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CHAPTER 3 Polynomial and Rational Functions 249

Chapter Overview

Functions defined by polynomial expressions are called polynomial functions. For
example,

is a polynomial function. Polynomial functions are easy to evaluate because they are
defined using only addition, subtraction, and multiplication. This property makes
them the most useful functions in mathematics.

The graphs of polynomial functions can increase and decrease several times. For
this reason they are useful in modeling many real-world situations. For example, a
factory owner notices that if she increases the number of workers, productivity in-
creases, but if there are too many workers, productivity begins to decrease. This sit-
uation is modeled by a polynomial function of degree 2 (a quadratic polynomial). In
many animal species the young experience an initial growth spurt, followed by a pe-
riod of slow growth, followed by another growth spurt. This phenomenon is modeled
by a polynomial function of degree 3 (a cubic polynomial).

The graphs of polynomial functions are beautiful, smooth curves that are used in de-
sign processes. For example, boat makers put together portions of the graphs of dif-
ferent cubic functions (called cubic splines) to design the natural curves for the hull
of a boat.

In this chapter we also study rational functions, which are quotients of polynomial
functions. We will see that rational functions also have many useful applications.

Number of workers

Productivity Length

Productivity is modeled by
a polynomial of degree 2.

Age

Growth is modeled by
a polynomial of degree 3.

P1x 2 � 2x3 � x � 1

249

3.1 Polynomial Functions and Their Graphs

3.2 Dividing Polynomials

3.3 Real Zeros of Polynomials

3.4 Complex Numbers

3.5 Complex Zeros and the Fundamental Theorem of Algebra
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250 CHAPTER 3 Polynomial and Rational Functions

SUGGESTED TIME 

AND EMPHASIS

–1 class.
Essential material. 

1
2

POINTS TO STRESS

1. The terminology and notation associated with polynomial functions.
2. Characteristics of polynomial graphs: smoothness, continuity, end behavior, and boundaries on the

number of local maxima and minima.
3. Graphing polynomials using the zeros (taking into account multiplicity) and end behavior.

3.1 Polynomial Functions and Their Graphs

Before we work with polynomial functions, we must agree on some terminology.

250 CHAPTER 3 Polynomial and Rational Functions

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term �6.

Here are some more examples of polynomials.

Degree 0

Degree 1

Degree 2

Degree 3

If a polynomial consists of just a single term, then it is called a monomial. For 
example, and are monomials.Q1x 2 � �6x5P1x 2 � x3

 S1x 2 � 2x3 � 6x2 � 10

 R1x 2 � x2 � x

 Q1x 2 � 4x � 7

 P1x 2 � 3

3x5 � 6x4 � 2x3 � x2 � 7x � 6

Degree 5Leading
coefficient 3

Leading term 3x5

Coefficients 3, 6, �2, 1, 7, and �6

Constant coefficient �6

Polynomial Functions

A polynomial function of degree n is a function of the form

where n is a nonnegative integer and .

The numbers a0, a1, a2,p , an are called the coefficients of the 
polynomial. 

The number a0 is the constant coefficient or constant term. 

The number an, the coefficient of the highest power, is the leading
coefficient, and the term anxn is the leading term.

an � 0

P1x 2 � anx
n � an�1x

n�1 � . . . � a1x � a0
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CHAPTER 3 Polynomial and Rational Functions 251

ALTERNATE EXAMPLE 1 
Sketch the graphs of the following
functions.
(a) f(x) � -x2

(b) g (x) = (x + 1)5

(c) h(x) = -3x2 + 3

SAMPLE QUESTIONS

Text Questions

Which of the following are polynomial functions?

(a) f (x) = -x3 + 2x + 4

(b)

(c) f (x) = (x - 2)(x - 1)(x + 4)2

(d)

Answers

(a) and (c)

f (x) =
x2 + 2

x2 - 2

f (x) = A1x B3 - 2 A1x B2 + 5 A1x B - 1

Graphs of Polynomials

The graphs of polynomials of degree 0 or 1 are lines (Section 1.10), and the graphs of
polynomials of degree 2 are parabolas (Section 2.5). The greater the degree of the poly-
nomial, the more complicated its graph can be. However, the graph of a polynomial
function is always a smooth curve; that is, it has no breaks or corners (see Figure 1).
The proof of this fact requires calculus.

Figure 1

The simplest polynomial functions are the monomials , whose graphs
are shown in Figure 2. As the figure suggests, the graph of has the same
general shape as y � x 2 when n is even, and the same general shape as y � x 3 when
n is odd. However, as the degree n becomes larger, the graphs become flatter around
the origin and steeper elsewhere.

Example 1 Transformations of Monomials

Sketch the graphs of the following functions.

(a) (b)

(c)

Solution We use the graphs in Figure 2 and transform them using the techniques
of Section 2.4.

(a) The graph of is the reflection of the graph of y � x 3 in the x-axis,
as shown in Figure 3(a) on the following page.

P1x 2 � �x3

R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4P1x 2 � �x3

Figure 2

Graphs of monomials

y

0 x1

1

(e)  y=x∞

y

0 x1

1

(d)  y=x¢

y

0 x1

1

(c)  y=x£

y

0 x1

1

(b)  y=≈

y

0 x1

1

(a)  y=x

P1x 2 � xn
P1x 2 � xn

Not the graph of a
polynomial function

y y y

x x x

break

hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous
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252 CHAPTER 3 Polynomial and Rational Functions

DRILL QUESTION

Sketch the graph of the
polynomial f (x) = x3 + 5x2 + 6x.

Answer 

IN-CLASS MATERIALS

Point out that while the students can, at this point, sketch the graph of a polynomial function like
f (x) = (x - 1)(x - 2)2(x - 3) relatively quickly, they still cannot find the precise coordinates of the two
local minima, nor could they tell how fast the function is increasing as x gets large. Point out that “for
now” they have a good method of getting a general idea of the shape of a polynomial, and more precision
will come with calculus.

End Behavior and the Leading Term

The end behavior of a polynomial is a description of what happens as x becomes
large in the positive or negative direction. To describe end behavior, we use the fol-
lowing notation:

For example, the monomial y � x 2 in Figure 2(b) has the following end behavior:

The monomial y � x 3 in Figure 2(c) has the end behavior

For any polynomial, the end behavior is determined by the term that contains the
highest power of x, because when x is large, the other terms are relatively insignificant
in size. The following box shows the four possible types of end behavior, based on
the highest power and the sign of its coefficient.

y �q as x �q  and  y � �q as x � �q

y �q as x �q  and  y �q as x � �q

(b) The graph of is the graph of y � x 4 shifted to the right 2 units,
as shown in Figure 3(b).

(c) We begin with the graph of y � x 5. The graph of y � �2x5 is obtained by
stretching the graph vertically and reflecting it in the x-axis (see the dashed
blue graph in Figure 3(c)). Finally, the graph of is obtained
by shifting upward 4 units (see the red graph in Figure 3(c)).

R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4
252 CHAPTER 3 Polynomial and Rational Functions

means “x becomes large in the positive direction”x �q

means “x becomes large in the negative direction”x � �q

y

0 x

Q(x)=(x-2)¢

8

16

2 4

y

0 x1

1

P(x)=_x£ y

0 x

R(x)=_2x∞+44

8

1_1_2

(a) (b) (c)

Figure 3 ■

Mathematics in the

Modern World

Splines

A spline is a long strip of wood that
is curved while held fixed at certain
points. In the old days shipbuilders
used splines to create the curved
shape of a boat’s hull. Splines are
also used to make the curves of a
piano, a violin, or the spout of a
teapot.

Mathematicians discovered that
the shapes of splines can be ob-
tained by piecing together parts of
polynomials. For example, the
graph of a cubic polynomial can be
made to fit specified points by ad-
justing the coefficients of the poly-
nomial (see Example 10, page 261).
Curves obtained in this way are
called cubic splines. In modern
computer design programs, such as
Adobe Illustrator or Microsoft
Paint, a curve can be drawn by fix-
ing two points, then using the
mouse to drag one or more anchor
points. Moving the anchor points
amounts to adjusting the coeffi-
cients of a cubic polynomial.

10

1 x

y
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CHAPTER 3 Polynomial and Rational Functions 253

ALTERNATE EXAMPLE 2
Determine the end behavior of the
polynomial 
f (x) = -3x3 + 20x2 + 60x + 2.

ANSWER 
as

ALTERNATE EXAMPLE 3
Determine the end behavior of the
graph of the function 
y = 8x3 - 7x2 + 3x + 7.

ANSWER

IN-CLASS MATERIALS

This is one application of the
Intermediate Value Theorem for
Polynomials: Consider f (x) =
90x3 + 100x2 + 10x + 1 and 
g (x) = 91x3 - 60x2. Have students
graph each on their calculator, if
they can find a good window. It
will be tough. After giving them
some time, put some graphs on
the board.

It certainly looks like these two
curves never cross. One way to
prove that they do would be to
actually find the crossing point—
to solve f(x ) - g(x ) = 0. But a
much quicker way is to use the
intermediate value property. Let
h(x ) = f (x) - g(x). We know g (x)
will cross f (x) when h (x) = 0.
Now h (0) is positive, and h(1000)
is negative. We don’t need to go
hunting for the value of x that
makes h (x ) = 0; we can simply
invoke the intermediate value
property to prove that such an x
does exist.

y : q  as x : q
y : - q  as x : -q , and

x : - q
y : - q  as x : q , y : q

Example 2 End Behavior of a Polynomial

Determine the end behavior of the polynomial

Solution The polynomial P has degree 4 and leading coefficient �2. Thus,
P has even degree and negative leading coefficient, so it has the following end 
behavior:

The graph in Figure 4 illustrates the end behavior of P.

■

Example 3 End Behavior of a Polynomial

(a) Determine the end behavior of the polynomial .

(b) Confirm that P and its leading term have the same end behavior by
graphing them together.

Q1x 2 � 3x5

P1x 2 � 3x5 � 5x3 � 2x

30

_50

_3 5

y →  _` as
x → _`

y →  _` as
x → `

y � �q as x �q  and  y � �q as x � �q

P1x 2 � �2x4 � 5x3 � 4x � 7

SECTION 3.1 Polynomial Functions and Their Graphs 253

End Behavior of Polynomials

The end behavior of the polynomial is determined by the degree n and
the sign of the leading coefficient an, as indicated in the following graphs.

P has odd degree P has even degree

Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

y

0 x

y

0 x

y

0 x

y

0 x

y →  ` as
x → `

y →  ` as
x → _`

y →  ` as
x → _`

y →  ` as
x → `

y → _` as
x → `

y → _` as
x → `

y → _` as
x → _`

y → _` as
x → _`

Figure 4

P1x 2 � �2x4 � 5x3 � 4x � 7
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254 CHAPTER 3 Polynomial and Rational Functions

IN-CLASS MATERIALS

Explore, using technology, the concept of families of functions. Take, for example, the easy-to-graph curve
y = x3 - x. Add in a constant: y = x3 - x + 1, y = x3 - x + 2, y = x3 - x - 1. Using material from
Chapter 3, students should be able to predict what these graphs look like. Now add in a quadratic term:

. By graphing these curves 

on the same axes, have students attempt to put into words the effect that an x2 term has on this cubic
function.

y = x3 + 1
2 x2 - x, y = x3 + x2 - x, y = x3 + 8x2 - x, y = x3 + -x2 - x

Solution

(a) Since P has odd degree and positive leading coefficient, it has the following
end behavior:

(b) Figure 5 shows the graphs of P and Q in progressively larger viewing rectan-
gles. The larger the viewing rectangle, the more the graphs look alike. This
confirms that they have the same end behavior.

To see algebraically why P and Q in Example 3 have the same end behavior, fac-
tor P as follows and compare with Q.

When x is large, the terms 5/3x 2 and 2/3x 4 are close to 0 (see Exercise 79 on page 12).
So for large x, we have

So, when x is large, P and Q have approximately the same values. We can also see
this numerically by making a table like the one in the margin.

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if . In other words,
the zeros of P are the solutions of the polynomial equation . Note that if

, then the graph of P has an x-intercept at x � c, so the x-intercepts of the
graph are the zeros of the function.
P1c 2 � 0

P1x 2 � 0
P1c 2 � 0

� 3x5 � Q1x 2 P1x 2 � 3x511 � 0 � 0 2

 Q1x 2 � 3x5 P1x 2 � 3x5 a1 �
5

3x2 �
2

3x4 b

10,000

_10,000

_10 10

50

_50

_3 3

2

_2

_2 2

Q P
1

_1

_1 1

Q

P

PQ PQ

y �q as x �q  and  y � �q as x � �q

254 CHAPTER 3 Polynomial and Rational Functions

x

15 2,261,280 2,278,125
30 72,765,060 72,900,000
50 936,875,100 937,500,000

Q 1x 2P 1x 2

Real Zeros of Polynomials

If P is a polynomial and c is a real number, then the following are equivalent.

1. c is a zero of P.

2. x � c is a solution of the equation .

3. x � c is a factor of .

4. x � c is an x-intercept of the graph of P.

P1x 2
P1x 2 � 0

Figure 5 ■

 Q1x 2 � 3x5

 P1x 2 � 3x5 � 5x3 � 2x
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CHAPTER 3 Polynomial and Rational Functions 255

IN-CLASS MATERIALS

When discussing local extrema, make sure that students understand that just because a fifth-degree
polynomial (for example) can have four local extrema, doesn’t mean it must have four local extrema.
Have students graph f (x) = x5 as a quick example, and then f(x) = x5 - x3 as an example of a fifth-degree
polynomial with two local extrema. Have students try to come up with a proof that there can’t be a 
fifth-degree polynomial with exactly one or three local extrema.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive 

zeros, the values of a polynomial are either all positive or all negative. That is, between
two successive zeros the graph of a polynomial lies entirely above or entirely below
the x-axis. To see why, suppose c1 and c2 are successive zeros of P. If P has both pos-
itive and negative values between c1 and c2, then by the Intermediate Value Theorem
P must have another zero between c1 and c2. But that’s not possible because c1 and c2

are successive zeros. This observation allows us to use the following guidelines to
graph polynomial functions.

SECTION 3.1 Polynomial Functions and Their Graphs 255

Intermediate Value Theorem for Polynomials

If P is a polynomial function and and have opposite signs, then
there exists at least one value c between a and b for which .P1c 2 � 0

P1b 2P1a 2

Guidelines for Graphing Polynomial Functions

1. Zeros. Factor the polynomial to find all its real zeros; these are the 
x-intercepts of the graph.

2. Test Points. Make a table of values for the polynomial. Include test 
points to determine whether the graph of the polynomial lies above or below
the x-axis on the intervals determined by the zeros. Include the y-intercept 
in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch a
smooth curve that passes through these points and exhibits the required end
behavior.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 47). For example, to find the zeros of , we factor P
to get

From this factored form we easily see that

1. 2 is a zero of P.

