radioactive substances decay by spontaneously emitting radiation. The rate of decay
is directly proportional to the mass of the substance. This is analogous to population
growth, except that the mass of radioactive material decreases. It can be shown that
the mass remaining at time t is modeled by the function

where r is the rate of decay expressed as a proportion of the mass and m0 is the ini-
tial mass. Physicists express the rate of decay in terms of half-life, the time required
for half the mass to decay. We can obtain the rate r from this as follows. If h is the

m1t 2 � m0e
�rt

m1t 2

n1t 2 � 10,000e0.01733t

 t � 92.9

 t �
ln 5

0.01733

 0.01733t � ln 5

 ln e0.01733t � ln 5

 e0.01733t � 5

 10,000e0.01733t � 50,000

n1t 2 � 50,000

n160 2 � 10,000e0.017331602 � 28,287

n1t 2 � 10,000e0.01733t

 r � 0.01733

 r �
ln 2

40

 40r � ln 2

 ln  e40r � ln 2

 e40r � 2

 10,000er1402 � 20,000
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Figure 3

The half-lives of radioactive ele-
ments vary from very long to very
short. Here are some examples.

Element Half-life

Thorium-232 14.5 billion years
Uranium-235 4.5 billion years
Thorium-230 80,000 years
Plutonium-239 24,360 years
Carbon-14 5,730 years
Radium-226 1,600 years
Cesium-137 30 years
Strontium-90 28 years
Polonium-210 140 days
Thorium-234 25 days
Iodine-135 8 days
Radon-222 3.8 days
Lead-211 3.6 minutes
Krypton-91 10 seconds

Month Hosts Growth

Aug 1981 213 —
May 1982 235 1.1404
Aug 1983 562 2.0065
Oct 1984 1024 1.6701
Oct 1985 1961 1.9150
Feb 1986 2308 1.6217
Nov 1986 5089 2.8782
Dec 1987 28,174 4.8615
Jul 1988 33,000 1.3112
Oct 1988 56,000 8.1509
Jan 1989 80,000 4.1168
Jul 1989 130,000 2.6620
Oct 1989 159,000 2.2231
Oct 1990 313,000 1.9686
Jan 1991 376,000 2.0824
Jul 1991 535,000 2.0364
Oct 1991 617,000 1.7608
Jan 1992 727,000 1.9172
Apr 1992 890,000 2.2511
Jul 1992 992,000 1.5453
Oct 1992 1,136,000 1.7122
Jan 1993 1,313,000 1.7762
Apr 1993 1,486,000 1.6520
Jul 1993 1,776,000 2.0443
Oct 1993 2,056,000 1.7875
Jan 1994 2,217,000 1.3487
Jul 1994 3,212,000 2.1120
Oct 1994 3,864,000 2.0818
Jan 1995 4,852,000 2.4618
Jul 1995 6,642,000 1.8739
Jan 1996 9,472,000 2.0357
Jul 1996 12,881,000 1.8525
Jan 1997 16,146,000 1.5654
Jul 1997 19,540,000 1.4692
Jan 1998 29,670,000 2.2900
Jul 1998 36,739,000 1.5387
Jan 1999 43,230,000 1.3809
Jul 1999 56,218,000 1.6985
Jan 2000 72,398,092 1.6516
Jul 2000 93,047,785 1.6541
Jan 2001 109,574,429 1.3831

t

H

0082 84 86 88 90 92 94 96 98

20,000,000
40,000,000
60,000,000
80,000,000

100,000,000
120,000,000

0082 84 86 88 90 92 94 96 98

3
2
1

4
5
6
7
8
9

t

G

Answer

We can graph the data, and get a curve that looks like exponential growth. We can also graph growth rate
and see (except for two spikes in the late 1980s) a more-or-less constant growth rate.
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ALTERNATE EXAMPLE 6
Polonium-210 (210Po) has a half-
life of 140 days. Suppose a sample
of this substance has a mass of
100 mg. Find the mass remaining
after one year (365 days).

ANSWER
16 mg

IN-CLASS MATERIALS

In 1985 there were 15,948 diagnosed cases of AIDS in the United States. In 1990 there were 156,024.
Scientists said that if there was no research done, the disease would grow exponentially. Compute the
number of cases this model predicts for the year 2000. The actual number was 774,467. Discuss possible
flaws in the model with students, and point out the dangers of extrapolation.

Example 6 Radioactive Decay

Polonium-210 has a half-life of 140 days. Suppose a sample of this
substance has a mass of 300 mg.

(a) Find a function that models the amount of the sample remaining at time t.

(b) Find the mass remaining after one year.

(c) How long will it take for the sample to decay to a mass of 200 mg?

(d) Draw a graph of the sample mass as a function of time.

Solution

(a) Using the model for radioactive decay with m0 � 300 and
, we have

(b) We use the function we found in part (a) with t � 365 (one year).

Thus, approximately 49 mg of 210Po remains after one year.

(c) We use the function we found in part (a) with and solve the result-
ing exponential equation for t.

Divided by 300

Take ln of each side ln e�0.00495t � ln 23

 e�0.00495t � 2
3

m1t 2 � moe�rt 300e�0.00495t � 200

m1t 2 � 200

m1365 2 � 300e�0.0049513652 � 49.256

m1t 2 � 300e�0.00495t

r � 1ln 2/140 2 � 0.00495

1210Po 2

half-life, then a mass of 1 unit becomes unit when t � h. Substituting this into the
model, we get

Take ln of each side

Solve for r

ln 2�1 � �In 2 by Law 3

This last equation allows us to find the rate r from the half-life h.

 r �
ln 2

h

 r � �
1

h
  ln12�1 2

lnA12B � �rh

m1t 2 � moe�rt 12 � 1 # e�rh

1
2
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Radioactive Decay Model

If m0 is the initial mass of a radioactive substance with half-life h, then the
mass remaining at time t is modeled by the function

where .r �
ln 2

h

m1t 2 � m0e
�rt

Radioactive Waste

Harmful radioactive isotopes are
produced whenever a nuclear reac-
tion occurs, whether as the result of
an atomic bomb test, a nuclear ac-
cident such as the one at Chernobyl
in 1986, or the uneventful produc-
tion of electricity at a nuclear
power plant.

One radioactive material pro-
duced in atomic bombs is the 
isotope strontium-90 1 90Sr2, with a
half-life of 28 years. This is depos-
ited like calcium in human bone
tissue, where it can cause leukemia
and other cancers. However, in the
decades since atmospheric testing
of nuclear weapons was halted,
90Sr levels in the environment have
fallen to a level that no longer
poses a threat to health.

Nuclear power plants produce
radioactive plutonium-239 1239Pu2,
which has a half-life of 24,360
years. Because of its long half-life,
239Pu could pose a threat to the en-
vironment for thousands of years.
So, great care must be taken to dis-
pose of it properly. The difficulty
of ensuring the safety of the dis-
posed radioactive waste is one rea-
son that nuclear power plants
remain controversial.
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ALTERNATE EXAMPLE 7
A cup of coffee has a temperature
of 210°F and is placed in a room
that has a temperature of 85°F.
After 20 minutes the temperature
of the coffee is 140°F. Find the
temperature of the coffee after
25 minutes.

ANSWER
130°F

Example 7 Newton’s Law of Cooling

A cup of coffee has a temperature of 200 
F and is placed in a room that has a tem-
perature of 70 
F. After 10 min the temperature of the coffee is 150 
F.

(a) Find a function that models the temperature of the coffee at time t.