2. x � 2 is a solution of the equation x 2 � x � 6 � 0.

3. x � 2 is a factor of x 2 � x � 6.

4. x � 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, �3.
The following theorem has many important consequences. (See, for instance,

the Discovery Project on page 283.) Here we use it to help us graph polynomial 
functions.

P1x 2 � 1x � 2 2 1x � 3 2
P1x 2 � x2 � x � 6

Figure 6

0 x

y

P(b)

P(a)

a
c b

y=P(x)
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256 CHAPTER 3 Polynomial and Rational Functions

ALTERNATE EXAMPLE 4
Sketch the graph of the
polynomial function 
P(x) = (x - 1)(x + 2)(x - 3)2.

ANSWER
The zeros are -2, 1, and 3. We use
test points x = -3, 0, 2, and 4. We
obtain the graph:

EXAMPLE
A polynomial function with zeros of various multiplicities: 

f(x) = x6 + x5 - x4 - x3 = (x - 1)x3(x + 1)2

Example 4 Using Zeros to Graph a Polynomial Function

Sketch the graph of the polynomial function .

Solution The zeros are x � �2, 1, and 3. These determine the intervals
, , , and . Using test points in these intervals, we get

the information in the following sign diagram (see Section 1.7).

Plotting a few additional points and connecting them with a smooth curve helps us
complete the graph in Figure 7.

Test point
P(–1) > 0

Test point
P(4) > 0

Test point
P(2) < 0

Test point
P(–3) < 0

x

5

1

y

0

_2 1

+

above
x-axis

-

below
x-axis

+

above
x-axis

3

-

below
x-axis

Test point
x = –3

P (–3) < 0

Test point
x = –1

P (–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

13,  q 211,  3 21�2,  1 21�q,  �2 2
P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
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Sign of

Graph of P

P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2

Figure 7

■P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
Example 5 Finding Zeros and Graphing 

a Polynomial Function

Let 

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Factor x

Factor quadratic

Thus, the zeros are x � 0, x � 3, and x � �1.

 � x1x � 3 2 1x � 1 2
 � x1x2 � 2x � 3 2

 P1x 2 � x3 � 2x2 � 3x

P1x 2 � x3 � 2x2 � 3x.

Mathematics in the

Modern World

Automotive Design

Computer-aided design (CAD) has
completely changed the way car
companies design and manufacture
cars. Before the 1980s automotive
engineers would build a full-scale
“nuts and bolts” model of a pro-
posed new car; this was really the
only way to tell whether the design
was feasible. Today automotive
engineers build a mathematical
model, one that exists only in the
memory of a computer. The model
incorporates all the main design
features of the car. Certain polyno-
mial curves, called splines, are used
in shaping the body of the car. The
resulting “mathematical car” can
be tested for structural stability,
handling, aerodynamics, suspen-
sion response, and more. All this
testing is done before a prototype is
built. As you can imagine, CAD
saves car manufacturers millions of
dollars each year. More impor-
tantly, CAD gives automotive engi-
neers far more flexibility in design;
desired changes can be created and
tested within seconds. With the
help of computer graphics, design-
ers can see how good the “mathe-
matical car” looks before they build
the real one. Moreover, the mathe-
matical car can be viewed from any
perspective; it can be moved, ro-
tated, or seen from the inside. These
manipulations of the car on the
computer monitor translate mathe-
matically into solving large sys-
tems of linear equations.

Test point �

Test point �

Test point �

Test point �

x P1x2
�3 �24
�2 0
�1 8

0 6
1 0
2 �4
3 0
4 18

C
ou

rt
es

y 
of

 F
or

d 
M

ot
or

 C
o.

y

x_3 _2 31

40

18

_40

_18

y

_1 10 4 6532

13

_10

x

_0.3

0

0.3

_1 x

y

ALTERNATE EXAMPLE 5
Let P(x) = x3 - 9x2 + 20x.
(a) Find the zeros of P.
(b) Sketch the graph of P.

ANSWERS
(a) P(x) = x(x - 4)(x - 5) so the

zeros are x = 0, x = 4, x = 5.
(b) End term behavior: 

We use test points -1, 3, 4.5,
and 6 to obtain the graph

x : - q .
as x : q , y : -q  as

y : q
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ALTERNATE EXAMPLE 6
Let P(x) = 3x4 - 5x3 - 12x2.
(a) Find the zeros of P.
(b) Sketch the graph of P.

ANSWERS
(a) P(x) = x2(x - 3)(3x + 4). 

The zeros are x = 0, x = 3, 
x = -4�3.

(b) End behavior: 

Graph:

x : - q
x : q , y : -q  as

y : q  as

EXAMPLES
Two sixth-degree polynomial functions that look very similar, but have different numbers of extrema: 
f(x) = x6 - 3x3 has one local minimum and a flat spot at x = 0. f(x) = x6 - 3.0x3 - 0.015x4 + 0.09x
has two local minima and one local maximum—an obvious local minimum at x 1.145, and two very
subtle extrema at x �0.1.L

L

_2

_ 4
3

430 x

y
50

_50

(b) The x-intercepts are x � 0, x � 3, and x � �1. The y-intercept is . We
make a table of values of , making sure we choose test points between (and
to the right and left of) successive zeros.

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

We plot the points in the table and connect them by a smooth curve to complete
the graph, as shown in Figure 8.

Example 6 Finding Zeros and Graphing 

a Polynomial Function

Let .

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Factor �x2

Factor quadratic

Thus, the zeros are x � 0, , and x � 1.

(b) The x-intercepts are x � 0, , and x � 1. The y-intercept is .
We make a table of values of , making sure we choose test points between
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior:

y � �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 0x � � 
3
2

x � � 
3
2

 � �x212x � 3 2 1x � 1 2
 � �x212x2 � x � 3 2

 P1x 2 � �2x4 � x3 � 3x2

P1x 2 � �2x4 � x3 � 3x2

y

0 x
1

5

y �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 0

SECTION 3.1 Polynomial Functions and Their Graphs 257

x P1x2
�2 �10
�1 � 0

�
�0 � 0
�1 �4
�2 �6
�3 � 0
�4 �20

7
8� 1

2

Test point �

Test point �

Test point �

Test point �

Figure 8

■P1x 2 � x3 � 2x2 � 3x
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ALTERNATE EXAMPLE 7
Let P(x) = x3 + 3x2 - 9x - 27.
(a) Find the zeros of P.
(b) Sketch the graph of P.

ANSWERS
(a) P(x) = (x + 3)2(x - 3). The

zeros are x = -3, x = 3.
(b)

as x : - q
y : q  as x : q , y : -q

We plot the points from the table and connect the points by a smooth curve to
complete the graph in Figure 9.

Example 7 Finding Zeros and Graphing 

a Polynomial Function

Let .

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution

(a) To find the zeros, we factor completely.

Group and factor

Factor x � 2

Difference of squares

Simplify

Thus, the zeros are x � �2 and x � 2.

(b) The x-intercepts are x � �2 and x � 2. The y-intercept is . The table
gives additional values of .

Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

We connect the points by a smooth curve to complete the graph in Figure 10.

y �q as x �q  and  y � �q as x � �q

P1x 2 P10 2 � 8

 � 1x � 2 2 1x � 2 2 2
 � 1x � 2 2 1x � 2 2 1x � 2 2
 � 1x2 � 4 2 1x � 2 2
 � x21x � 2 2 � 41x � 2 2

 P1x 2 � x3 � 2x2 � 4x � 8

P1x 2 � x3 � 2x2 � 4x � 8

y

0 x1

2

_12

258 CHAPTER 3 Polynomial and Rational Functions

Table of values are most easily calcu-
lated using a programmable calculator
or a graphing calculator.

x P1x2
�2 �12
�1.5 0
�1 2
�0.5 0.75

0 0
0.5 0.5
1 0
1.5 �6.75

Figure 9

■P1x 2 � �2x4 � x3 � 3x2

y

0 x1

5

Figure 10

■P1x 2 � x3 � 2x2 � 4x � 8

x P1x2
�3 �25
�2 0
�1 9

0 8
1 3
2 0
3 5

y

_3 _1 42 31

40

_40

_27

x
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ALTERNATE EXAMPLE 8
Graph the polynomial
P(x) = (x - 1)2(x - 2)(x - 5)3.

ANSWER
The zeros of P are 1, 2, and 5 with
multiplicities 2, 1, and 3
respectively.

Since P is a polynomial of degree
6 with positive leading
coefficient, the end behavior is

as x : - q .
y : q  as x : q , y : q

y

64 510 2 3

20

_40

x

Shape of the Graph Near a Zero

Although x � 2 is a zero of the polynomial in Example 7, the graph does not cross
the x-axis at the x-intercept 2. This is because the factor corresponding to
that zero is raised to an even power, so it doesn’t change sign as we test points on 
either side of 2. In the same way, the graph does not cross the x-axis at x � 0 in 
Example 6.

In general, if c is a zero of P and the corresponding factor x � c occurs exactly m
times in the factorization of P then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept c, we conclude that the graph
crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is
even. Moreover, it can be shown using calculus that near x � c the graph has the same
general shape as .A1x � c 2m

1x � 2 2 2

SECTION 3.1 Polynomial Functions and Their Graphs 259

Shape of the Graph Near a Zero of Multiplicity m

Suppose that c is a zero of P of multiplicity m. Then the shape of the graph of
P near c is as follows.

Multiplicity of c Shape of the graph of P near the x-intercept c

m odd, m � 1

m even, m � 1

OR

y

xc

y

xc

OR

y

xc

y

xc

Example 8 Graphing a Polynomial Function Using Its Zeros

Graph the polynomial .

Solution The zeros of P are �1, 0, and 2, with multiplicities 2, 4, and 3,
respectively.

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2.
But the zeros 0 and �1 have even multiplicity, so the graph does not cross the x-axis
at the x-intercepts 0 and �1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has
the following end behavior:

y �q as x �q  and  y � �q as x � �q

P1x 2 � x41x � 2 2 31x � 1 2 2

P1x 2 � x41x � 2 2 31x � 1 2 2

0 is a zero of
multiplicity 4.

2 is a zero of
multiplicity 3.

�1 is a zero of
multiplicity 2.
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With this information and a table of values, we sketch the graph in Figure 11.

Local Maxima and Minima of Polynomials

Recall from Section 2.5 that if the point is the highest point on the graph of
f within some viewing rectangle, then is a local maximum value of f, and if

is the lowest point on the graph of f within a viewing rectangle, then is
a local minimum value (see Figure 12). We say that such a point is a local
maximum point on the graph and that is a local minimum point. The set
of all local maximum and minimum points on the graph of a function is called its 
local extrema.

Figure 12

For a polynomial function the number of local extrema must be less than the de-
gree, as the following principle indicates. (A proof of this principle requires calculus.)

0 a b

Ób, f(b)Ô
Local minimum point

Óa, f(a)Ô
Local maximum point

y=Ï

x

y

1b, f 1b 22 1a, f 1a 22 f 1b 21b,  f 1b 22 f 1a 21a, f 1a 22

y

0 x
1

5Even
multiplicities

Odd multiplicity

260 CHAPTER 3 Polynomial and Rational Functions

x P1x2
�1.3 �9.2
�1 0
�0.5 �3.9

0 0
1 �4
2 0
2.3 8.2

Local Extrema of Polynomials

If is a polynomial of degree n,
then the graph of P has at most n � 1 local extrema.

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

Figure 11

P1x 2 � x41x � 2 2 31x � 1 2 2

A polynomial of degree n may in fact have less than n � 1 local extrema. For ex-
ample, (graphed in Figure 2) has no local extrema, even though it is of de-P1x 2 � x5
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ALTERNATE EXAMPLE 9
Determine how many local
extrema each polynomial has.
(a) P1(x) = x3 - x
(b) P2(x) = x4 - 8x3 + 22x2 -

24x + 5

ANSWERS
(a) P1 has one local minimum

point and one local maximum
point for a total of two local
extrema.

(b) P2 has two local minimum
points and one local maxi-
mum point for a total of three
local extrema.

y

x2_2 0 0.707_0.707

6

_6

y

410 2 3

5

_5

x

x

20 k=0
k=1
k=2
k=3
k=43

_2 20

y

ALTERNATE EXAMPLE 10
Sketch the family of polynomials
P(x) = x4 - kx2 + 3 for k = 0, 1,
2, 3, 4. How does changing the
value of k affect the graph?

ANSWER
The polynomials are graphed
below. We see that increasing the
value of k causes the two local
minima to dip lower and lower.

gree 5. The preceding principle tells us only that a polynomial of degree n can have
no more than n � 1 local extrema.

Example 9 The Number of Local Extrema

Determine how many local extrema each polynomial has.

(a)

(b) (c)

Solution The graphs are shown in Figure 13.

(a) P1 has two local minimum points and one local maximum point, for a total of
three local extrema.

(b) P2 has two local minimum points and two local maximum points, for a total of
four local extrema.

(c) P3 has just one local extremum, a local minimum.

Figure 13 ■

With a graphing calculator we can quickly draw the graphs of many functions at
once, on the same viewing screen. This allows us to see how changing a value in the
definition of the functions affects the shape of its graph. In the next example we ap-
ply this principle to a family of third-degree polynomials.

Example 10 A Family of Polynomials

Sketch the family of polynomials for c � 0, 1, 2, and 3. How does
changing the value of c affect the graph?

Solution The polynomials

are graphed in Figure 14. We see that increasing the value of c causes the graph to
develop an increasingly deep “valley” to the right of the y-axis, creating a local
maximum at the origin and a local minimum at a point in quadrant IV. This local
minimum moves lower and farther to the right as c increases. To see why this 
happens, factor . The polynomial P has zeros at 0 and c, and 
the larger c gets, the farther to the right the minimum between 0 and c will be. ■

P1x 2 � x21x � c 2

P31x 2 � x3 � 3x2P21x 2 � x3 � 2x2

P11x 2 � x3 � x2P01x 2 � x3

P1x 2 � x3 � cx2

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48

(a)

100

_100

_5 5

P¤(x)=x∞+3x¢-5x£-15≈+4x-15

(b)

100

_100

_5 5

P‹(x)=7x¢+3≈-10x

(c)

P31x 2 � 7x4 � 3x2 � 10xP21x 2 � x5 � 3x4 � 5x3 � 15x2 � 4x � 15

P11x 2 � x4 � x3 � 16x2 � 4x � 48

SECTION 3.1 Polynomial Functions and Their Graphs 261

10

_10

_2 4

c=0 c=1 c=2 c=3

Figure 14

A family of polynomials
P1x 2 � x3 � cx2
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1–4 ■ Sketch the graph of each function by transforming 
the graph of an appropriate function of the form y � xn from
Figure 2. Indicate all x- and y-intercepts on each graph.