(b) Find the temperature of the coffee after 15 min.

(c) When will the coffee have cooled to 100 
F?

(d) Illustrate by drawing a graph of the temperature function.

Solution

(a) The temperature of the room is Ts � 70 
F, and the initial temperature 
difference is

So, by Newton’s Law of Cooling, the temperature after t minutes is modeled by
the function

We need to find the constant k associated with this cup of coffee. To do 
this, we use the fact that when t � 10, the temperature is . T110 2 � 150

T1t 2 � 70 � 130e�kt

D0 � 200 � 70 � 130 °F

Property of ln

Divide by �0.00495

Calculator

The time required for the sample to decay to 200 mg is about 82 days.

(d) A graph of the function is shown in Figure 4. ■

Newton’s Law of Cooling

Newton’s Law of Cooling states that the rate of cooling of an object is proportional
to the temperature difference between the object and its surroundings, provided that
the temperature difference is not too large. Using calculus, the following model can
be deduced from this law.

m1t 2 � 300e�0.00495t

 t � 81.9

 t � � 

ln 23
0.00495

 �0.00495t � ln 23
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Newton’s Law of Cooling

If D0 is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature Ts, then the temperature of 
the object at time t is modeled by the function

where k is a positive constant that depends on the type of object.

T1t 2 � Ts � D0e
�kt

0 50

m(t)=300 e_º.ºº¢ª∞t

t

100

200

300

m(t)

Time (days)
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™¡º
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m

g)

150

Figure 4
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IN-CLASS MATERIALS

Discuss the logistic growth model Have students graph a few of these curves with different 

values of M and k. This model assumes that an environment has a carrying capacity M. It assumes that
when a population is much less than M, a population’s growth will look like exponential growth, but that
when the population approaches M, the population growth gets very slow, asymptotically approaching M.
If the population starts out greater than M, then it will decay, exponentially, to M.

P =
M

1 + Ae- kt
.

So we have

Ts � Doe�kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Divide by �10

Caculator

Substituting this value of k into the expression for , we get

(b) We use the function we found in part (a) with t � 15.

(c) We use the function we found in part (a) with and solve the result-
ing exponential equation for t.

Ts � Doe�kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Divide by �0.04855

Calculator

The coffee will have cooled to 100
F after about half an hour.

(d) The graph of the temperature function is sketched in Figure 5. Notice that the
line t � 70 is a horizontal asymptote. (Why?) ■

Logarithmic Scales

When a physical quantity varies over a very large range, it is often convenient to take
its logarithm in order to have a more manageable set of numbers. We discuss three
such situations: the pH scale, which measures acidity; the Richter scale, which mea-
sures the intensity of earthquakes; and the decibel scale, which measures the loudness
of sounds. Other quantities that are measured on logarithmic scales are light inten-
sity, information capacity, and radiation.

THE pH SCALE Chemists measured the acidity of a solution by giving its hydrogen
ion concentration until Sorensen, in 1909, proposed a more convenient measure. He
defined

 t � 30.2

 t �
ln 3

13

�0.04855

 �0.04855t � ln 3
13

 e�0.04855t � 3
13

 130e�0.04855t � 30

 70 � 130e�0.04855t � 100

T1t 2 � 100

T115 2 � 70 � 130e�0.048551152 � 133 °F

T1t 2 � 70 � 130e�0.04855t

T1t 2

 k � 0.04855

 k � � 
1

10   ln 8
13

 �10k � ln 8
13

 e�10k � 8
13

 130e�10k � 80

 70 � 130e�10k � 150
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Figure 5

Temperature of coffee after t minutes

T=70+130e_º.º¢•∞∞ t

70

0 10 20 30 40

200

T=70

t (min)

T (°F)

pH � �log 3H� 4
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ALTERNATE EXAMPLE 8
The hydrogen ion concentration 
in a sample of human blood
was measured to be [H+] =
5.41 � 10-8 M. Find the pH
and classify the blood as acidic
or basic.

ANSWER
pH = 7.3, basic

where [H�] is the concentration of hydrogen ions measured in moles per liter (M). He
did this to avoid very small numbers and negative exponents. For instance,

if M, then

Solutions with a pH of 7 are defined as neutral, those with pH � 7 are acidic, and
those with pH � 7 are basic. Notice that when the pH increases by one unit, 3H�4
decreases by a factor of 10.

Example 8 pH Scale and Hydrogen Ion Concentration

(a) The hydrogen ion concentration of a sample of human blood was measured to
be 3H�4� 3.16 � 10�8 M. Find the pH and classify the blood as acidic or basic.

(b) The most acidic rainfall ever measured occurred in Scotland in 1974; its pH
was 2.4. Find the hydrogen ion concentration.

Solution

(a) A calculator gives

Since this is greater than 7, the blood is basic.

(b) To find the hydrogen ion concentration, we need to solve for 3H�4 in the 
logarithmic equation

So, we write it in exponential form.

In this case, pH � 2.4, so

■

THE RICHTER SCALE In 1935 the American geologist Charles Richter (1900–
1984) defined the magnitude M of an earthquake to be

where I is the intensity of the earthquake (measured by the amplitude of a seismo-
graph reading taken 100 km from the epicenter of the earthquake) and S is the inten-
sity of a “standard” earthquake (whose amplitude is 1 micron � 10�4 cm). The
magnitude of a standard earthquake is

Richter studied many earthquakes that occurred between 1900 and 1950. The largest
had magnitude 8.9 on the Richter scale, and the smallest had magnitude 0. This cor-
responds to a ratio of intensities of 800,000,000, so the Richter scale provides more

M � log 
S

S
� log 1 � 0

3H� 4 � 10�2.4 � 4.0 � 10�3 M

3H� 4 � 10�pH

log 3H� 4 � �pH

pH � �log 3H� 4 � �log13.16 � 10�8 2 � 7.5

pH � �log10110�4 2 � �1�4 2 � 43H� 4 � 10�4

SECTION 4.5 Modeling with Exponential and Logarithmic Functions 377

pH for Some Common

Substances

Substance pH

Milk of Magnesia 10.5
Seawater 8.0–8.4
Human blood 7.3–7.5
Crackers 7.0–8.5
Hominy (lye) 6.9–7.9
Cow’s milk 6.4–6.8
Spinach 5.1–5.7
Tomatoes 4.1–4.4
Oranges 3.0–4.0
Apples 2.9–3.3
Limes 1.3–2.0
Battery acid 1.0

M � log 
I

S
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ALTERNATE EXAMPLE 9
An earthquake in the United
States has an estimated magnitude
of 3.7 on the Richter scale. In the
same year an earthquake in
Ecuador was four times as intense.
What was the magnitude of the
Ecuador earthquake on the Richter
scale?

ANSWER
4.3

ALTERNATE EXAMPLE 10
A San Francisco earthquake has a
magnitude of 7.5 on the Richter
scale. Five years before, San
Francisco had one with a
magnitude of 8.1 on the Richter
scale. How many times more
intense was the past earthquake
compared to the present one?

ANSWER
4

IN-CLASS MATERIALS

Go over Examples 9 and 10, the Richter scale. Ask students the open-ended question, “How much worse is
an earthquake that measures 7 on the Richter scale than an earthquake that measures 6?” and discuss the
issue.

manageable numbers to work with. For instance, an earthquake of magnitude 6 is ten
times stronger than an earthquake of magnitude 5.

Example 9 Magnitude of Earthquakes

The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the
Richter scale. In the same year a powerful earthquake occurred on the Colombia-
Ecuador border and was four times as intense. What was the magnitude of the
Colombia-Ecuador earthquake on the Richter scale?

Solution If I is the intensity of the San Francisco earthquake, then from the
definition of magnitude we have

The intensity of the Colombia-Ecuador earthquake was 4I, so its magnitude was

■

Example 10 Intensity of Earthquakes

The 1989 Loma Prieta earthquake that shook San Francisco had a magnitude of 
7.1 on the Richter scale. How many times more intense was the 1906 earthquake 
(see Example 9) than the 1989 event?

Solution If I1 and I2 are the intensities of the 1906 and 1989 earthquakes, then
we are required to find I1/I2. To relate this to the definition of magnitude, we divide
numerator and denominator by S.

Divide numerator and denominator by S

Law 2 of logarithms

Definition of earthquake magnitude

Therefore

The 1906 earthquake was about 16 times as intense as the 1989 earthquake. ■

THE DECIBEL SCALE The ear is sensitive to an extremely wide range of sound in-
tensities. We take as a reference intensity I0 � 10�12 W/m2 (watts per square meter)
at a frequency of 1000 hertz, which measures a sound that is just barely audible (the
threshold of hearing). The psychological sensation of loudness varies with the loga-
rithm of the intensity (the Weber-Fechner Law) and so the intensity level B, mea-
sured in decibels (dB), is defined as

I1

I2
� 10log1I1/I22 � 101.2 � 16

 � 8.3 � 7.1 � 1.2

 � log 
I1

S
� log 

I2

S

 log 
I1

I2
� log 

I1/S

I2/S

M � log 
4I

S
� log 4 � log 

I

S
� log 4 � 8.3 � 8.9

M � log 
I

S
� 8.3
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B � 10 log 
I

I0

Largest Earthquakes

Location Date Magnitude

Chile 1960 9.5
Alaska 1964 9.2
Alaska 1957 9.1
Kamchatka 1952 9.0
Sumatra 2004 9.0
Ecuador 1906 8.8
Alaska 1965 8.7
Tibet 1950 8.6
Kamchatka 1923 8.5
Indonesia 1938 8.5
Kuril Islands 1963 8.5
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ALTERNATE EXAMPLE 11
Find the decibel intensity level of
a jet engine during takeoff if the
intensity was measured at
10,000 W/m2.

ANSWER
160

SECTION 4.5 Modeling with Exponential and Logarithmic Functions 379

1–13 ■ These exercises use the population growth model.

1. Bacteria Culture The number of bacteria in a culture is
modeled by the function

where t is measured in hours.

(a) What is the initial number of bacteria?

(b) What is the relative rate of growth of this bacterium
population? Express your answer as a percentage.

(c) How many bacteria are in the culture after 3 hours?

(d) After how many hours will the number of bacteria reach
10,000?

2. Fish Population The number of a certain species of fish
is modeled by the function 

where t is measured in years and is measured in millions.

(a) What is the relative rate of growth of the fish popula-
tion? Express your answer as a percentage.

(b) What will the fish population be after 5 years?

(c) After how many years will the number of fish reach 
30 million?

(d) Sketch a graph of the fish population function .

3. Fox Population The fox population in a certain region
has a relative growth rate of 8% per year. It is estimated that
the population in 2000 was 18,000.

(a) Find a function that models the population t years after
2000.

n1t 2

n1t 2

n1t 2 � 12e0.012t

n1t 2 � 500e0.45t

(b) Use the function from part (a) to estimate the fox 
population in the year 2008.

(c) Sketch a graph of the fox population function for the
years 2000–2008.

4. Population of a Country The population of a country
has a relative growth rate of 3% per year. The government is 
trying to reduce the growth rate to 2%. The population in
1995 was approximately 110 million. Find the projected
population for the year 2020 for the following conditions.

(a) The relative growth rate remains at 3% per year.

(b) The relative growth rate is reduced to 2% per year.

5. Population of a City The population of a certain city was
112,000 in 1998, and the observed relative growth rate is
4% per year.

(a) Find a function that models the population after t years.

(b) Find the projected population in the year 2004.

(c) In what year will the population reach 200,000?

The intensity level of the barely audible reference sound is

Example 11 Sound Intensity of a Jet Takeoff

Find the decibel intensity level of a jet engine during takeoff if the intensity was
measured at 100 W/m2.

Solution From the definition of intensity level we see that

Thus, the intensity level is 140 dB. ■

The table in the margin lists decibel intensity levels for some common sounds
ranging from the threshold of human hearing to the jet takeoff of Example 11. The
threshold of pain is about 120 dB.

4.5 Exercises

B � 10 log 
I

I0
� 10 log 

102

10�12 � 10 log 1014 � 140 dB

B � 10 log 
I0

I0
� 10 log 1 � 0 dB

The intensity levels of sounds that
we can hear vary from very loud to
very soft. Here are some examples
of the decibel levels of commonly
heard sounds.

Source of sound B 

Jet takeoff 140
Jackhammer 130
Rock concert 120
Subway 100
Heavy traffic 80
Ordinary traffic 70
Normal conversation 50
Whisper 30
Rustling leaves 10–20
Threshold of hearing 0

1dB 2

57050_04_ch04_p326-397.qxd  07/04/2008  05:27 PM  Page 379



380 CHAPTER 4 Exponential and Logarithmic Functions

380 CHAPTER 4 Exponential and Logarithmic Functions

6. Frog Population The frog population in a small pond
grows exponentially. The current population is 85 frogs, and
the relative growth rate is 18% per year.

(a) Find a function that models the population after 
t years.

(b) Find the projected population after 3 years.

(c) Find the number of years required for the frog 
population to reach 600.

7. Deer Population The graph shows the deer population in
a Pennsylvania county between 1996 and 2000. Assume that
the population grows exponentially.

(a) What was the deer population in 1996?

(b) Find a function that models the deer population t years
after 1996.

(c) What is the projected deer population in 2004?

(d) In what year will the deer population reach 100,000?

8. Bacteria Culture A culture contains 1500 bacteria 
initially and doubles every 30 min.

(a) Find a function that models the number of bacteria 
after t minutes.

(b) Find the number of bacteria after 2 hours.

(c) After how many minutes will the culture contain 4000
bacteria?

9. Bacteria Culture A culture starts with 8600 bacteria. 
After one hour the count is 10,000.

(a) Find a function that models the number of bacteria 
after t hours.

(b) Find the number of bacteria after 2 hours.

(c) After how many hours will the number of bacteria
double?

10. Bacteria Culture The count in a culture of bacteria was
400 after 2 hours and 25,600 after 6 hours.

(a) What is the relative rate of growth of the bacteria 
population? Express your answer as a percentage.

(b) What was the initial size of the culture?

n1t 2

n1t 2

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000
(4, 31,000)

Years since 1996

(c) Find a function that models the number of bacteria 
after t hours.

(d) Find the number of bacteria after 4.5 hours.

(e) When will the number of bacteria be 50,000?

11. World Population The population of the world was 
5.7 billion in 1995 and the observed relative growth rate 
was 2% per year.

(a) By what year will the population have doubled?

(b) By what year will the population have tripled?

12. Population of California The population of California
was 10,586,223 in 1950 and 23,668,562 in 1980. Assume
the population grows exponentially.

(a) Find a function that models the population t years after
1950.

(b) Find the time required for the population to double.

(c) Use the function from part (a) to predict the population
of California in the year 2000. Look up California’s 
actual population in 2000, and compare.