1. (a) (b)

(c) (d)

2. (a) (b)

(c) (d)

3. (a) (b)

(c) (d)

4. (a) (b)

(c) (d)

5–10 ■ Match the polynomial function with one of the graphs
I–VI. Give reasons for your choice.

5. 6.

7. 8.

9. 10. U1x 2 � �x3 � 2x2T1x 2 � x4 � 2x3

S1x 2 � 1
2 x6 � 2x4R1x 2 � �x5 � 5x3 � 4x

Q1x 2 � �x21x2 � 4 2P1x 2 � x 1x2 � 4 2

S1x 2 � � 
1
2  
1x � 2 2 5 � 16R1x 2 � � 

1
2  
1x � 2 2 5

Q1x 2 � 21x � 3 2 5 � 64P1x 2 � 1x � 3 2 5
S1x 2 � 1

2 1x � 1 2 3 � 4R1x 2 � �1x � 2 2 3
Q1x 2 � �x3 � 27P1x 2 � x3 � 8

S1x 2 � �21x � 2 2 4R1x 2 � 1x � 2 2 4 � 16

Q1x 2 � 1x � 2 2 4P1x 2 � x4 � 16

S1x 2 � 21x � 2 2 2R1x 2 � 2x2 � 2

Q1x 2 � 1x � 4 2 2P1x 2 � x2 � 4

11–22 ■ Sketch the graph of the polynomial function. Make
sure your graph shows all intercepts and exhibits the proper 
end behavior.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23–36 ■ Factor the polynomial and use the factored form to
find the zeros. Then sketch the graph.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37–42 ■ Determine the end behavior of P. Compare the 
graphs of P and Q on large and small viewing rectangles,
as in Example 3(b).

37.

38. P1x 2 � �1
8 x3 � 1

4 x2 � 12x; Q1x 2 � �1
8 x3

P1x 2 � 3x3 � x2 � 5x � 1; Q1x 2 � 3x3

P1x 2 � x6 � 2x3 � 1

P1x 2 � x4 � 3x2 � 4

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � 1
8 12x4 � 3x3 � 16x � 24 2 2

P1x 2 � 2x3 � x2 � 18x � 9

P1x 2 � x3 � 3x2 � 4x � 12

P1x 2 � x3 � x2 � x � 1

P1x 2 � x5 � 9x3

P1x 2 � x4 � 3x3 � 2x2

P1x 2 � �2x3 � x2 � x

P1x 2 � �x3 � x2 � 12x

P1x 2 � x3 � 2x2 � 8x

P1x 2 � x3 � x2 � 6x

P1x 2 � 1x � 3 2 21x � 1 2 2
P1x 2 � x31x � 2 2 1x � 3 2 2
P1x 2 � 1x � 1 2 21x � 2 2 3
P1x 2 � 1

12 1x � 2 2 21x � 3 2 2
P1x 2 � 1

4 1x � 1 2 31x � 3 2
P1x 2 � 1x � 1 2 21x � 3 2
P1x 2 � 1

5 x 1x � 5 2 2
P1x 2 � 1x � 3 2 1x � 2 2 13x � 2 2
P1x 2 � 12x � 1 2 1x � 1 2 1x � 3 2
P1x 2 � x 1x � 3 2 1x � 2 2
P1x 2 � 1x � 1 2 1x � 1 2 1x � 2 2
P1x 2 � 1x � 1 2 1x � 2 2

3.1 Exercises

I II

III IV

y

x0 1
1

y

x0 1
1

y

x0 1
1

y

x0 1
1

V VI

y

x0 1

1

y

x0 1

1
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SECTION 3.1 Polynomial Functions and Their Graphs 263

39.

40.

41.

42.

43–46 ■ The graph of a polynomial function is given. From the
graph, find

(a) the x- and y-intercepts

(b) the coordinates of all local extrema

43. 44.

45. 46.

47–54 ■ Graph the polynomial in the given viewing rectangle.
Find the coordinates of all local extrema. State each answer 
correct to two decimal places.

47. y � �x 2 � 8x, 3�4, 124 by 3�50, 304
48. y � x 3 � 3x 2, 3�2, 54 by 3�10, 104
49. y � x 3 � 12x � 9, 3�5, 54 by 3�30, 304
50. y � 2x 3 � 3x 2 � 12x � 32, 3�5, 54 by 3�60, 304
51. y � x 4 � 4x 3, 3�5, 54 by 3�30, 304
52. y � x 4 � 18x 2 � 32, 3�5, 54 by 3�100, 1004

0

y

x2

1

0

y

x
1

1

P1x 2 � 1
9 x4 � 4

9 x3P1x 2 � �1
2 x3 � 3

2 x � 1

0

y

x1

1

y

0 1

1

x

P1x 2 � 2
9 x3 � x2P1x 2 � �x2 � 4x

P1x 2 � 2x2 � x12; Q1x 2 � �x12

P1x 2 � x11 � 9x9; Q1x 2 � x11

P1x 2 � �x5 � 2x2 � x; Q1x 2 � �x5

P1x 2 � x4 � 7x2 � 5x � 5; Q1x 2 � x4 53. y � 3x 5 � 5x 3 � 3, 3�3, 34 by 3�5, 104
54. y � x 5 � 5x 2 � 6, 3�3, 34 by 3�5, 104
55–64 ■ Graph the polynomial and determine how many local
maxima and minima it has.

55. y � �2x 2 � 3x � 5

56. y � x 3 � 12x

57. y � x 3 � x 2 � x

58. y � 6x 3 � 3x � 1

59. y � x 4 � 5x 2 � 4

60. y � 1.2x 5 � 3.75x 4 � 7x 3 � 15x 2 � 18x

61.

62.

63.

64.

65–70 ■ Graph the family of polynomials in the same viewing
rectangle, using the given values of c. Explain how changing the
value of c affects the graph.

65.

66.

67.

68.

69.

70.

71. (a) On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

(b) Based on your sketch in part (a), at how many points do
the two graphs appear to intersect?

(c) Find the coordinates of all intersection points.

72. Portions of the graphs of y � x 2, y � x 3, y � x 4, y � x 5, and
y � x 6 are plotted in the figures. Determine which function
belongs to each graph.

y

0 x1

1
➃

➄

y

0 x1

1

➀

➁

➂

y � x3 � 2x2 � x � 2  and  y � �x2 � 5x � 2

P1x 2 � xc; c � 1, 3, 5, 7

P1x 2 � x4 � cx; c � 0, 1, 8, 27

P1x 2 � x3 � cx; c � 2, 0, �2, �4

P1x 2 � x4 � c; c � �1, 0, 1, 2

P1x 2 � 1x � c 2 4; c � �1, 0, 1, 2

P1x 2 � cx3; c � 1, 2, 5, 12

y � 1
3 x7 � 17x2 � 7

y � x8 � 3x4 � x

y � 1x2 � 2 2 3
y � 1x � 2 2 5 � 32
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73. Recall that a function f is odd if or even if
for all real x.

(a) Show that a polynomial that contains only odd
powers of x is an odd function.

(b) Show that a polynomial that contains only even
powers of x is an even function.

(c) Show that if a polynomial contains both odd and
even powers of x, then it is neither an odd nor an even
function.

(d) Express the function

as the sum of an odd function and an even function.

74. (a) Graph the function and
find all local extrema, correct to the nearest tenth.

(b) Graph the function

and use your answers to part (a) to find all local extrema,
correct to the nearest tenth.

75. (a) Graph the function and
determine how many local extrema it has.

(b) If a � b � c, explain why the function

must have two local extrema.

76. (a) How many x-intercepts and how many local extrema
does the polynomial have?

(b) How many x-intercepts and how many local extrema
does the polynomial have?

(c) If a � 0, how many x-intercepts and how many local
extrema does each of the polynomials 
and have? Explain your answer.

Applications

77. Market Research A market analyst working for a small-
appliance manufacturer finds that if the firm produces and
sells x blenders annually, the total profit (in dollars) is

Graph the function P in an appropriate viewing rectangle
and use the graph to answer the following questions.

(a) When just a few blenders are manufactured, the firm
loses money (profit is negative). (For example,

, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders
must the firm produce to break even?

P110 2 � �263.3

P1x 2 � 8x � 0.3x2 � 0.0013x3 � 372

Q1x 2 � x3 � ax
P1x 2 � x3 � ax

Q1x 2 � x3 � 4x

P1x 2 � x3 � 4x

P1x 2 � 1x � a 2 1x � b 2 1x � c 2

P1x 2 � 1x � 2 2 1x � 4 2 1x � 5 2

Q1x 2 � 1x � 1 2 1x � 3 2 1x � 4 2 � 5

P1x 2 � 1x � 1 2 1x � 3 2 1x � 4 2

P1x 2 � x5 � 6x3 � x2 � 2x � 5

P1x 2
P1x 2
P1x 2

f 1�x 2 � f 1x 2
f 1�x 2 � �f 1x 2 (b) Does profit increase indefinitely as more blenders are

produced and sold? If not, what is the largest possible
profit the firm could have?

78. Population Change The rabbit population on a small is-
land is observed to be given by the function

where t is the time (in months) since observations of the 
island began.

(a) When is the maximum population attained, and what is
that maximum population?

(b) When does the rabbit population disappear from the
island?

79. Volume of a Box An open box is to be constructed from
a piece of cardboard 20 cm by 40 cm by cutting squares of
side length x from each corner and folding up the sides, as
shown in the figure.

(a) Express the volume V of the box as a function of x.

(b) What is the domain of V? (Use the fact that length and
volume must be positive.)

(c) Draw a graph of the function V and use it to estimate
the maximum volume for such a box.

80. Volume of a Box A cardboard box has a square base,
with each edge of the base having length x inches, as shown
in the figure. The total length of all 12 edges of the box is
144 in.

(a) Show that the volume of the box is given by the func-
tion .V1x 2 � 2x2118 � x 2

20 cm

40 cm

x
x

t

P

0

P1t 2 � 120t � 0.4t4 � 1000
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SUGGESTED TIME 

AND EMPHASIS

–1 class. 

Essential material. Can be
combined with Section 3.3.

1
2

POINTS TO STRESS

1. The division algorithm for polynomials.
2. Synthetic division.
3. The Remainder and Factor Theorems.

3.2 Dividing Polynomials

So far in this chapter we have been studying polynomial functions graphically. In this
section we begin to study polynomials algebraically. Most of our work will be con-
cerned with factoring polynomials, and to factor, we need to know how to divide
polynomials.

Long Division of Polynomials

Dividing polynomials is much like the familiar process of dividing numbers. When
we divide 38 by 7, the quotient is 5 and the remainder is 3. We write

To divide polynomials, we use long division, as in the next example.

38

7
� 5 �

3

7

SECTION 3.2 Dividing Polynomials 265

(b) What is the domain of V? (Use the fact that length and
volume must be positive.)

(c) Draw a graph of the function V and use it to estimate
the maximum volume for such a box.

Discovery • Discussion

81. Graphs of Large Powers Graph the functions y � x 2,
y � x 3, y � x 4, and y � x 5, for �1 � x � 1, on the same 
coordinate axes. What do you think the graph of y � x100

would look like on this same interval? What about y � x101?
Make a table of values to confirm your answers.

x
x

82. Maximum Number of Local Extrema What is the
smallest possible degree that the polynomial whose graph is
shown can have? Explain.

83. Possible Number of Local Extrema Is it possible for 
a third-degree polynomial to have exactly one local ex-
tremum? Can a fourth-degree polynomial have exactly two
local extrema? How many local extrema can polynomials of
third, fourth, fifth, and sixth degree have? (Think about the
end behavior of such polynomials.) Now give an example of
a polynomial that has six local extrema.

84. Impossible Situation? Is it possible for a polynomial to
have two local maxima and no local minimum? Explain.

0 x

y

Dividend

Quotient

Remainder

Divisor
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ALTERNATE EXAMPLE 1
Divide 8x3 - 3x2 + 2x - 1 by
x + 2.

ANSWER
Dividend = 8x3 - 3x2 + 2x - 1

Divisor = x + 2
Quotient = 8x2 - 19x + 40

Remainder = -81

SAMPLE QUESTION

Text Question

It is a fact that x3 + 2x2 - 3x + 1 = (x + 2)(x2 + 1) + (-4x - 1). Fill in the blanks:

Answer

x + 2, -4x - 1

Remainder:

x2+1 x3+2x2-3x+1

Example 1 Long Division of Polynomials

Divide 6x 2 � 26x � 12 by x � 4.

Solution The dividend is 6x 2 � 26x � 12 and the divisor is x � 4. We begin by
arranging them as follows:

Next we divide the leading term in the dividend by the leading term in the divisor 
to get the first term of the quotient: 6x 2/x � 6x. Then we multiply the divisor by 
6x and subtract the result from the dividend.

We repeat the process using the last line �2x � 12 as the dividend.

The division process ends when the last line is of lesser degree than the divisor. The
last line then contains the remainder, and the top line contains the quotient. The 
result of the division can be interpreted in either of two ways.

or

■

We summarize the long division process in the following theorem.

6x2 � 26x � 12 � 1x � 4 2 16x � 2 2 � 4

6x2 � 26x � 12

x � 4
� 6x � 2 �

4

x � 4

6x2 � 2

x � 4�6x2 � 26x � 12

6x2 � 24x

�2x � 12

�2x � 8

4

6x

x � 4�6x2 � 26x � 12

6x2 � 24x

�2x � 12

x � 4�6x2 � 26x � 12
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Divide leading terms: 

Multiply: 
Subtract and “bring down” 12

6x1x � 4 2 � 6x2 � 24x

6x2

x
� 6x

Divide leading terms: 

Multiply: 
Subtract

�21x � 4 2 � �2x � 8

�2x
x

� �2

Dividend Divisor Quotient

Remainder

Division Algorithm

If and are polynomials, with , then there exist unique
polynomials and , where is either 0 or of degree less than the
degree of , such that

The polynomials and are called the dividend and divisor, respec-
tively, is the quotient, and is the remainder.R1x 2Q1x 2

D1x 2P1x 2

P1x 2 � D1x 2 # Q1x 2 � R1x 2
D1x 2 R1x 2R1x 2Q1x 2 D1x 2 � 0D1x 2P1x 2

Dividend Divisor Quotient
Remainder

To write the division algorithm another
way, divide through by D1x2:

P1x 2
D1x 2 � Q1x 2 �

R1x 2
D1x 2
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ALTERNATE EXAMPLE 2
Let P(x) = 6x4 + 2x3 - x + 2.
Let D (x) = x2 - 2x + 2. Find
polynomials Q(x) and R(x) such
that P(x) = D(x) 	 Q(x) + R(x).