13. Infectious Bacteria An infectious strain of bacteria 
increases in number at a relative growth rate of 200% per
hour. When a certain critical number of bacteria are present
in the bloodstream, a person becomes ill. If a single 
bacterium infects a person, the critical level is reached in 
24 hours. How long will it take for the critical level to be
reached if the same person is infected with 10 bacteria?

14–22 ■ These exercises use the radioactive decay model.

14. Radioactive Radium The half-life of radium-226 is 1600
years. Suppose we have a 22-mg sample.

(a) Find a function that models the mass remaining after 
t years.

(b) How much of the sample will remain after 4000 years?

(c) After how long will only 18 mg of the sample remain?

15. Radioactive Cesium The half-life of cesium-137 is 
30 years. Suppose we have a 10-g sample.

(a) Find a function that models the mass remaining after 
t years.

(b) How much of the sample will remain after 80 years?

(c) After how long will only 2 g of the sample remain?

16. Radioactive Thorium The mass remaining after t
days from a 40-g sample of thorium-234 is given by

(a) How much of the sample will remain after 60 days?

(b) After how long will only 10 g of the sample remain?

(c) Find the half-life of thorium-234.

17. Radioactive Strontium The half-life of strontium-90 is
28 years. How long will it take a 50-mg sample to decay to
a mass of 32 mg?

m1t 2 � 40e�0.0277t

m1t 2

n1t 2
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18. Radioactive Radium Radium-221 has a half-life of 30 s.
How long will it take for 95% of a sample to decay?

19. Finding Half-life If 250 mg of a radioactive element de-
cays to 200 mg in 48 hours, find the half-life of the element.

20. Radioactive Radon After 3 days a sample of radon-222
has decayed to 58% of its original amount.

(a) What is the half-life of radon-222?

(b) How long will it take the sample to decay to 20% of its
original amount?

21. Carbon-14 Dating A wooden artifact from an ancient
tomb contains 65% of the carbon-14 that is present in living
trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

22. Carbon-14 Dating The burial cloth of an Egyptian
mummy is estimated to contain 59% of the carbon-14 it
contained originally. How long ago was the mummy buried?
(The half-life of carbon-14 is 5730 years.)

23–26 ■ These exercises use Newton’s Law of Cooling.

23. Cooling Soup A hot bowl of soup is served at a dinner
party. It starts to cool according to Newton’s Law of 
Cooling so that its temperature at time t is given by

where t is measured in minutes and T is measured in 
F.

(a) What is the initial temperature of the soup?

(b) What is the temperature after 10 min?

(c) After how long will the temperature be 100 
F?

24. Time of Death Newton’s Law of Cooling is used in
homicide investigations to determine the time of death. The
normal body temperature is 98.6 
F. Immediately following
death, the body begins to cool. It has been determined 
experimentally that the constant in Newton’s Law of 
Cooling is approximately k � 0.1947, assuming time is
measured in hours. Suppose that the temperature of the
surroundings is 60 
F.

(a) Find a function that models the temperature t hours
after death.

(b) If the temperature of the body is now 72 
F, how long
ago was the time of death?

25. Cooling Turkey A roasted turkey is taken from an oven
when its temperature has reached 185 
F and is placed on a
table in a room where the temperature is 75 
F.

T 1t 2

T1t 2 � 65 � 145e�0.05t

(a) If the temperature of the turkey is 150 
F after half an
hour, what is its temperature after 45 min?

(b) When will the turkey cool to 100 
F?

26. Boiling Water A kettle full of water is brought to a boil
in a room with temperature 20 
C. After 15 min the 
temperature of the water has decreased from 100 
C to
75 
C. Find the temperature after another 10 min. Illustrate
by graphing the temperature function.

27–41 ■ These exercises deal with logarithmic scales.

27. Finding pH The hydrogen ion concentration of a sample
of each substance is given. Calculate the pH of the 
substance.

(a) Lemon juice: 3H�4 � 5.0 � 10�3 M

(b) Tomato juice: 3H�4 � 3.2 � 10�4 M

(c) Seawater: 3H�4� 5.0 � 10�9 M

28. Finding pH An unknown substance has a hydrogen ion
concentration of 3H�4� 3.1 � 10�8 M. Find the pH and
classify the substance as acidic or basic.

29. Ion Concentration The pH reading of a sample of each
substance is given. Calculate the hydrogen ion concentration
of the substance.

(a) Vinegar: pH � 3.0

(b) Milk: pH � 6.5

30. Ion Concentration The pH reading of a glass of liquid is
given. Find the hydrogen ion concentration of the liquid.

(a) Beer: pH � 4.6

(b) Water: pH � 7.3

31. Finding pH The hydrogen ion concentrations in cheeses
range from 4.0 � 10�7 M to 1.6 � 10�5 M. Find the 
corresponding range of pH readings.

32. Ion Concentration in Wine The pH readings for wines
vary from 2.8 to 3.8. Find the corresponding range of 
hydrogen ion concentrations.

33. Earthquake Magnitudes If one earthquake is 20 times
as intense as another, how much larger is its magnitude on
the Richter scale?

34. Earthquake Magnitudes The 1906 earthquake in San
Francisco had a magnitude of 8.3 on the Richter scale. 
At the same time in Japan an earthquake with magnitude 4.9
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1. (a) Write an equation that defines the exponential function
with base a.

(b) What is the domain of this function?

(c) What is the range of this function?

(d) Sketch the general shape of the graph of the exponential
function for each case.

(i) a � 1 (ii) 0 � a � 1

2. If x is large, which function grows faster, y � 2 x or y � x 2?

3. (a) How is the number e defined?

(b) What is the natural exponential function?

4. (a) How is the logarithmic function y � loga x defined?

(b) What is the domain of this function?

(c) What is the range of this function?

(d) Sketch the general shape of the graph of the function 
y � loga x if a � 1.

(e) What is the natural logarithm?

(f) What is the common logarithm?

5. State the three Laws of Logarithms.

6. State the Change of Base Formula.

7. (a) How do you solve an exponential equation?

(b) How do you solve a logarithmic equation?

8. Suppose an amount P is invested at an interest rate r and A
is the amount after t years.

(a) Write an expression for A if the interest is compounded
n times per year.

(b) Write an expression for A if the interest is compounded
continuously.

9. If the initial size of a population is n0 and the population
grows exponentially with relative growth rate r, write an 
expression for the population at time t.

10. (a) What is the half-life of a radioactive substance?

(b) If a radioactive substance has initial mass m0 and 
half-life h, write an expression for the mass 
remaining at time t.

11. What does Newton’s Law of Cooling say?

12. What do the pH scale, the Richter scale, and the decibel
scale have in common? What do they measure?

m1t 2

n1t 2

caused only minor damage. How many times more 
intense was the San Francisco earthquake than the Japanese
earthquake? 

35. Earthquake Magnitudes The Alaska earthquake of
1964 had a magnitude of 8.6 on the Richter scale. How
many times more intense was this than the 1906 San Fran-
cisco earthquake? (See Exercise 34.)

36. Earthquake Magnitudes The Northridge, California,
earthquake of 1994 had a magnitude of 6.8 on the Richter
scale. A year later, a 7.2-magnitude earthquake struck Kobe,
Japan. How many times more intense was the Kobe 
earthquake than the Northridge earthquake?

37. Earthquake Magnitudes The 1985 Mexico City 
earthquake had a magnitude of 8.1 on the Richter scale. The
1976 earthquake in Tangshan, China, was 1.26 times as in-
tense. What was the magnitude of the Tangshan earthquake?