ANSWER 
Q(x) = 6x2 + 14x + 16,
R(x) = 3x - 30

algorithm. Then show how the answer can be written as 

They will not be used to writing the result this way:
31673 = 5(6334) + 3

It is important that they understand the form
dividend = divisor quotient + remainder

because that is the form in which the division algorithm is presented, both in this course and any future math course involving generalized 
division. If students don’t seem to understand (or start moving their lips as if beginning the process of rote memorization) it may even be worth
the time to write out a very simple example, such as 35 = 3(11) + 2, just so students are very clear how this is a trivial restatement

of
35

3
= 11 R 2.

#

31,673

5
= 6334 +

3

5
 or 6334 R 3.

Example 2 Long Division of Polynomials

Let and . Find polynomials
and such that .

Solution We use long division after first inserting the term 0x 3 into the dividend
to ensure that the columns line up correctly.

The process is complete at this point because �7x � 1 is of lesser degree than the
divisor 2x 2 � x � 2. From the above long division we see that 
and , so

■

Synthetic Division

Synthetic division is a quick method of dividing polynomials; it can be used when
the divisor is of the form x � c. In synthetic division we write only the essential parts
of the long division. Compare the following long and synthetic divisions, in which we
divide 2x 3 � 7x 2 � 5 by x � 3. (We’ll explain how to perform the synthetic division
in Example 3.)

Long Division Synthetic Division

Note that in synthetic division we abbreviate 2x 3 � 7x 2 � 5 by writing only the
coefficients: 2 �7 0 5, and instead of x � 3, we simply write 3. (Writing 3 in-
stead of �3 allows us to add instead of subtract, but this changes the sign of all the
numbers that appear in the gold boxes.)

The next example shows how synthetic division is performed.

2x2 � x � 3

x � 3�2x3 � 7x2 � 0x � 5

2x3 � 6x2

�x2 � 0x

�x2 � 3x

�3x � 5

�3x � 9

�4

8x4 � 6x2 � 3x � 1 � 12x2 � x � 2 2 14x2 � 2x 2 � 1�7x � 1 2
R1x 2 � �7x � 1

Q1x 2 � 4x2 � 2x

Multiply divisor by 4x2

Subtract
Multiply divisor by 2x
Subtract

4x2 � 2x

2x2 � x � 2�8x4 � 0x3 � 6x2 � 3x � 1

8x4 � 4x3 � 8x2

4x3 � 2x2 � 3x

4x3 � 2x2 � 4x

�7x � 1

P1x 2 � D1x 2 # Q1x 2 � R1x 2R1x 2Q1x 2 D1x 2 � 2x2 � x � 2P1x 2 � 8x4 � 6x2 � 3x � 1

SECTION 3.2 Dividing Polynomials 267

3 2 �7 0 5

6 �3 �9

2 �1 �3 �4
144424443

Quotient Remainder

Quotient

Remainder

IN-CLASS MATERIALS

At this time, the teaching of long
division in elementary schools is
inconsistent. It will save time, in
the long run, to do an integer long
division problem for students,
cautioning them to remind
themselves of every step in the
process, because you are going to
be extending it to polynomials.
For example, divide 31,673 by 
5 using the long division
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EXAMPLES
Fourth-degree polynomial functions with zeros at x = -3, 1, and 2:

f (x) = (x + 3)2(x - 1)(x - 2) = x4 + 3x3 - 7x2 - 15x + 18
f (x) = (x + 3)(x - 1)2(x - 2) = x4 - x3 - 7x2 + 13x - 6
f (x) = (x + 3)(x - 1)(x - 2)2 = x4 - 2x3 - 7x2 + 20x - 12

Example 3 Synthetic Division

Use synthetic division to divide 2x 3 � 7x 2 � 5 by x � 3.

Solution We begin by writing the appropriate coefficients to represent the divi-
sor and the dividend.

3 � 2 �7 0 5

We bring down the 2, multiply 3 	 2 � 6, and write the result in the middle row.
Then we add:

We repeat this process of multiplying and then adding until the table is complete.

From the last line of the synthetic division, we see that the quotient is 2x 2 � x � 3
and the remainder is �4. Thus

■

The Remainder and Factor Theorems

The next theorem shows how synthetic division can be used to evaluate polynomials
easily.

2x3 � 7x2 � 5 � 1x � 3 2 12x2 � x � 3 2 � 4

3 2

2

−7

−3 −9

0 5

6

−3 −4−1

Quotient
2x2 – x – 3

Remainder
–4

3 2

2

−7

−3

0 5

6

−3−1

Multiply: 3 # 2 � 6

Add: �7 � 6 � �1

3 2

2

-7 0 5

6

-1

268 CHAPTER 3 Polynomial and Rational Functions

Dividend 
2x3 � 7x2 � 0x � 5

Divisor x � 3

Multiply: 

Add: 0 � 1�3 2 � �3

31�1 2 � �3

Multiply: 

Add: 5 � 1�9 2 � �4

31�3 2 � 9

Remainder Theorem

If the polynomial is divided by x � c, then the remainder is the value
.P1c 2 P1x 2

ALTERNATE EXAMPLE 3
Use synthetic division to divide
5x3 - 2x2 + x - 10 by x - 3.

ANSWER
Quotient: 5x2 + 13x + 40;
remainder: 110

DRILL QUESTION 

Divide x3 + 2x2 - 3x + 1
by x + 2.

Answer

“

remainder 7”

x2 - 3,= x2 - 3 +
7

x + 2
 or

x3 + 2x2 - 3x + 1

x + 2
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ALTERNATE EXAMPLE 4
Let P(x) = 8x5 - 2x4 + 10x3 +
x2 - 20x + 10.
(a) Find the quotient and remain-

der when P(x) is divided by
x + 2.

(b) Use the Remainder Theorem
to find P(-2).

ANSWERS
(a) Quotient:

; remainder: -314
(b) P(-2) = -314

EXAMPLE
An example to use in demonstrating
the remainder and factor theorems:
f (x) = x3 - x2 - 14x + 24 has
zeros x = -4, 2, and 3; f (0) = 24,
f (1) = 10, and f (-1) = 36.

91x + 162
8x4 - 18x3 + 46x2 -

IN-CLASS MATERIALS

After doing a routine example, such as verify the 

answer by having students go through the multiplication. In other words, write (x2 + 2x - 1)(x2 + x - 2) +
(4x + 1) and multiply it out to verify that the result is x4 + 3x3 - x2 - x + 3.

x4 + 3x3 - x2 - x + 3

x2 + 2x - 1
= x2 + x - 2 +

1 + 4x

x2 + 2x - 1
,

■ Proof If the divisor in the Division Algorithm is of the form x � c for some
real number c, then the remainder must be a constant (since the degree of the re-
mainder is less than the degree of the divisor). If we call this constant r, then

Setting x � c in this equation, we get , that
is, is the remainder r. ■

Example 4 Using the Remainder Theorem to 

Find the Value of a Polynomial

Let .

(a) Find the quotient and remainder when is divided by x � 2.

(b) Use the Remainder Theorem to find .

Solution

(a) Since , the synthetic division for this problem takes the 
following form.

�2 � 3 �5 �4 �0 �7 �3 ,

�6 2 4 �8 2

3 �1 �2 4 �1 5

The quotient is 3x 4 � x 3 � 2x 2 � 4x � 1 and the remainder is 5.

(b) By the Remainder Theorem, is the remainder when is divided by 
x � 1�22� x � 2. From part (a) the remainder is 5, so . ■

The next theorem says that zeros of polynomials correspond to factors; we used
this fact in Section 3.1 to graph polynomials.

P1�2 2 � 5
P1x 2P1�2 2

x � 2 � x � 1�2 2

P1�2 2
P1x 2

P1x 2 � 3x5 � 5x4 � 4x3 � 7x � 3

P1c 2 P1c 2 � 1c � c 2 # Q1x 2 � r � 0 � r � r

P1x 2 � 1x � c 2 # Q1x 2 � r

SECTION 3.2 Dividing Polynomials 269

Remainder is 5, so 
P(�2) � 5.

Factor Theorem

c is a zero of P if and only if x � c is a factor of .P1x 2
■ Proof If factors as , then

Conversely, if , then by the Remainder Theorem

so x � c is a factor of    . ■

Example 5 Factoring a Polynomial Using the Factor Theorem

Let . Show that , and use this fact to factor 
completely.

Solution Substituting, we see that . By the Factor
Theorem, this means that x � 1 is a factor of . Using synthetic or long divisionP1x 2

P11 2 � 13 � 7 # 1 � 6 � 0

P1x 2P11 2 � 0P1x 2 � x3 � 7x � 6

P1x 2
P1x 2 � 1x � c 2 # Q1x 2 � 0 � 1x � c 2 # Q1x 2

P1c 2 � 0

P1c 2 � 1c � c 2 # Q1c 2 � 0 # Q1c 2 � 0

P1x 2 � 1x � c 2 # Q1x 2P1x 2

1 � 1 0 �7 6

1 1 �6

1 1 �6 0

ALTERNATE EXAMPLE 5
Let P(x) = x3 + 21x2 - 157x +
135. Use the fact that P(1) = 0 to
factor P(x) completely.

ANSWER
P(1) = 0 implies that x - 1 is a
factor of P(x). We divide by x - 1
to get a quotient of x2 + 22x - 135
(and a remainder of zero). Now
the quadratic formula, or
factoring, gives the other factors
of (x - 5) and (x + 27).

57050_03_ch03_p248-325.qxd  08/04/2008  10:52 AM  Page 269



270 CHAPTER 3 Polynomial and Rational Functions

ALTERNATE EXAMPLE 6
(a) Find a polynomial of degree 3

that has zeros 1, 3, and 4.
(b) Find a polynomial of degree 4

that has zeros 1, 3, and 4.

ANSWERS
(a) P(x) = (x - 1)(x - 3)(x - 4)

works, as would k(x - 1) *
(x - 3)(x - 4) for every
nonzero constant k; (x - 1) *
(x - 3)(x - 4) = x3 - 8x2 +
19x - 12

(b) There are many choices here—
we could multiply our previ-
ous answer by any factor 
(x - k). If we want the ONLY
zeros to be 1, 3, and 4 we
would multiply by (x - 1) or
(x - 3) or (x - 4) to get a zero
of multiplicity 2.

IN-CLASS MATERIALS

Students often miss the crucial idea that synthetic division is a technique that only works for divisors of the
form x - c. They also tend to believe that synthetic division is a magic process that has nothing to do with
the long division that they have just learned. They should be disabused of both notions. For example, divide
the polynomial x3 - x2 + x - 1 by x - 2 using both methods, showing all work, and then have students
point out the similarities between the two computations. They should see that both processes are essentially
the same, the only difference being that synthetic division minimizes the amount of writing.

270 CHAPTER 3 Polynomial and Rational Functions

1–6 ■ Two polynomials P and D are given. Use either synthetic
or long division to divide by , and express P in the
form .

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7–12 ■ Two polynomials P and D are given. Use either syn-
thetic or long division to divide by , and express the
quotient in the form

7. ,

8. ,

9. ,

10. ,

11. ,

12. , D1x 2 � x2 � x � 1P1x 2 � x5 � x4 � 2x3 � x � 1

D1x 2 � x2 � 4P1x 2 � 2x4 � x3 � 9x2

D1x 2 � 3x � 4P1x 2 � 6x3 � x2 � 12x � 5

D1x 2 � 2x � 1P1x 2 � 4x2 � 3x � 7

D1x 2 � x � 4P1x 2 � x3 � 6x � 5

D1x 2 � x � 3P1x 2 � x2 � 4x � 8

P1x 2
D1x 2 � Q1x 2 �

R1x 2
D1x 2

P1x 2/D1x 2
D1x 2P1x 2

D1x 2 � x2 � 2P1x 2 � 2x5 � 4x4 � 4x3 � x � 3

D1x 2 � x2 � 3P1x 2 � x4 � x3 � 4x � 2

D1x 2 � 2x � 1P1x 2 � 4x3 � 7x � 9

D1x 2 � 2x � 3P1x 2 � 2x3 � 3x2 � 2x

D1x 2 � x � 1P1x 2 � x3 � 4x2 � 6x � 1

D1x 2 � x � 3P1x 2 � 3x2 � 5x � 4

P1x 2 � D1x 2 # Q1x 2 � R1x 2
D1x 2P1x 2

13–22 ■ Find the quotient and remainder using long division.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–36 ■ Find the quotient and remainder using synthetic
division.

23. 24.

25. 26.

27. 28.

29. 30.
x4 � x3 � x2 � x � 2

x � 2

x3 � 8x � 2

x � 3

3x3 � 12x2 � 9x � 1

x � 5

x3 � 2x2 � 2x � 1

x � 2

4x2 � 3

x � 5

3x2 � 5x

x � 6

x2 � 5x � 4

x � 1

x2 � 5x � 4

x � 3

2x5 � 7x4 � 13

4x2 � 6x � 8

x6 � x4 � x2 � 1

x2 � 1

9x2 � x � 5

3x2 � 7x

6x3 � 2x2 � 22x

2x2 � 5

3x4 � 5x3 � 20x � 5

x2 � x � 3

x3 � 6x � 3

x2 � 2x � 2

x3 � 3x2 � 4x � 3

3x � 6

4x3 � 2x2 � 2x � 3

2x � 1

x3 � x2 � 2x � 6

x � 2

x2 � 6x � 8

x � 4

(shown in the margin), we see that

See margin

Factor quadratic x 2 � x � 6 ■

Example 6 Finding a Polynomial with Specified Zeros

Find a polynomial of degree 4 that has zeros �3, 0, 1, and 5.

Solution By the Factor Theorem, , x � 0, x � 1, and x � 5 must all be
factors of the desired polynomial, so let

Since is of degree 4 it is a solution of the problem. Any other solution of the
problem must be a constant multiple of , since only multiplication by a con-
stant does not change the degree. ■

The polynomial P of Example 6 is graphed in Figure 1. Note that the zeros of P
correspond to the x-intercepts of the graph.