38. Traffic Noise The intensity of the sound of traffic at a
busy intersection was measured at 2.0 � 10�5 W/m2. 
Find the intensity level in decibels.

39. Subway Noise The intensity of the sound of a subway
train was measured at 98 dB. Find the intensity in W/m2.

40. Comparing Decibel Levels The noise from a power
mower was measured at 106 dB. The noise level at a rock
concert was measured at 120 dB. Find the ratio of the inten-
sity of the rock music to that of the power mower.

41. Inverse Square Law for Sound A law of physics states
that the intensity of sound is inversely proportional to the
square of the distance d from the source: I � k/d 2.

(a) Use this model and the equation

(described in this section) to show that the decibel 
levels B1 and B2 at distances d1 and d2 from a sound
source are related by the equation

(b) The intensity level at a rock concert is 120 dB at a 
distance 2 m from the speakers. Find the intensity level
at a distance of 10 m.

B2 � B1 � 20 log 
d1

d2

B � 10 log 
I

I0

4 Review

Concept Check
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1–12 ■ Sketch the graph of the function. State the domain,
range, and asymptote.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13–16 ■ Find the domain of the function.

13. 14.

15. 16.

17–20 ■ Write the equation in exponential form.

17. log2 1024 � 10 18. log6 37 � x

19. log x � y 20. ln c � 17

21–24 ■ Write the equation in logarithmic form.

21. 26 � 64 22.

23. 10 x � 74 24. ek � m

25–40 ■ Evaluate the expression without using a calculator.

25. log2 128 26. log8 1

27. 10log 45 28. log 0.000001

29. 30. log4 8

31. 32.

33. 34. e 2ln7

35. log 25 � log 4 36.

37. log2 1623 38. log5 250 � log5 2

39. log8 6 � log8 3 � log8 2 40. log log10100

41–46 ■ Expand the logarithmic expression.

41. 42.

43. 44.

45. 46.

47–52 ■ Combine into a single logarithm.

47. log 6 � 4 log 2 48. log x � log1x2y 2 � 3 log y

ln a
23 x4 � 12

1x � 16 2  1x � 3
blog5 a

x211 � 5x 2 3/2

2x3 � x
b

log a
4x3

y21x � 1 2 5
bln B

x2 � 1

x2 � 1

log2 1x 2x2 � 1 2log1AB2C3 2

log3 1243

log5 15

2log213log3A
1

 27 
B

ln1e6 2

49�1/2 � 1
7

k1x 2 � ln 0 x 0h1x 2 � ln1x2 � 4 2

g1x 2 � ln12 � x � x2 2f 1x 2 � 10x2

� log11 � 2x 2

g1x 2 � ln1x2 2g1x 2 � 2 ln  x

G 1x 2 � 1
2 e x�1F1x 2 � e x � 1

f 1x 2 � 3 � log51x � 4 2f 1x 2 � 2 � log2 x

g1x 2 � log1�x 2f 1x 2 � log31x � 1 2

g1x 2 � 5�x � 5g1x 2 � 3 � 2x

f 1x 2 � 3x�2f 1x 2 � 2�x�1

49.

50.

51.

52.

53–62 ■ Solve the equation. Find the exact solution if possible;
otherwise approximate to two decimals.

53. 54. 23x�5 � 7

55. 55�3x � 26 56.

57. e3x/4 � 10 58. 21�x � 32x�5

59.

60.

61. x 2e 2x � 2xe 2x � 8e 2x 62.

63–66 ■ Use a calculator to find the solution of the equation,
correct to six decimal places.

63. 5�2x/3 � 0.63 64. 23x�5 � 7

65. 52x�1 � 34x�1 66. e�15k � 10,000

67–70 ■ Draw a graph of the function and use it to determine
the asymptotes and the local maximum and minimum values.

67. 68. y � 2x 2 � ln x

69. 70. y � 10 x � 5 x

71–72 ■ Find the solutions of the equation, correct to two 
decimal places.

71. 3 log x � 6 � 2x 72. 4 � x 2 � e�2x

73–74 ■ Solve the inequality graphically.

73. ln x � x � 2 74. ex � 4x 2

75. Use a graph of to find, approxi-
mately, the intervals on which f is increasing and on which
f is decreasing.

76. Find an equation of the line shown in the figure.

xea

y=ln x

y

0

f 1x 2 � e x � 3e�x � 4x

y � log1x3 � x 2

y � ex/1x�22

23x

� 5

log8 1x � 5 2 � log8 1x � 2 2 � 1

log x � log1x � 1 2 � log 12

ln12x � 3 2 � 14

log2 11 � x 2 � 4

1
2 3 ln1x � 4 2 � 5 ln1x2 � 4x 2 4

log1x � 2 2 � log1x � 2 2 � 1
2 log1x2 � 4 2

log5 2 � log5 1x � 1 2 � 1
3 log5 13x � 7 2

3
2   log2 1x � y 2 � 2 log2 1x

2 � y2 2

Exercises
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77. Evaluate log4 15, correct to six decimal places.

78. Solve the inequality: 0.2 	 logx � 2

79. Which is larger, log4 258 or log5 620?

80. Find the inverse of the function and state its 
domain and range.

81. If $12,000 is invested at an interest rate of 10% per year,
find the amount of the investment at the end of 3 years for
each compounding method.

(a) Semiannual (b) Monthly

(c) Daily (d) Continuous

82. A sum of $5000 is invested at an interest rate of % per
year, compounded semiannually.

(a) Find the amount of the investment after years.

(b) After what period of time will the investment amount
to $7000?

83. The stray-cat population in a small town grows 
exponentially. In 1999, the town had 30 stray cats 
and the relative growth rate was 15% per year.

(a) Find a function that models the stray-cat population
after t years.

(b) Find the projected population after 4 years.

(c) Find the number of years required for the stray-cat 
population to reach 500.

84. A culture contains 10,000 bacteria initially. After an hour
the bacteria count is 25,000.

(a) Find the doubling period.

(b) Find the number of bacteria after 3 hours.

85. Uranium-234 has a half-life of 2.7 � 105 years.

(a) Find the amount remaining from a 10-mg sample after a
thousand years.

(b) How long will it take this sample to decompose until its
mass is 7 mg?

86. A sample of bismuth-210 decayed to 33% of its original
mass after 8 days.

(a) Find the half-life of this element.

(b) Find the mass remaining after 12 days.

87. The half-life of radium-226 is 1590 years.

(a) If a sample has a mass of 150 mg, find a function that
models the mass that remains after t years.

(b) Find the mass that will remain after 1000 years.

(c) After how many years will only 50 mg remain?

n1t 2

11
2

8 1
2

f 1x 2 � 23x

88. The half-life of palladium-100 is 4 days. After 20 days a
sample has been reduced to a mass of 0.375 g.

(a) What was the initial mass of the sample?

(b) Find a function that models the mass remaining after
t days.

(c) What is the mass after 3 days?

(d) After how many days will only 0.15 g remain?

89. The graph shows the population of a rare species of bird,
where t represents years since 1999 and is measured in
thousands.

(a) Find a function that models the bird population at time t
in the form .

(b) What is the bird population expected to be in the 
year 2010?

90. A car engine runs at a temperature of 190 
F. When the 
engine is turned off, it cools according to Newton’s Law of
Cooling with constant k � 0.0341, where the time is 
measured in minutes. Find the time needed for the engine to
cool to 90 
F if the surrounding temperature is 60 
F.

91. The hydrogen ion concentration of fresh egg whites was
measured as

Find the pH, and classify the substance as acidic or basic.

92. The pH of lime juice is 1.9. Find the hydrogen ion
concentration.

93. If one earthquake has magnitude 6.5 on the Richter scale,
what is the magnitude of another quake that is 35 times as
intense?

94. The drilling of a jackhammer was measured at 132 dB. 
The sound of whispering was measured at 28 dB. Find the
ratio of the intensity of the drilling to that of the whispering.

3H� 4 � 1.3 � 10�8 M

4000

0 1 5432 t

1000

2000

3000

n(t)

Bird
population

Years since 1999

(5, 3200)

n1t 2 � n0ert

n1t 2
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CHAPTER 4 Exponential and Logarithmic Functions 385

4 Test

1. Graph the functions y � 2x and y � log2 x on the same axes.

2. Sketch the graph of the function and state the domain, range, and 
asymptote.

3. Evaluate each logarithmic expression.

(a) (b) log2 80 � log2 10

(c) log8 4 (d) log6 4 � log6 9

4. Use the Laws of Logarithms to expand the expression.

5. Combine into a single logarithm:

6. Find the solution of the equation, correct to two decimal places.

(a) 2x�1 � 10 (b)
(c) 10 x�3 � 62x (d)

7. The initial size of a culture of bacteria is 1000. After one hour the bacteria count
is 8000.

(a) Find a function that models the population after t hours.

(b) Find the population after 1.5 hours.

(c) When will the population reach 15,000?

(d) Sketch the graph of the population function.

8. Suppose that $12,000 is invested in a savings account paying 5.6% interest per year.

(a) Write the formula for the amount in the account after t years if interest is com-
pounded monthly.

(b) Find the amount in the account after 3 years if interest is compounded daily.

(c) How long will it take for the amount in the account to grow to $20,000 if interest is
compounded semiannually?

9. Let .

(a) Graph f in an appropriate viewing rectangle.

(b) State the asymptotes of f.

(c) Find, correct to two decimal places, the local minimum value of f and the value of x
at which it occurs.

(d) Find the range of f.

(e) Solve the equation . State each solution correct to two decimal places.
ex

x3 � 2x � 1

f1x 2 �
e 

x

x3

log2 1x � 2 2 � log2 1x � 1 2 � 2

5 ln13 � x 2 � 4

ln x � 2 ln1x2 � 1 2 � 1
2 ln13 � x4 2

log  B3
x � 2

x41x2 � 4 2

log3 127

f 1x 2 � log1x � 1 2
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386 CHAPTER 4 Exponential and Logarithmic Functions

In Focus on Modeling (page 320) we learned that the shape of a scatter plot 
helps us choose the type of curve to use in modeling data. The first plot in Figure 1
fairly screams for a line to be fitted through it, and the second one points to a cubic
polynomial. For the third plot it is tempting to fit a second-degree polynomial. But
what if an exponential curve fits better? How do we decide this? In this section we
learn how to fit exponential and power curves to data and how to decide which type
of curve fits the data better. We also learn that for scatter plots like those in the last
two plots in Figure 1, the data can be modeled by logarithmic or logistic functions.

Figure 1

Modeling with Exponential Functions

If a scatter plot shows that the data increases rapidly, we might want to model the data
using an exponential model, that is, a function of the form

where C and k are constants. In the first example we model world population by 
an exponential model. Recall from Section 4.5 that population tends to increase 
exponentially.

Example 1 An Exponential Model for World Population

Table 1 gives the population of the world in the 20th century.

(a) Draw a scatter plot and note that a linear model is not appropriate.

(b) Find an exponential function that models population growth.

(c) Draw a graph of the function you found together with the scatter plot. How
well does the model fit the data?

(d) Use the model you found to predict world population in the year 2020.

Solution

(a) The scatter plot is shown in Figure 2. The plotted points do not appear to lie

386

Focus on Modeling

Fitting Exponential and Power Curves to Data

Year World population
1t 2 (P in millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
2000 6060

Table 1 World population

f 1x 2 � Cekx
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CHAPTER 4 Exponential and Logarithmic Functions 387

along a straight line, so a linear model is not appropriate.

(b) Using a graphing calculator and the ExpRegcommand (see Figure 3(a)), we get
the exponential model

This is a model of the form y � Cbt. To convert this to the form y � Cekt,
we use the properties of exponentials and logarithms as follows:

A � eln A

ln AB � B ln A

ln 1.0137186 � 0.013625

Thus, we can write the model as

(c) From the graph in Figure 3(b), we see that the model appears to fit the data
fairly well. The period of relatively slow population growth is explained by the
depression of the 1930s and the two world wars.

Figure 3

Exponential model for world population

(d) The model predicts that the world population in 2020 will be

■ � 7,405,400,000

 P12020 2 � 0.0082543e 10.0136252  120202

(a)

2000

6500

0
1900

(b)

P1t 2 � 0.0082543e0.013625t

 � e0.013625t

 � et  ln  1.0137186

 1.0137186t � eln 1.0137186 t

P1t 2 � 10.0082543 2 # 11.0137186 2 t
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The population of the world increases
exponentially
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Figure 2

Scatter plot of 
world population

2000

6500

0
1900

0
1900 2000
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388 CHAPTER 4 Exponential and Logarithmic Functions

Modeling with Power Functions

If the scatter plot of the data we are studying resembles the graph of y � ax 2,
y � ax1.32, or some other power function, then we seek a power model, that is, a func-
tion of the form

where a is a positive constant and n is any real number.
In the next example we seek a power model for some astronomical data. In 

astronomy, distance in the solar system is often measured in astronomical units. An
astronomical unit (AU) is the mean distance from the earth to the sun. The period of
a planet is the time it takes the planet to make a complete revolution around the sun
(measured in earth years). In this example we derive the remarkable relationship, first
discovered by Johannes Kepler (see page 780), between the mean distance of a planet
from the sun and its period.

Example 2 A Power Model for Planetary Periods

Table 2 gives the mean distance d of each planet from the sun in astronomical units
and its period T in years.

(a) Sketch a scatter plot. Is a linear model appropriate?

(b) Find a power function that models the data.

(c) Draw a graph of the function you found and the scatter plot on the same graph.
How well does the model fit the data?

(d) Use the model you found to find the period of an asteroid whose mean distance
from the sun is 5 AU.

Solution

(a) The scatter plot shown in Figure 4 indicates that the plotted points do not lie
along a straight line, so a linear model is not appropriate.

(b) Using a graphing calculator and the PwrReg command (see Figure 5(a)), we
get the power model

T � 1.000396d1.49966

45

260

0
0Figure 4

Scatter plot of planetary data

388 Focus on Modeling

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784
Pluto 39.507 248.350

Table 2 Distances and periods of 
the planets

Sun

Saturn

Earth
Venus

Mercury

Mars
Jupiter

f 1x 2 � ax 
n
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CHAPTER 4 Exponential and Logarithmic Functions 389

If we round both the coefficient and the exponent to three significant figures,
we can write the model as

This is the relationship discovered by Kepler (see page 780). Sir Isaac Newton
later used his Law of Gravity to derive this relationship theoretically, thereby
providing strong scientific evidence that the Law of Gravity must be true.

(c) The graph is shown in Figure 5(b). The model appears to fit the data very well.