3.2 Exercises

P1x 2P1x 2
P1x 2 � 1x � 3 2 1x � 0 2 1x � 1 2 1x � 5 2 � x4 � 3x3 � 13x2 � 15x

x � 1�3 2

 � 1x � 1 2 1x � 2 2 1x � 3 2
 � 1x � 1 2 1x2 � x � 6 2

 P1x 2 � x3 � 7x � 6

x2 � x � 6

x � 1�x3 � 0x2 � 7x � 6

x3 � x2

x2 � 7x

x2 � x

�6x � 6

�6x � 6

0

1

10

y

x0_3 5

Figure 1

P1x) � 1x � 32x1x � 12 1x � 52
has zeros �3, 0, 1, and 5.
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IN-CLASS MATERIALS

One important application of polynomial division is finding asymptotes for rational functions. This is a
good time to introduce the concept of a horizontal asymptote. A good example to discuss with students is

. Use long division to write this as . Now note what 

happens to the second term for large values of x . (If students have calculators, they can go ahead and try
x = 100, x = 100,000, and x = 1,000,000,000. Show how, graphically, this corresponds to a horizontal
asymptote. Now point out that the 2 came from only the highest-degree term in the numerator and the
highest-degree term in the denominator. Now discuss the possibilities for horizontal asymptotes in the

rational functions , and . In all cases, go ahead and do the long 

division, so the students see the possibilities. (The second one has no horizontal asymptote.)

x2 + 2x + 2

x5 - x + 4

x2 + 2x + 2

3x2 + 2x + 2
, 

x2 + 2x + 2

x - 7

f (x) = 2 +
11x + 1

x2 - 4x + 2
f (x) =

2x2 + 3x + 5

x2 - 4x + 2
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31. 32.

33.

34.

35. 36.

37–49 ■ Use synthetic division and the Remainder Theorem to
evaluate .

37. , c � �1

38. ,

39. , c � 2

40. , c � �1

41. , c � �2

42. , c � 11

43. , c � �7

44. , c � �2

45. , c � 3

46. , c � �3

47. ,

48. ,

49. , c � 0.1

50. Let

Calculate by (a) using synthetic division and (b) sub-
stituting x � 7 into the polynomial and evaluating directly.

51–54 ■ Use the Factor Theorem to show that x � c is a factor
of for the given value(s) of c.

51. , c � 1

52. , c � 2

53. ,

54. , c � 3, �3

55–56 ■ Show that the given value(s) of c are zeros of ,
and find all other zeros of .

55. , c � 3

56. , c � 1
3, �2P1x 2 � 3x4 � x3 � 21x2 � 11x � 6

P1x 2 � x3 � x2 � 11x � 15

P1x 2
P1x 2

P1x 2 � x4 � 3x3 � 16x2 � 27x � 63

c � 1
2P1x 2 � 2x3 � 7x2 � 6x � 5

P1x 2 � x3 � 2x2 � 3x � 10

P1x 2 � x3 � 3x2 � 3x � 1

P1x 2

P17 2
� 60x3 � 69x2 � 13x � 139

P1x 2 � 6x7 � 40x6 � 16x5 � 200x4

P1x 2 � x3 � 2x2 � 3x � 8

c � 1
4P1x 2 � x3 � x � 1

c � 2
3P1x 2 � 3x3 � 4x2 � 2x � 1

P1x 2 � �2x6 � 7x5 � 40x4 � 7x2 � 10x � 112

P1x 2 � x7 � 3x2 � 1

P1x 2 � 6x5 � 10x3 � x � 1

P1x 2 � 5x4 � 30x3 � 40x2 � 36x � 14

P1x 2 � 2x3 � 21x2 � 9x � 200

P1x 2 � x3 � 2x2 � 7

P1x 2 � x3 � x2 � x � 5

P1x 2 � x3 � 3x2 � 7x � 6

c � 1
2P1x 2 � 2x2 � 9x � 1

P1x 2 � 4x2 � 12x � 5

P1c 2

x4 � 16

x � 2

x3 � 27

x � 3

6x4 � 10x3 � 5x2 � x � 1

x � 2
3

2x3 � 3x2 � 2x � 1

x � 1
2

x3 � 9x2 � 27x � 27

x � 3

x5 � 3x3 � 6

x � 1

57–60 ■ Find a polynomial of the specified degree that has the
given zeros.

57. Degree 3; zeros �1, 1, 3

58. Degree 4; zeros �2, 0, 2, 4

59. Degree 4; zeros �1, 1, 3, 5

60. Degree 5; zeros �2, �1, 0, 1, 2

61. Find a polynomial of degree 3 that has zeros 1, �2, and 3,
and in which the coefficient of x 2 is 3.

62. Find a polynomial of degree 4 that has integer coefficients
and zeros 1, �1, 2, and .

63–66 ■ Find the polynomial of the specified degree whose
graph is shown.

63. Degree 3 64. Degree 3

65. Degree 4 66. Degree 4

Discovery • Discussion

67. Impossible Division? Suppose you were asked to solve
the following two problems on a test:

A. Find the remainder when 6x1000 � 17x 562 � 12x � 26 is
divided by x � 1.

B. Is x � 1 a factor of x 567 � 3x 400 � x 9 � 2?

Obviously, it’s impossible to solve these problems by divid-
ing, because the polynomials are of such large degree. Use
one or more of the theorems in this section to solve these
problems without actually dividing.

0

y

x1

1

0

y

x1

1

0

y

x1

1
0

y

x1

1

1
2
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SUGGESTED TIME

AND EMPHASIS

–1 class.
Essential material. Can be
combined with Section 3.2.

1
2

POINTS TO STRESS

1. The Rational Zeros Theorem: The rational zeros of a polynomial function are always quotients of factors
of the constant and the leading terms.

2. Factoring large polynomials using the Rational Zeros Theorem and the quadratic formula.
3. Bounding the number and size of zeros of a polynomial function.

3.3 Real Zeros of Polynomials

The Factor Theorem tells us that finding the zeros of a polynomial is really the same
thing as factoring it into linear factors. In this section we study some algebraic meth-
ods that help us find the real zeros of a polynomial, and thereby factor the poly-
nomial. We begin with the rational zeros of a polynomial.

Rational Zeros of Polynomials

To help us understand the next theorem, let’s consider the polynomial

Factored form

Expanded form

From the factored form we see that the zeros of P are 2, 3, and �4. When the poly-
nomial is expanded, the constant 24 is obtained by multiplying .
This means that the zeros of the polynomial are all factors of the constant term. The
following generalizes this observation.

1�2 2 
 1�3 2 
 4

 � x3 � x2 � 14x � 24

 P1x 2 � 1x � 2 2 1x � 3 2 1x � 4 2

272 CHAPTER 3 Polynomial and Rational Functions

68. Nested Form of a Polynomial Expand Q to prove that
the polynomials P and Q are the same.

Try to evaluate and in your head, using the Q12 2P12 2
Q1x 2 � 1 1 13x � 5 2x � 1 2x � 3 2x � 5

P1x 2 � 3x4 � 5x3 � x2 � 3x � 5

forms given. Which is easier? Now write the polynomial
in “nested” form,

like the polynomial Q. Use the nested form to find in
your head.

Do you see how calculating with the nested form follows
the same arithmetic steps as calculating the value of a poly-
nomial using synthetic division?

R13 2
R1x 2 � x5 � 2x4 � 3x3 � 2x2 � 3x � 4

Rational Zeros Theorem

If the polynomial has integer
coefficients, then every rational zero of P is of the form

where p is a factor of the constant coefficient a0

and q is a factor of the leading coefficient an.

p

q

P1x 2 � an  
x 

 

n � an�1x 
n�1 � . . . � a1x � a0

■ Proof If p/q is a rational zero, in lowest terms, of the polynomial P, then 
we have

Multiply by qn

Subtract a0qn

and factor LHS

Now p is a factor of the left side, so it must be a factor of the right as well. Since
p/q is in lowest terms, p and q have no factor in common, and so p must be a factor
of a0. A similar proof shows that q is a factor of an. ■

We see from the Rational Zeros Theorem that if the leading coefficient is 1 or �1,
then the rational zeros must be factors of the constant term.

 p1an  
pn�1 � an�1  

pn�2q � . . . � a1q
n�1 2 � �a0q

n

 an  
pn � an�1  

pn�1q � . . . � a1pqn�1 � a0q
n � 0

 an a p

q
b n

� an�1 a p

q
b n�1

� . . . � a1 a p

q
b � a0 � 0
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ALTERNATE EXAMPLE 1
Find all rational zeros of the
polynomial
P(x) = x3 - 11x2 + 23x + 35.

ANSWER
-1, 5, 7

ALTERNATE EXAMPLE 2 
Factor the polynomial
P(x) = 3x3 – 4x2 – 13x - 6.

ANSWER
P(x) = (x + 1)(x - 3)(3x + 2)

SAMPLE QUESTIONS

Text Questions

Consider f(x) = x6 - 2x5 - x4 + 4x3 - x2 - 2x + 1.

(a) According to the Rational Zeros Theorem, how many possible rational zeros can this polynomial have?
(b) List all the rational zeros of f(x). Ignore multiplicities and show your work.

Answers

(a) 2
(b) Both 1 and -1 are zeros of f. This can be shown by manually calculating f (1) and f (-1).

Example 1 Finding Rational Zeros (Leading Coefficient 1)

Find the rational zeros of .

Solution Since the leading coefficient is 1, any rational zero must be a divisor of
the constant term 2. So the possible rational zeros are �1 and �2. We test each of
these possibilities.

The rational zeros of P are 1 and �2. ■

Example 2 Using the Rational Zeros Theorem 

to Factor a Polynomial

Factor the polynomial .

Solution By the Rational Zeros Theorem the rational zeros of P are of the form

The constant term is 6 and the leading coefficient is 2, so

The factors of 6 are �1, �2, �3, �6 and the factors of 2 are �1, �2. Thus, the
possible rational zeros of P are

Simplifying the fractions and eliminating duplicates, we get the following list of
possible rational zeros:

To check which of these possible zeros actually are zeros, we need to evaluate P at
each of these numbers. An efficient way to do this is to use synthetic division.

Test if 1 is a zero Test if 2 is a zero

1 � 2 �11 �13 �16 2 � 2 �11 �13 �6

2 3 �10 4 �10 �6

2 3 �10 �4 2 � 5 �3 �0

�1, �2, �3, �6, �
1

2
, �

3

2

�
1

1
, �

2

1
, �

3

1
, �

6

1
, �

1

2
, �

2

2
, �

3

2
, �

6

2

possible rational zero of P �
factor of 6

factor of 2

possible rational zero of P �
factor of constant term

factor of leading coefficient

P1x 2 � 2x3 � x2 � 13x � 6

 P1�2 2 � 1�2 2 3 � 31�2 2 � 2 � 0

 P12 2 � 12 2 3 � 312 2 � 2 � 4

 P1�1 2 � 1�1 2 3 � 31�1 2 � 2 � 4

 P11 2 � 11 2 3 � 311 2 � 2 � 0

P1x 2 � x3 � 3x � 2
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Evariste Galois (1811–1832) is
one of the very few mathematicians
to have an entire theory named in
his honor. Not yet 21 when he died,
he completely settled the central
problem in the theory of equations
by describing a criterion that re-
veals whether a polynomial equa-
tion can be solved by algebraic
operations. Galois was one of the
greatest mathematicians in the
world at that time, although no one
knew it but him. He repeatedly sent
his work to the eminent mathemati-
cians Cauchy and Poisson, who
either lost his letters or did not
understand his ideas. Galois wrote
in a terse style and included few de-
tails, which probably played a role
in his failure to pass the entrance
exams at the Ecole Polytechnique
in Paris. A political radical, Galois
spent several months in prison for
his revolutionary activities. His
brief life came to a tragic end when
he was killed in a duel over a love
affair. The night before his duel,
fearing he would die, Galois wrote
down the essence of his ideas and
entrusted them to his friend Au-
guste Chevalier. He concluded by
writing “. . . there will, I hope, be
people who will find it to their ad-
vantage to decipher all this mess.”
The mathematician Camille Jordan
did just that, 14 years later.

Remainder is not 0, 
so 1 is not a zero.

Remainder is 0, 
so 2 is a zero.
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DRILL QUESTION

Factor f (x) = x3 – 6x + 4.

Answer

(x + 1 - 13)

f (x) = (x - 2)(x + 1 + 13) *

IN-CLASS MATERIALS

Students often misinterpret the Rational Zeros Theorem in two ways. Some believe that it classifies all the
real zeros of a polynomial function, not just the rational ones. Others believe that it applies to all polyno-
mial functions, not just the ones with integer coefficients.

Start with the simple quadratic p(x) = x2 - 2, pointing out that the candidates for rational zeros are 
�1 and �2. None of these candidates are zeros of p(x), but it is simple to find that there are two real 
zeros: Then move to a polynomial with one real zero and two irrational ones, such as
p(x) = x3 - 6x + 4. Ask students if they can come up with a polynomial with three real, irrational zeros.
One example is p(x) = x3 - 3x - (the zeros are This might be perceived as 
a bit of a cheat, so follow up by asking them if they can come up with a polynomial with integer coefficients
and three real, irrational zeros. (x3 - 5x + 1 works. The fact that there are three real roots can be determined
from a graph, the fact that none are rational can be determined using the Rational Zeros Theorem.)

-12 and 1212 ; 1
216).12

x = ;12.

From the last synthetic division we see that 2 is a zero of P and that P factors as

Factor 2x2 � 5x � 3 ■

The following box explains how we use the Rational Zeros Theorem with syn-
thetic division to factor a polynomial.

 � 1x � 2 2 12x � 1 2 1x � 3 2
 � 1x � 2 2 12x2 � 5x � 3 2

 P1x 2 � 2x3 � x2 � 13x � 6

274 CHAPTER 3 Polynomial and Rational Functions

Finding the Rational Zeros of a Polynomial

1. List Possible Zeros. List all possible rational zeros using the Rational 
Zeros Theorem.

2. Divide. Use synthetic division to evaluate the polynomial at each of the
candidates for rational zeros that you found in Step 1. When the remainder 
is 0, note the quotient you have obtained.

3. Repeat. Repeat Steps 1 and 2 for the quotient. Stop when you reach a
quotient that is quadratic or factors easily, and use the quadratic formula or
factor to find the remaining zeros.

Example 3 Using the Rational Zeros Theorem 

and the Quadratic Formula

Let .

(a) Find the zeros of P.

(b) Sketch the graph of P.

Solution

(a) The leading coefficient of P is 1, so all the rational zeros are integers: They are
divisors of the constant term 10. Thus, the possible candidates are

Using synthetic division (see the margin) we find that 1 and 2 are not zeros,
but that 5 is a zero and that P factors as

We now try to factor the quotient x 3 � 5x � 2. Its possible zeros are the 
divisors of �2, namely,

Since we already know that 1 and 2 are not zeros of the original polynomial 
P, we don’t need to try them again. Checking the remaining candidates �1 
and �2, we see that �2 is a zero (see the margin), and P factors as

 � 1x � 5 2 1x � 2 2 1x2 � 2x � 1 2
 x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2

�1, �2

x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2

�1, �2, �5, �10

P1x 2 � x4 � 5x 3 � 5x 2 � 23x � 10

1 � 1 �5 �5 �23 �10

1 �4 �9 14

1 �4 �9 14 24

2 � 1 �5 �5 23 10

2 �6 �22 2

1 �3 �11 1 12

5 �� 1 �5 �5 23 10

5 0 �25 �10

1 0 �5 �2 0

�2 � 1 �0 �5 �2

�2 4 2

1 �2 �1 0

ALTERNATE EXAMPLE 3a
Find all the real zeros of P. 
P(x) = -x3 - 3x2 + 13x + 15 

ANSWER
3, -1, -5
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ALTERNATE EXAMPLE 4
Find all the real zeros of the
polynomial. Use the quadratic
formula if necessary.
P(x) = x3 + 4x2 + 3x - 2

ANSWER
-2, -1 ; 12

IN-CLASS MATERIALS

Ask students why we do not advocate using synthetic division to find the roots of a polynomial such as 
. Hopefully, you will arrive

at the conclusion that the quadratic formula is easier to use and will find all the zeros, not just the rational
ones. Point out that there actually is such a formula for third-degree polynomials, but that it is much harder
to use. (For those interested, refer to Exercise 102.) There is one for fourth-degree polynomials as well. It
has been proved that there is no such formula for arbitrary fifth-degree polynomials. In other words, we can
find the exact roots for any polynomial up through a fourth-degree polynomial, but there are some polyno-
mials, fifth-degree and higher, whose roots we can only approximate.

p(x) = x2 + 9x + 20, p(x) = x2 + 9x - 7, or even p(x) = x2 + px - 25 2

Now we use the quadratic formula to obtain the two remaining zeros of P:

The zeros of P are 5, �2, , and .

(b) Now that we know the zeros of P, we can use the methods of Section 3.1 to
sketch the graph. If we want to use a graphing calculator instead, knowing the
zeros allows us to choose an appropriate viewing rectangle—one that is wide
enough to contain all the x-intercepts of P. Numerical approximations to the 
zeros of P are

So in this case we choose the rectangle 3�3, 64 by 3�50, 504 and draw the graph
shown in Figure 1. ■

Descartes’ Rule of Signs and 

Upper and Lower Bounds for Roots

In some cases, the following rule—discovered by the French philosopher and math-
ematician René Descartes around 1637 (see page 112)—is helpful in eliminating can-
didates from lengthy lists of possible rational roots. To describe this rule, we need the
concept of variation in sign. If is a polynomial with real coefficients, written
with descending powers of x (and omitting powers with coefficient 0), then a varia-
tion in sign occurs whenever adjacent coefficients have opposite signs. For example,

has three variations in sign.

P1x 2 � 5x7 � 3x5 � x4 � 2x2 � x � 3

P1x 2

5,  �2,  2.4,  and  �0.4

1 � 121 � 12

x �
2 � 21�2 2 2 � 411 2 1�1 2

2
� 1 � 12

SECTION 3.3 Real Zeros of Polynomials 275

50

_50

_3 6

Figure 1

P1x 2 � x4 � 5x3 � 5x2 � 23x � 10

Descartes’ Rule of Signs

Let P be a polynomial with real coefficients.

1. The number of positive real zeros of is either equal to the number of
variations in sign in or is less than that by an even whole number.

2. The number of negative real zeros of is either equal to the number of
variations in sign in or is less than that by an even whole number.P1�x 2 P1x 2

P1x 2 P1x 2

Example 4 Using Descartes’ Rule

Use Descartes’ Rule of Signs to determine the possible number of positive
and negative real zeros of the polynomial

Solution The polynomial has one variation in sign and so it has one positive
zero. Now

So, has three variations in sign. Thus, has either three or one negative
zero(s), making a total of either two or four real zeros. ■

P1x 2P1�x 2
 � 3x6 � 4x5 � 3x3 � x � 3

 P1�x 2 � 31�x 2 6 � 41�x 2 5 � 31�x 2 3 � 1�x 2 � 3

P1x 2 � 3x6 � 4x5 � 3x3 � x � 3

Variations 
Polynomial in sign

x 2 � 4x � 1 0
2x 3 � x � 6 1

x 4 � 3x 2 � x � 4 2
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ALTERNATE EXAMPLE 5
Is it true or false that all the real
zeros of the polynomial 
P(x) = 4x3 + 19x2 + 11x - 7 lie
between -3 and 1? 

ANSWER
False

IN-CLASS MATERIALS

Point out that being able to find the zeros of a polynomial allows us to solve many types of problems. The
text gives several examples of applied problems (and there are many more, of course). For example, we can
now find the intersection points between two polynomial curves [if f (x) = g(x), then f (x) - g(x) = 0]. If
p(x) is a polynomial with an inverse, we can find p-1(k) for a specific k by solving p (x) - k = 0. In addition,

being able to factor polynomials is very important. For example, the graph of 

has a hole at x = -2, vertical asymptotes at x = -1 and x = -3, and x-intercepts at (2, 0) and (0, 0). This

information is easily obtained if we write f (x) as .
(x + 2)(x - 2)x

(x + 1)(x + 2)(x + 3)

f (x) =
x3 - 4x

x3 + 6x2 + 11x + 6

We say that a is a lower bound and b is an upper bound for the zeros of a poly-
nomial if every real zero c of the polynomial satisfies a � c � b. The next theorem
helps us find such bounds for the zeros of a polynomial.

276 CHAPTER 3 Polynomial and Rational Functions

The Upper and Lower Bounds Theorem

Let P be a polynomial with real coefficients.

1. If we divide by x � b (with b � 0) using synthetic division, and if the
row that contains the quotient and remainder has no negative entry, then b
is an upper bound for the real zeros of P.

2. If we divide by x � a (with a � 0) using synthetic division, and if the
row that contains the quotient and remainder has entries that are alternately
nonpositive and nonnegative, then a is a lower bound for the real zeros of P.

P1x 2

P1x 2

A proof of this theorem is suggested in Exercise 91. The phrase “alternately non-
positive and nonnegative” simply means that the signs of the numbers alternate,
with 0 considered to be positive or negative as required.

Example 5 Upper and Lower Bounds for Zeros 

of a Polynomial

Show that all the real zeros of the polynomial lie 
between �3 and 2.

Solution We divide by x � 2 and x � 3 using synthetic division.

2 � 1 0 �3 2 �5 �3 � 1 �0 �3 �2 �5

2 4 2 8 �3 9 �18 48

1 2 1 4 3 1 �3 6 �16 43

By the Upper and Lower Bounds Theorem, �3 is a lower bound and 2 is an upper
bound for the zeros. Since neither �3 nor 2 is a zero (the remainders are not 0 in
the division table), all the real zeros lie between these numbers. ■

Example 6 Factoring a Fifth-Degree Polynomial

Factor completely the polynomial

Solution The possible rational zeros of P are , �1, , �3, , and �9. 
We check the positive candidates first, beginning with the smallest.

� 2 5 �8 �14 6 9 1 � 2 �5 �8 �14 6 9

1 3 2 7 �1 �15 �9

2 6 �5 2 7 �1 �15 �9 063
8�9

4�33
2

�9
8�33

4�5
2

1
2

� 
9
2� 

3
2� 

1
2

P1x 2 � 2x5 � 5x4 � 8x3 � 14x2 � 6x � 9

P1x 2
P1x 2 � x4 � 3x2 � 2x � 5

Entries 
alternate 
in sign.

All entries
positive

is not a
zero

1
2

P11 2 � 0

ALTERNATE EXAMPLE 6
Factor completely the polynomial
2x5 -11x4 - 10x3 + 56x2 + 88x + 35.

ANSWER
(x + 1)3(x - 5)(2x - 7)
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ALTERNATE EXAMPLE 7
Find all real solutions of the
following equation, correct to the
nearest hundredth:
10x4 - x2 + 4x - 6

ANSWER
Roots to the nearest hundredth: 
-1.03, 0.77

x

y

_1 10 2

10

_10

20

30

40

_2

So 1 is a zero, and . We continue by
factoring the quotient. We still have the same list of possible zeros except that has
been eliminated.

1 � 2 �7 �1 �15 �9 � 2 �7 �1 �15 �9

2 9 8 �7 3 15 21 9

2 9 8 �7 �16 2 10 14 6 0

We see that is both a zero and an upper bound for the zeros of , so we don’t
need to check any further for positive zeros, because all the remaining candidates
are greater than .

Factor 2 from last factor,
multiply into second factor

By Descartes’ Rule of Signs, x3 � 5x 2 � 7x � 3 has no positive zero, so its only
possible rational zeros are �1 and �3.

�1 � 1 5 7 3

�1 �4 �3

1 4 3 0

Therefore

Factor quadratic

This means that the zeros of P are 1, , �1, and �3. The graph of the polynomial is
shown in Figure 2. ■

Using Algebra and Graphing 

Devices to Solve Polynomial Equations

In Section 1.9 we used graphing devices to solve equations graphically. We can now
use the algebraic techniques we’ve learned to select an appropriate viewing rectangle
when solving a polynomial equation graphically.

Example 7 Solving a Fourth-Degree Equation Graphically

Find all real solutions of the following equation, correct to the nearest tenth.

Solution To solve the equation graphically, we graph

P1x 2 � 3x4 � 4x3 � 7x2 � 2x � 3

3x4 � 4x3 � 7x2 � 2x � 3 � 0

3
2

 � 1x � 1 2 12x � 3 2 1x � 1 2 21x � 3 2
 P1x 2 � 1x � 1 2 12x � 3 2 1x � 1 2 1x2 � 4x � 3 2

 � 1x � 1 2 12x � 3 2 1x3 � 5x2 � 7x � 3 2
 P1x 2 � 1x � 1 2 1x � 3

2 2 12x3 � 10x2 � 14x � 6 2
3
2

P1x 23
2

3
2

1
2

P1x 2 � 1x � 1 2 12x4 � 7x3 � x2 � 15x � 9 2

SECTION 3.3 Real Zeros of Polynomials 277

, 
all entries
nonnegative

P A32 B � 01 is not a
zero.

P (�1) � 0

9

40

_20

_4 2

Figure 2

1x � 1 2 21x � 3 2� 1x � 1 2 12x � 3 2
� 14x2 � 6x � 9P1x 2 � 2x5 � 5x4 � 8x3

EXAMPLES
An example to use in
demonstrating the remainder and
factor theorems: f (x) = x3 - x2 -
14x + 24 has zeros = -4, 2, and 3;
f (0) = 24, f (1) = 10, and 
f (-1) = 36.
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ALTERNATE EXAMPLE 8
A fuel tank consists of a
cylindrical center section 10 ft
long and two hemispherical end
sections, as shown in Figure 4. If
the tank has a volume of 400 ft 3,
what is the radius r shown in the
figure, correct to the nearest
hundredth of a foot?

ANSWER
As in the text, we get the equation

We graph
to find its x-intercept to the
nearest hundredth, r = 3.01 ft.

4
3pr3 + 10pr2 - 400.

EXAMPLE
A polynomial with many rational zeros: f(x) = 6x5 + 17x4 - 40x3 - 45x2 + 14x + 8

Factored form: (2x - 1)(3x + 1)(x + 4)(x + 1)(x - 2)

Zeros: x =
1

2
, 

1

3
, -4,-1, and 2

First we use the Upper and Lower Bounds Theorem to find two numbers between
which all the solutions must lie. This allows us to choose a viewing rectangle that is
certain to contain all the x-intercepts of P. We use synthetic division and proceed by
trial and error.

To find an upper bound, we try the whole numbers, 1, 2, 3, . . . as potential 
candidates. We see that 2 is an upper bound for the roots.

2 � 3 4 �7 �2 �3

6 20 26 48

3 10 13 24 45

Now we look for a lower bound, trying the numbers �1, �2, and �3 as potential
candidates. We see that �3 is a lower bound for the roots.

�3 � 3 4 �7 �2 �3

�9 15 �24 78

3 �5 8 �26 75

Thus, all the roots lie between �3 and 2. So the viewing rectangle 3�3, 24
by 3�20, 204 contains all the x-intercepts of P. The graph in Figure 3 has two 
x-intercepts, one between �3 and �2 and the other between 1 and 2. Zooming in,
we find that the solutions of the equation, to the nearest tenth, are �2.3 and 1.3. ■

Example 8 Determining the Size of a Fuel Tank

A fuel tank consists of a cylindrical center section 4 ft long and two hemispherical
end sections, as shown in Figure 4. If the tank has a volume of 100 ft3, what is the
radius r shown in the figure, correct to the nearest hundredth of a foot?

Solution Using the volume formula listed on the inside front cover of this book,
we see that the volume of the cylindrical section of the tank is

The two hemispherical parts together form a complete sphere whose volume is

Because the total volume of the tank is 100 ft3, we get the following equation:

A negative solution for r would be meaningless in this physical situation, and by
substitution we can verify that r � 3 leads to a tank that is over 226 ft3 in volume,
much larger than the required 100 ft3. Thus, we know the correct radius lies some-
where between 0 and 3 ft, and so we use a viewing rectangle of 30, 34 by 350, 1504

4
3   
pr 3 � 4pr

   

2 � 100

4
3   
pr

  

3

p # r 
2 # 4

r

4 ft

Figure 4
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We use the Upper and Lower Bounds
Theorem to see where the roots can 
be found.

20

_20

_3 2

Figure 3

y � 3x4 � 4x3 � 7x2 � 2x � 3

All 
positive

Entries 
alternate 
in sign.

Volume of a cylinder: V � pr 2h

Volume of a sphere: V � 4
3   
pr 3
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EXAMPLE
A polynomial with one rational zero and four irrational zeros that can be found by elementary methods:

f(x) = 2x5 - 10x3 + 12x - x4 + 5x2 - 6 = (2x - 1)(x2 - 2)(x2 - 3)

Zeros: x = 1
2, ;12, and ;13
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1–6 ■ List all possible rational zeros given by the Rational 
Zeros Theorem (but don’t check to see which actually are zeros).