(d) In this case, d � 5 AU and so our model gives

The period of the asteroid is about 11.2 years. ■

Linearizing Data

We have used the shape of a scatter plot to decide which type of model to use—
linear, exponential, or power. This works well if the data points lie on a straight line.
But it’s difficult to distinguish a scatter plot that is exponential from one that requires
a power model. So, to help decide which model to use, we can linearize the data, that
is, apply a function that “straightens” the scatter plot. The inverse of the linearizing
function is then an appropriate model. We now describe how to linearize data that can
be modeled by exponential or power functions.

■ Linearizing exponential data

If we suspect that the data points lie on an exponential curve y � Cekx, then the
points

should lie on a straight line. We can see this from the following calculations:

Assume y � Cekx and take ln

Property of ln

Property of ln

To see that ln y is a linear function of x, let Y � ln y and A � ln C; then

Y � kx � A

 � kx � ln C

 � ln ekx � ln C

 ln y � ln Cekx

1x, ln y 2

1x, y 2

T � 1.00039 # 51.49966 � 11.22

(a) (b)

45

260

0
0

Figure 5

Power model for planetary data

T � d 1.5

Fitting Exponential and Power Curves to Data 389
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390 CHAPTER 4 Exponential and Logarithmic Functions

We apply this technique to the world population data to obtain the points
in Table 3. The scatter plot in Figure 6 shows that the linearized data lie 

approximately on a straight line, so an exponential model should be appropriate.

■ Linearizing power data

If we suspect that the data points lie on a power curve y � axn, then the points

should be on a straight line. We can see this from the following calculations:

Assume y � axn and take ln

Property of ln

Property of ln

To see that ln y is a linear function of ln x, let Y � ln y, X � ln x, and A � ln a; then

We apply this technique to the planetary data in Table 2, to obtain the points
in Table 4. The scatter plot in Figure 7 shows that the data lie on a straight

line, so a power model seems appropriate.

An Exponential or Power Model?

Suppose that a scatter plot of the data points shows a rapid increase. Should we
use an exponential function or a power function to model the data? To help us decide,
we draw two scatter plots—one for the points and the other for the points

. If the first scatter plot appears to lie along a line, then an exponential
model is appropriate. If the second plot appears to lie along a line, then a power model
is appropriate.

1ln x, ln y 2
1x, ln y 2

1x,  y 2

4

6

_2

_2Figure 7

Log-log plot of 
data in Table 4

1ln d, ln T 2
1d, T 2

Y � nX � A

 � ln a � n ln x

 � ln a � ln xn

 ln y � ln axn

1ln x, ln y 2

1x,  y 2

2010

23

21
1900

Figure 6

1t, ln P 2
1t, P 2

390 Focus on Modeling

Population P
t (in millions) ln P

1900 1650 21.224
1910 1750 21.283
1920 1860 21.344
1930 2070 21.451
1940 2300 21.556
1950 2520 21.648
1960 3020 21.829
1970 3700 22.032
1980 4450 22.216
1990 5300 22.391
2000 6060 22.525

Table 3 World population data

ln d ln T

�0.94933 �1.4230
�0.32435 �0.48613

0 0
0.42068 0.6318
1.6492 2.4733
2.2556 3.3829
2.9544 4.4309
3.4041 5.1046
3.6765 5.5148

Table 4 Log-log table
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CHAPTER 4 Exponential and Logarithmic Functions 391

Example 3 An Exponential or Power Model?

Data points are shown in Table 5.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Is an exponential function or a power function appropriate for modeling 
this data?

(d) Find an appropriate function to model the data.

Solution

(a) The scatter plot of the data is shown in Figure 8.

(b) We use the values from Table 6 to graph the scatter plots in Figures 9 and 10.

Figure 9 Figure 10

(c) The scatter plot of in Figure 9 does not appear to be linear, so an 
exponential model is not appropriate. On the other hand, the scatter plot of

in Figure 10 is very nearly linear, so a power model is appropriate.

(d) Using the PwrReg command on a graphing calculator, we find that the power
function that best fits the data point is

The graph of this function and the original data points are shown in Figure 11.

■

11

140

0
0

Figure 11

y � 1.85x 1.82

1ln x, ln y 2

1x, ln y 2

2.5

5

0
011

6

0
0

11

140

0
0

Figure 8

1ln x, ln y 21x, ln y 2

1x, y 2

x y

1 2
2 6
3 14
4 22
5 34
6 46
7 64
8 80
9 102

10 130

Table 5

x ln x ln y

1 0 0.7
2 0.7 1.8
3 1.1 2.6
4 1.4 3.1
5 1.6 3.5
6 1.8 3.8
7 1.9 4.2
8 2.1 4.4
9 2.2 4.6

10 2.3 4.9

Table 6

Fitting Exponential and Power Curves to Data 391
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392 CHAPTER 4 Exponential and Logarithmic Functions

Before graphing calculators and statistical software became common, exponential
and power models for data were often constructed by first finding a linear model for
the linearized data. Then the model for the actual data was found by taking exponen-
tials. For instance, if we find that ln y � A ln x � B, then by taking exponentials we
get the model y � eB � eA ln x, or y � CxA (where C � eB). Special graphing paper called
“log paper” or “log-log paper” was used to facilitate this process.

Modeling with Logistic Functions

A logistic growth model is a function of the form

where a, b, and c are positive constants. Logistic functions are used to model popu-
lations where the growth is constrained by available resources. (See Exercises 69–72
of Section 4.1.)

Example 4 Stocking a Pond with Catfish

Much of the fish sold in supermarkets today is raised on commercial fish farms, not
caught in the wild. A pond on one such farm is initially stocked with 1000 catfish,
and the fish population is then sampled at 15-week intervals to estimate its size. The
population data are given in Table 7.

(a) Find an appropriate model for the data.

(b) Make a scatter plot of the data and graph the model you found in part (a) on the
scatter plot.

(c) How does the model predict that the fish population will change with time?

Solution

(a) Since the catfish population is restricted by its habitat (the pond), a logistic
model is appropriate. Using the Logistic command on a calculator (see 
Figure 12(a)), we find the following model for the catfish population :

(b) The scatter plot and the logistic curve are shown in Figure 12(b).

(a) (b)  Catfish population y = P(t)
0

0 180

9000

Figure 12

P1t 2 �
7925

1 � 7.7e�0.052t

P1t 2

392 Focus on Modeling

Week Catfish

0 1000
15 1500
30 3300
45 4400
60 6100
75 6900
90 7100

105 7800
120 7900

Table 7

f 1t 2 �
c

1 � ae�bt
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CHAPTER 4 Exponential and Logarithmic Functions 393

(c) From the graph of P in Figure 12(b), we see that the catfish population 
increases rapidly until about t � 80 weeks. Then growth slows down, and 
at about t � 120 weeks the population levels off and remains more or less 
constant at slightly over 7900. ■

The behavior exhibited by the catfish population in Example 4 is typical of logis-
tic growth. After a rapid growth phase, the population approaches a constant level
called the carrying capacity of the environment. This occurs because as t �q, we
have e�bt � 0 (see Section 4.1), and so

Thus, the carrying capacity is c.

Problems

1. U.S. Population The U.S. Constitution requires a census every 10 years. The census
data for 1790–2000 is given in the table.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model for the data.

(c) Use your model to predict the population at the 2010 census.

(d) Use your model to estimate the population in 1965.

(e) Compare your answers from parts (c) and (d) to the values in the table. Do you
think an exponential model is appropriate for these data?