1.

2.

3.

4.

5.

6.

7–10 ■ A polynomial function P and its graph are given.

(a) List all possible rational zeros of P given by the Rational
Zeros Theorem.

(b) From the graph, determine which of the possible rational 
zeros actually turn out to be zeros.

7.

8.

0

y

x1

1

P1x 2 � 3x 
3 � 4x2 � x � 2

0 1

y

x

1

P1x 2 � 5x 
3 � x 

2 � 5x � 1

U1x 2 � 12x5 � 6x3 � 2x � 8

T1x 2 � 4x4 � 2x2 � 7

S1x 2 � 6x4 � x2 � 2x � 12

R1x 2 � 2x5 � 3x3 � 4x2 � 8

Q1x 2 � x4 � 3x3 � 6x � 8

P1x 2 � x3 � 4x2 � 3

9.

10.

11–40 ■ Find all rational zeros of the polynomial.

11.

12.

13.

14.

15.

16.

17.

18.

19. P1x 2 � x3 � 3x2 � 6x � 4

P1x 2 � x3 � 4x2 � 7x � 10

P1x 2 � x3 � 4x2 � x � 6

P1x 2 � x3 � x2 � 8x � 12

P1x 2 � x3 � 6x2 � 12x � 8

P1x 2 � x3 � 4x2 � 3x � 18

P1x 2 � x3 � 3x � 2

P1x 2 � x3 � 7x2 � 14x � 8

P1x 2 � x3 � 3x2 � 4

0

y

x1

1

P1x 2 � 4x4 � x3 � 4x � 1

0

y

x1

1

P1x 2 � 2x 
4 � 9x 

3 � 9x 
2 � x � 3

to graph the function , as shown in Figure 5. Since we want the
value of this function to be 100, we also graph the horizontal line y � 100 in the
same viewing rectangle. The correct radius will be the x-coordinate of the point of
intersection of the curve and the line. Using the cursor and zooming in, we see that
at the point of intersection x � 2.15, correct to two decimal places. Thus, the tank
has a radius of about 2.15 ft. ■

Note that we also could have solved the equation in Example 8 by first writing it as

and then finding the x-intercept of the function .

3.3 Exercises

y � 4
3   
px3 � 4px

  

2 � 100

4
3   
pr 3 � 4pr

   

2 � 100 � 0

y � 4
3   
px3 � 4px

  

2
150

50
0 3

Figure 5

and y � 100y � 4
3   
px3 � 4px

  

2
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41–50 ■ Find all the real zeros of the polynomial. Use the
quadratic formula if necessary, as in Example 3(a).

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51–58 ■ A polynomial P is given.

(a) Find all the real zeros of P.

(b) Sketch the graph of P.

51.

52. P1x 2 � �x3 � 2x2 � 5x � 6

P1x 2 � x3 � 3x2 � 4x � 12

P1x 2 � 4x5 � 18x4 � 6x3 � 91x2 � 60x � 9

P1x 2 � 2x4 � 15x3 � 17x2 � 3x � 1

P1x 2 � 3x3 � 5x2 � 8x � 2

P1x 2 � 4x3 � 6x2 � 1

P1x 2 � x5 � 4x4 � x3 � 10x2 � 2x � 4

P1x 2 � x4 � 7x3 � 14x2 � 3x � 9

P1x 2 � x4 � 2x3 � 2x2 � 3x � 2

P1x 2 � x4 � 6x3 � 4x2 � 15x � 4

P1x 2 � x3 � 5x2 � 2x � 12

P1x 2 � x3 � 4x2 � 3x � 2

P1x 2 � 2x6 � 3x5 � 13x4 � 29x3 � 27x2 � 32x � 12

P1x 2 � 3x5 � 14x4 � 14x3 � 36x2 � 43x � 10

P1x 2 � x5 � 4x4 � 3x3 � 22x2 � 4x � 24

P1x 2 � x5 � 3x4 � 9x3 � 31x2 � 36

P1x 2 � 6x4 � 7x3 � 12x2 � 3x � 2

P1x 2 � 2x4 � 7x3 � 3x2 � 8x � 4

P1x 2 � 6x3 � 11x2 � 3x � 2

P1x 2 � 4x3 � 8x2 � 11x � 15

P1x 2 � 8x3 � 10x2 � x � 3

P1x 2 � 4x3 � 7x � 3

P1x 2 � 2x3 � 3x2 � 2x � 3

P1x 2 � 4x3 � 4x2 � x � 1

P1x 2 � 2x3 � 7x2 � 4x � 4

P1x 2 � x4 � 8x3 � 24x2 � 32x � 16

P1x 2 � x4 � x3 � 5x2 � 3x � 6

P1x 2 � 4x4 � 25x2 � 36

P1x 2 � x4 � x3 � 23x2 � 3x � 90

P1x 2 � x4 � 6x3 � 7x2 � 6x � 8

P1x 2 � x4 � 2x3 � 3x2 � 8x � 4

P1x 2 � x4 � 5x2 � 4

P1x 2 � x3 � 2x2 � 2x � 3 53.

54.

55.

56.

57.

58.

59–64 ■ Use Descartes’ Rule of Signs to determine how many
positive and how many negative real zeros the polynomial can
have. Then determine the possible total number of real zeros.

59.

60.

61.

62.

63.

64.

65–68 ■ Show that the given values for a and b are lower and
upper bounds for the real zeros of the polynomial.

65.

66.

67.

68.

69–72 ■ Find integers that are upper and lower bounds for the
real zeros of the polynomial.

69.

70.

71.

72.

73–78 ■ Find all rational zeros of the polynomial, and then 
find the irrational zeros, if any. Whenever appropriate, use 
the Rational Zeros Theorem, the Upper and Lower Bounds 
Theorem, Descartes’ Rule of Signs, the quadratic formula, or
other factoring techniques.

73.

74.

75.

76.

77.

78. P1x 2 � 8x5 � 14x4 � 22x3 � 57x2 � 35x � 6

P1x 2 � x5 � 7x4 � 9x3 � 23x2 � 50x � 24

P1x 2 � 6x4 � 7x3 � 8x2 � 5x

P1x 2 � 4x4 � 21x2 � 5

P1x 2 � 2x4 � 15x3 � 31x2 � 20x � 4

P1x 2 � 2x4 � 3x3 � 4x2 � 3x � 2

P1x 2 � x5 � x4 � 1

P1x 2 � x4 � 2x3 � x2 � 9x � 2

P1x 2 � 2x3 � 3x2 � 8x � 12

P1x 2 � x3 � 3x2 � 4

P1x 2 � 3x4 � 17x3 � 24x2 � 9x � 1; a � 0, b � 6

P1x 2 � 8x3 � 10x2 � 39x � 9; a � �3, b � 2

P1x 2 � x4 � 2x3 � 9x2 � 2x � 8; a � �3, b � 5

P1x 2 � 2x3 � 5x2 � x � 2; a � �3, b � 1

P1x 2 � x8 � x5 � x4 � x3 � x2 � x � 1

P1x 2 � x5 � 4x3 � x2 � 6x

P1x 2 � x4 � x3 � x2 � x � 12

P1x 2 � 2x6 � 5x4 � x3 � 5x � 1

P1x 2 � 2x3 � x2 � 4x � 7

P1x 2 � x3 � x2 � x � 3

P1x 2 � x5 � x4 � 6x3 � 14x2 � 11x � 3

P1x 2 � x5 � x4 � 5x3 � x2 � 8x � 4

P1x 2 � �x4 � 10x2 � 8x � 8

P1x 2 � x4 � 5x3 � 6x2 � 4x � 8

P1x 2 � 3x3 � 17x2 � 21x � 9

P1x 2 � 2x3 � 7x2 � 4x � 4
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79–82 ■ Show that the polynomial does not have any 
rational zeros.

79.

80.

81.

82.

83–86 ■ The real solutions of the given equation are rational.
List all possible rational roots using the Rational Zeros 
Theorem, and then graph the polynomial in the given viewing
rectangle to determine which values are actually solutions. 
(All solutions can be seen in the given viewing rectangle.)

83. x 3 � 3x 2 � 4x � 12 � 0; 3�4, 44 by 3�15, 154
84. x 4 � 5x 2 � 4 � 0; 3�4, 44 by 3�30, 304
85. 2x 4 � 5x 3 � 14x 2 � 5x � 12 � 0; 3�2, 54 by 3�40, 404
86. 3x 3 � 8x 2 � 5x � 2 � 0; 3�3, 34 by 3�10, 104
87–90 ■ Use a graphing device to find all real solutions of the
equation, correct to two decimal places.

87. x 4 � x � 4 � 0

88. 2x 3 � 8x 2 � 9x � 9 � 0

89. 4.00x 4 � 4.00x 3 � 10.96x 2 � 5.88x � 9.09 � 0

90. x 5 � 2.00x 4 � 0.96x 3 � 5.00x 2 � 10.00x � 4.80 � 0

91. Let be a polynomial with real coefficients and let
b � 0. Use the Division Algorithm to write

Suppose that r � 0 and that all the coefficients in are
nonnegative. Let z � b.

(a) Show that .

(b) Prove the first part of the Upper and Lower Bounds
Theorem.

(c) Use the first part of the Upper and Lower Bounds Theo-
rem to prove the second part. [Hint: Show that if 
satisfies the second part of the theorem, then 
satisfies the first part.]

92. Show that the equation

has exactly one rational root, and then prove that it must
have either two or four irrational roots.

Applications

93. Volume of a Silo A grain silo consists of a cylindrical
main section and a hemispherical roof. If the total volume 
of the silo (including the part inside the roof section) is

x5 � x4 � x3 � 5x2 � 12x � 6 � 0

P1�x 2
P1x 2

P1z 2 � 0

Q1x 2
P1x 2 � 1x � b 2 # Q1x 2 � r

P1x 2

P1x 2 � x50 � 5x25 � x2 � 1

P1x 2 � 3x3 � x2 � 6x � 12

P1x 2 � 2x4 � x3 � x � 2

P1x 2 � x3 � x � 2

15,000 ft3 and the cylindrical part is 30 ft tall, what is the 
radius of the silo, correct to the nearest tenth of a foot?

94. Dimensions of a Lot A rectangular parcel of land has an
area of 5000 ft2. A diagonal between opposite corners is
measured to be 10 ft longer than one side of the parcel.
What are the dimensions of the land, correct to the nearest
foot?

95. Depth of Snowfall Snow began falling at noon on 
Sunday. The amount of snow on the ground at a certain 
location at time t was given by the function

where t is measured in days from the start of the snowfall
and is the depth of snow in inches. Draw a graph of 
this function and use your graph to answer the following
questions.

(a) What happened shortly after noon on Tuesday?

(b) Was there ever more than 5 in. of snow on the ground?
If so, on what day(s)?

(c) On what day and at what time (to the nearest hour) did
the snow disappear completely?

96. Volume of a Box An open box with a volume of
1500 cm3 is to be constructed by taking a piece of cardboard
20 cm by 40 cm, cutting squares of side length x cm from
each corner, and folding up the sides. Show that this can be

h1t 2

� 1.58t4 � 0.20t 
5 � 0.01t 

6

h1t 2 � 11.60t � 12.41t 
2 � 6.20t 

3

x

x+10

30 ft
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done in two different ways, and find the exact dimensions of
the box in each case.

97. Volume of a Rocket A rocket consists of a right circular
cylinder of height 20 m surmounted by a cone whose height
and diameter are equal and whose radius is the same as that
of the cylindrical section. What should this radius be (correct
to two decimal places) if the total volume is to be 500p/3 m3?

98. Volume of a Box A rectangular box with a volume of
ft3 has a square base as shown below. The diagonal of

the box (between a pair of opposite corners) is 1 ft longer
than each side of the base.

(a) If the base has sides of length x feet, show that

(b) Show that two different boxes satisfy the given condi-
tions. Find the dimensions in each case, correct to the
nearest hundredth of a foot.

99. Girth of a Box A box with a square base has length plus
girth of 108 in. (Girth is the distance “around” the box.)
What is the length of the box if its volume is 2200 in3?

b

l

b

x
x

x6 � 2x5 � x4 � 8 � 0

2 12

20 m

Discovery • Discussion

100. How Many Real Zeros Can a Polynomial Have?

Give examples of polynomials that have the following
properties, or explain why it is impossible to find such a
polynomial.

(a) A polynomial of degree 3 that has no real zeros

(b) A polynomial of degree 4 that has no real zeros

(c) A polynomial of degree 3 that has three real zeros, only
one of which is rational

(d) A polynomial of degree 4 that has four real zeros, none
of which is rational

What must be true about the degree of a polynomial with
integer coefficients if it has no real zeros?

101. The Depressed Cubic The most general cubic 
(third-degree) equation with rational coefficients can 
be written as

(a) Show that if we replace x by X � a /3 and simplify, we
end up with an equation that doesn’t have an X 2 term,
that is, an equation of the form

This is called a depressed cubic, because we have
“depressed” the quadratic term.

(b) Use the procedure described in part (a) to depress the
equation x 3 � 6x 2 � 9x � 4 � 0.

102. The Cubic Formula The quadratic formula can be used
to solve any quadratic (or second-degree) equation. You
may have wondered if similar formulas exist for cubic
(third-degree), quartic (fourth-degree), and higher-degree
equations. For the depressed cubic x 3 � px � q � 0,
Cardano (page 296) found the following formula for one
solution:

A formula for quartic equations was discovered by the
Italian mathematician Ferrari in 1540. In 1824 the Norwe-
gian mathematician Niels Henrik Abel proved that it is 
impossible to write a quintic formula, that is, a formula for
fifth-degree equations. Finally, Galois (page 273) gave a
criterion for determining which equations can be solved by
a formula involving radicals.

Use the cubic formula to find a solution for the follow-
ing equations. Then solve the equations using the methods
you learned in this section. Which method is easier?

(a) x 3 � 3x � 2 � 0

(b) x 3 � 27x � 54 � 0

(c) x 3 � 3x � 4 � 0

x �C3
�q

2
� B

q2

4
�

p3

27
�C3

�q

2
� B

q2

4
�

p3

27

X 3 � pX � q � 0

x 3 � ax 2 � bx � c � 0

20 cm

40 cm

x
x
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Zeroing in on a Zero

We have seen how to find the zeros of a polynomial algebraically and graphically.
Let’s work through a numerical method for finding the zeros. With this method
we can find the value of any real zero to as many decimal places as we wish.