P1t 2 �
c

1 � ae�bt �  
c

1 � 0
� c

Population Population Population
Year (in millions) Year (in millions) Year (in millions)

1790 3.9 1870 38.6 1950 151.3
1800 5.3 1880 50.2 1960 179.3
1810 7.2 1890 63.0 1970 203.3
1820 9.6 1900 76.2 1980 226.5
1830 12.9 1910 92.2 1990 248.7
1840 17.1 1920 106.0 2000 281.4
1850 23.2 1930 123.2
1860 31.4 1940 132.2

2. A Falling Ball In a physics experiment a lead ball is dropped from a height of 5 m.
The students record the distance the ball has fallen every one-tenth of a second. 
(This can be done using a camera and a strobe light.)

(a) Make a scatter plot of the data.

(b) Use a calculator to find a power model.

(c) Use your model to predict how far a dropped ball would fall in 3 s.

3. Health-care Expenditures The U.S. health-care expenditures for 1970–2001 are
given in the table on the next page, and a scatter plot of the data is shown in the figure.

(a) Does the scatter plot shown suggest an exponential model?

(b) Make a table of the values and a scatter plot. Does the scatter plot appear to
be linear?

1t, ln E 2

Time Distance 
(s) (m)

0.1 0.048
0.2 0.197
0.3 0.441
0.4 0.882
0.5 1.227
0.6 1.765
0.7 2.401
0.8 3.136
0.9 3.969
1.0 4.902

Fitting Exponential and Power Curves to Data 393
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394 CHAPTER 4 Exponential and Logarithmic Functions

(c) Find the regression line for the data in part (b).

(d) Use the results of part (c) to find an exponential model for the growth of health-care
expenditures.

(e) Use your model to predict the total health-care expenditures in 2009.

394 Focus on Modeling

Health expenditures
Year (in billions of dollars)

1970 74.3
1980 251.1
1985 434.5
1987 506.2
1990 696.6
1992 820.3
1994 937.2
1996 1039.4
1998 1150.0
2000 1310.0
2001 1424.5 400

200

1980 1990 20001970 t
Year

600

800

1000

1200

1400
E

U.S. health-care
expenditures
(in billions
of dollars)

4. Half-life of Radioactive Iodine A student is trying to determine the half-life of 
radioactive iodine-131. He measures the amount of iodine-131 in a sample solution
every 8 hours. His data are shown in the table in the margin.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model.

(c) Use your model to find the half-life of iodine-131.

5. The Beer-Lambert Law As sunlight passes through the waters of lakes and oceans,
the light is absorbed and the deeper it penetrates, the more its intensity diminishes. The
light intensity I at depth x is given by the Beer-Lambert Law:

where I0 is the light intensity at the surface and k is a constant that depends on the murk-
iness of the water (see page 364). A biologist uses a photometer to investigate light pen-
etration in a northern lake, obtaining the data in the table.

(a) Use a graphing calculator to find an exponential function of the form given by the
Beer-Lambert Law to model these data. What is the light intensity I0 at the surface
on this day, and what is the “murkiness” constant k for this lake? [Hint: If your 
calculator gives you a function of the form I � abx, convert this to the form you
want using the identities . See Example 1(b).]

(b) Make a scatter plot of the data and graph the function that you found in part (a) on
your scatter plot.

(c) If the light intensity drops below 0.15 lumens (lm), a certain species of algae can’t
survive because photosynthesis is impossible. Use your model from part (a) to 
determine the depth below which there is insufficient light to support this algae.

bx � e ln 1bx 2 � e x ln b

I � I0e
�kx

Time (h) Amount of 131I 1g2

0 4.80
8 4.66

16 4.51
24 4.39
32 4.29
40 4.14
48 4.04

Depth Light intensity Depth Light intensity 
(ft) (lm) (ft) (lm)

5 13.0 25 1.8
10 7.6 30 1.1
15 4.5 35 0.5
20 2.7 40 0.3Light intensity decreases

exponentially with depth.
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Fitting Exponential and Power Curves to Data 395

6. Experimenting with “Forgetting” Curves Every one of us is all too familiar
with the phenomenon of forgetting. Facts that we clearly understood at the time we first
learned them sometimes fade from our memory by the time the final exam rolls around.
Psychologists have proposed several ways to model this process. One such model is
Ebbinghaus’ Forgetting Curve, described on page 355. Other models use exponential or
logarithmic functions. To develop her own model, a psychologist performs an 
experiment on a group of volunteers by asking them to memorize a list of 100 related
words. She then tests how many of these words they can recall after various periods of
time. The average results for the group are shown in the table.

(a) Use a graphing calculator to find a power function of the form y � at b that models
the average number of words y that the volunteers remember after t hours. Then find
an exponential function of the form y � abt to model the data.

(b) Make a scatter plot of the data and graph both the functions that you found in part
(a) on your scatter plot.

(c) Which of the two functions seems to provide the better model?

7. Lead Emissions The table below gives U.S. lead emissions into the environment in 
millions of metric tons for 1970–1992.

(a) Find an exponential model for these data.

(b) Find a fourth-degree polynomial model for these data.

(c) Which of these curves gives a better model for the data? Use graphs of the two
models to decide.

(d) Use each model to estimate the lead emissions in 1972 and 1982.

Time Words recalled

15 min 64.3
1 h 45.1
8 h 37.3
1 day 32.8
2 days 26.9
3 days 25.6
5 days 22.9

Lead
Year emissions

1970 199.1
1975 143.8
1980 68.0
1985 18.3
1988 5.9
1989 5.5
1990 5.1
1991 4.5
1992 4.7
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8. Auto Exhaust Emissions A study by the U.S. Office of Science and 
Technology in 1972 estimated the cost of reducing automobile emissions by certain 
percentages. Find an exponential model that captures the “diminishing returns” trend 
of these data shown in the table below.

9. Exponential or Power Model? Data points are shown in the table.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data—an exponential function or a
power function?

(d) Find an appropriate function to model the data.

10. Exponential or Power Model? Data points are shown in the table in the
margin.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data—an exponential function or a
power function?

(d) Find an appropriate function to model the data.

1ln x, ln y 21x, ln y 2

1x, y 2

1ln x, ln y 21x, ln y 2

1x, y 2
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x y

2 0.08
4 0.12
6 0.18
8 0.25

10 0.36
12 0.52
14 0.73
16 1.06

x y

10 29
20 82
30 151
40 235
50 330
60 430
70 546
80 669
90 797

Reduction in Cost per
emissions (%) car ($)

50 45
55 55
60 62
65 70
70 80
75 90
80 100
85 200
90 375
95 600
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12. Logarithmic Models A logarithmic model is a function of the form

Many relationships between variables in the real world can be modeled by this type of
function. The table and the scatter plot show the coal production (in metric tons) from a
small mine in northern British Columbia.

(a) Use the LnReg command on your calculator to find a logarithmic model for these
production figures.

(b) Use the model to predict coal production from this mine in 2010.

y � a � b ln x

11. Logistic Population Growth The table and scatter plot give the population of
black flies in a closed laboratory container over an 18-day period.

(a) Use the Logistic command on your calculator to find a logistic model for 
these data.

(b) Use the model to estimate the time when there were 400 flies in the container.

Metric tons 
Year of coal

1950 882
1960 889
1970 894
1980 899
1990 905
2000 909

900

895

890

885

1960 1980 20001940 t
Year

905

Metric tons
of coal

C

Fitting Exponential and Power Curves to Data 397

400

300

200

100

4 6 80 t
Days

500

Number
of flies

N

102 12 14 16 18

Time Number 
(days) of flies

0 10
2 25
4 66
6 144
8 262

10 374
12 446
16 492
18 498
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