The Intermediate Value Theorem states: If P is a polynomial and if and
are of opposite sign, then P has a zero between a and b. (See page 255.) The

Intermediate Value Theorem is an example of an existence theorem—it tells us
that a zero exists, but doesn’t tell us exactly where it is. Nevertheless, we can use
the theorem to zero in on the zero.

For example, consider the polynomial . Notice that
and . By the Intermediate Value Theorem P must have a zero

between 2 and 3. To “trap” the zero in a smaller interval, we evaluate P at suc-
cessive tenths between 2 and 3 until we find where P changes sign, as in Table 1.
From the table we see that the zero we are looking for lies between 2.2 and 2.3,
as shown in Figure 1.

P13 2 � 0P12 2 � 0
P1x 2 � x3 � 8x � 30

P1b 2 P1a 2

D I S C O V E R Y
P R O J E C T

x

2.1 �3.94
2.2 �1.75
2.3 0.57

P 1x 2 x

2.26 �0.38
2.27 �0.14
2.28 0.09

P 1x 2

y

1

_1

2.20 x2.3

y=P(x)

y

0.1

_0.1

2.270 x2.28

y=P(x)

2.275

Figure 1 Figure 2

We can repeat this process by evaluating P at successive 100ths between 
2.2 and 2.3, as in Table 2. By repeating this process over and over again, we 
can get a numerical value for the zero as accurately as we want. From Table 2
we see that the zero is between 2.27 and 2.28. To see whether it is closer to 
2.27 or 2.28, we check the value of P halfway between these two numbers:

. Since this value is negative, the zero we are looking for lies
between 2.275 and 2.28, as illustrated in Figure 2. Correct to the nearest 100th,
the zero is 2.28.

P12.275 2 � �0.03

}change of sign }change of sign

Table 1 Table 2
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1. (a) Show that has a zero between 1 and 2.

(b) Find the zero of P to the nearest tenth.

(c) Find the zero of P to the nearest 100th.

(d) Explain why the zero you found is an approximation to . Repeat 
the process several times to obtain correct to three decimal places.
Compare your results to obtained by a calculator.

2. Find a polynomial that has as a zero. Use the process described here to
zero in on to four decimal places.

3. Show that the polynomial has a zero between the given integers, and then
zero in on that zero, correct to two decimals.

(a) ; between 1 and 2

(b) ; between 2 and 3

(c) ; between 1 and 2

(d) ; between �1 and 0

4. Find the indicated irrational zero, correct to two decimals.

(a) The positive zero of 

(b) The negative zero of 

5. In a passageway between two buildings, two ladders are propped up from the
base of each building to the wall of the other so that they cross, as shown in
the figure. If the ladders have lengths a � 3 m and b � 2 m and the crossing
point is at height c � 1 m, then it can be shown that the distance x between
the buildings is a solution of the equation

(a) This equation has two positive solutions, which lie between 1 and 2. Use
the technique of “zeroing in” to find both of these correct to the nearest
tenth.

(b) Draw two scale diagrams, like the figure, one for each of the two values
of x that you found in part (a). Measure the height of the crossing point
on each. Which value of x seems to be the correct one?

(c) Here is how to get the above equation. First, use similar triangles to
show that

Then use the Pythagorean Theorem to rewrite this as

Substitute a � 3, b � 2, and c � 1, then simplify to obtain the desired 
equation. [Note that you must square twice in this process to eliminate
both square roots. This is why you obtain an extraneous solution in 
part (a). (See the Warning on page 53.)]

1
c

�
1

2a2 � x2
�

1

2b2 � x2

1
c

�
1

h
�

1

k

x8 � 22x6 � 163x4 � 454x2 � 385 � 0

P1x 2 � x4 � 2x3 � x2 � 1

P1x 2 � x4 � 2x3 � x2 � 1

P1x 2 � 2x4 � 4x2 � 1

P1x 2 � 2x4 � 4x2 � 1

P1x 2 � x3 � x2 � 5

P1x 2 � x3 � x � 7

13 5
13 5

12
12

12

P1x 2 � x2 � 2

284 CHAPTER 3 Polynomial and Rational Functions

c

a
b

x

h

k
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SUGGESTED TIME 

AND EMPHASIS
-1 class.

Essential material.

1
2

POINTS TO STRESS

1. Arithmetic operations with complex numbers.
2. Complex numbers as roots of equations.

3.4 Complex Numbers

In Section 1.5 we saw that if the discriminant of a quadratic equation is negative, the
equation has no real solution. For example, the equation

has no real solution. If we try to solve this equation, we get x 2 � �4, so

But this is impossible, since the square of any real number is positive. [For example,
, a positive number.] Thus, negative numbers don’t have real square roots.

To make it possible to solve all quadratic equations, mathematicians invented an
expanded number system, called the complex number system. First they defined the
new number

This means i 2 � �1. A complex number is then a number of the form a � bi, where
a and b are real numbers.

i � 1�1

1�2 2 2 � 4

x � � 1�4

x2 � 4 � 0

SECTION 3.4 Complex Numbers 285

See the note on Cardano, page 296, for
an example of how complex numbers
are used to find real solutions of poly-
nomial equations.

Definition of Complex Numbers

A complex number is an expression of the form

where a and b are real numbers and i 2 � �1. The real part of this complex
number is a and the imaginary part is b. Two complex numbers are equal if
and only if their real parts are equal and their imaginary parts are equal.

a � bi

Note that both the real and imaginary parts of a complex number are real numbers.

Example 1 Complex Numbers

The following are examples of complex numbers.

Real part 3, imaginary part 4

Real part , imaginary part 

Real part 0, imaginary part 6

Real part �7, imaginary part 0 ■

A number such as 6i, which has real part 0, is called a pure imaginary number.
A real number like �7 can be thought of as a complex number with imaginary 
part 0.

In the complex number system every quadratic equation has solutions. The num-
bers 2i and �2i are solutions of x 2 � �4 because

12i 2 2 � 22i2 � 41�1 2 � �4  and  1�2i 2 2 � 1�2 2 2i2 � 41�1 2 � �4

�7

6i

� 
2
3

1
2

1
2 � 2

3i

3 � 4i

ALTERNATE EXAMPLE 1 
Write the real and imaginary parts
of the complex number 4 + 9i. 

ANSWER
4, 9
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SAMPLE QUESTION

Text Question

Write out all solutions (real and
complex) to the equation z2 = -9.

Answer

z = �3i

IN-CLASS MATERIALS

Students often believe that the relationship between real and
complex numbers is similar to the relationship between ratio-
nal and irrational numbers—they don’t see that the number 5
can be thought of as complex (5 + 0i) as well as real. Perhaps
show them this figure:

Example 2 Adding, Subtracting, and Multiplying

Complex Numbers

Express the following in the form a � bi.

(a) (b)

(c) (d) i 23

Solution

(a) According to the definition, we add the real parts and we add the imaginary
parts.

13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 15 � 2 2 i � 7 � 3i

13 � 5i 2 14 � 2i 2
13 � 5i 2 � 14 � 2i 213 � 5i 2 � 14 � 2i 2

Although we use the term imaginary in this context, imaginary numbers should
not be thought of as any less “real” (in the ordinary rather than the mathematical
sense of that word) than negative numbers or irrational numbers. All numbers (except
possibly the positive integers) are creations of the human mind—the numbers �1 and

as well as the number i. We study complex numbers because they complete, in a
useful and elegant fashion, our study of the solutions of equations. In fact, imaginary
numbers are useful not only in algebra and mathematics, but in the other sciences as
well. To give just one example, in electrical theory the reactance of a circuit is a quan-
tity whose measure is an imaginary number.

Arithmetic Operations on Complex Numbers

Complex numbers are added, subtracted, multiplied, and divided just as we would
any number of the form . The only difference we need to keep in mind is
that i 2 � �1. Thus, the following calculations are valid.

Multiply and collect like terms

i 2 � �1

Combine real and imaginary
parts

We therefore define the sum, difference, and product of complex numbers as follows.

 � 1ac � bd 2 � 1ad � bc 2 i
 � ac � 1ad � bc 2 i � bd1�1 2

 1a � bi 2 1c � di 2 � ac � 1ad � bc 2 i � bdi2

a � b 1c

12

286 CHAPTER 3 Polynomial and Rational Functions

Graphing calculators can perform arith-
metic operations on complex numbers.

Adding, Subtracting, and Multiplying Complex Numbers

Definition Description

Addition

To add complex numbers, add the real parts and the 
imaginary parts.

Subtraction

To subtract complex numbers, subtract the real parts 
and the imaginary parts.

Multiplication

Multiply complex numbers like binomials, using i 2 � �1.1a � bi 2 # 1c � di 2 � 1ac � bd 2 � 1ad � bc 2 i

1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

(3+5i)+(4-2i)
7+3i

(3+5i)*(4-2i)
22+14i

Rational numbers Irrational numbers

Integers

Real numbers � 

1_2 , _ 3_7 , 46, 0.17, 0.6, 0.317, ...

... , _3,_2, _1, 0, 1, 2, 3, ...  

Natural numbers

œ3,  œ5,  Œ2,  π,  3/π2, ... 

Complex numbers � 

i,  6-3i,    -πi,1_2 œ3i, ...  

ALTERNATE EXAMPLE 2
Express the following in the form
a + bi.
(a) (6 - 5i) + (2 + 3i)
(b) (6 - 5i) - (2 + 3i)
(c) (6 - 5i)(2 + 3i)
(d) i18

ANSWERS
(a) 8 - 2i
(b) 4 - 8i
(c) 27 + 8i
(d) -1
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ALTERNATE EXAMPLE 3a
Express the following quotient in
the form a + bi.

ANSWER

ALTERNATE EXAMPLE 3b
Express the following quotient in
the form a + bi. 

ANSWER
11

4
-

13

4
# i

13 + 11i

4i

-
13

10
+

21

10
 # i

5 + 6i

1 - 3i

IN-CLASS MATERIALS

One doesn’t have to think of complex numbers as a philosophical abstraction. Many applied fields use
complex numbers, because the result of complex arithmetic leads to real-world understanding. One can
think of complex numbers as points in the plane with the real and imaginary axes replacing the x- and
y-axes. (In that sense, the complex numbers become a geometric extension of a number line.) Now we can
model walking two feet north and one foot east as 1 + 2i, and one foot north and three feet east as 3 + i.
Adding the numbers now has a physical significance: how far have you walked in total? Multiplication has
a meaning too: when we multiply two complex numbers (thinking of them as points on the plane) we are
multiplying their distances from the origin and adding their vector angles. So when we say i2 = -1 we are

really just saying that a 90� angle plus a 90� angle is a 180� angle. The statement is then a
notational aid. Engineers represent waves of a fixed frequency as a magnitude and a phase angle. This
interpretation of a complex number is well suited to that model.

i = 1-1

(b)

(c)

(d) ■

Division of complex numbers is much like rationalizing the denominator of a 
radical expression, which we considered in Section 1.2. For the complex number 
z � a � bi we define its complex conjugate to be . Note that

So the product of a complex number and its conjugate is always a nonnegative real
number. We use this property to divide complex numbers.

z # z � 1a � bi 2 1a � bi 2 � a2 � b2

z � a � bi

i 
23 � i 

22�1 � 1i 
2 2 11i � 1�1 2 11i � 1�1 2 i � �i

13 � 5i 2 14 � 2i 2 � 33 # 4 � 51�2 2 4 � 331�2 2 � 5 # 4 4 i � 22 � 14i

13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 35 � 1�2 2 4 i � �1 � 7i

SECTION 3.4 Complex Numbers 287

Dividing Complex Numbers

To simplify the quotient , multiply the numerator and the denominator

by the complex conjugate of the denominator:

a � bi

c � di
� a a � bi

c � di
b a c � di

c � di
b �

1ac � bd 2 � 1bc � ad 2 i
c2 � d 

2

a � bi

c � di

Rather than memorize this entire formula, it’s easier to just remember the first step
and then multiply out the numerator and the denominator as usual.

Example 3 Dividing Complex Numbers

Express the following in the form a � bi.

(a) (b)

Solution We multiply both the numerator and denominator by the complex 
conjugate of the denominator to make the new denominator a real number.

(a) The complex conjugate of 1 � 2i is .

(b) The complex conjugate of 4i is �4i. Therefore

■

Square Roots of Negative Numbers

Just as every positive real number r has two square roots 1 and 2, every neg-
ative number has two square roots as well. If �r is a negative number, then its square
roots are , because and .1�i 1r 2 2 � i2r � �r1i 1r 2 2 � i2r � �r�i 1r

�1r1r

7 � 3i

4i
� a 7 � 3i

4i
b a�4i

�4i
b �

12 � 28i

16
�

3

4
�

7

4
  i

3 � 5i

1 � 2i
� a 3 � 5i

1 � 2i
b a 1 � 2i

1 � 2i
b �

�7 � 11i

5
� � 

7

5
�

11

5
  i

1 � 2i � 1 � 2i

7 � 3i

4i

3 � 5i

1 � 2i

Number Conjugate

3 � 2i 3 � 2i
1 � i 1 � i

4i �4i
5 5

Complex Conjugates

57050_03_ch03_p248-325.qxd  07/04/2008  05:18 PM  Page 287



288 CHAPTER 3 Polynomial and Rational Functions

ALTERNATE EXAMPLE 4b
Simplify .

ANSWER
6i

ALTERNATE EXAMPLE 5
Evaluate 

and express your answer in the
form a + bi.

ANSWER
2417 + i # 227

(7 + 1-9)
(163 - 1-7)

1-36

IN-CLASS MATERIALS

The text states an important truth: every quadratic equation has two solutions (allowing for multiplicities)
if complex numbers are considered. Equivalently, we can say that every quadratic expression ax2 + bx + c
can be factored into two linear factors (x - z1)(x - z2), where z1 and z2 are complex numbers (and possibly
real). An important, easy-to-understand generalization is the Fundamental Theorem of Algebra: every nth
degree polynomial can be factored into n linear factors, if we allow complex numbers. (If we do not, it can
be shown that every nth degree polynomial can be factored into linear factors and irreducible quadratic
factors.) The Fundamental Theorem will be covered explicitly in Section 3.5.

We usually write instead of to avoid confusion with .

Example 4 Square Roots of Negative Numbers

(a)

(b)

(c) ■

Special care must be taken when performing calculations involving square roots
of negative numbers. Although when a and b are positive, this is
not true when both are negative. For example,

but

so

When multiplying radicals of negative numbers, express them first in the form
(where r � 0) to avoid possible errors of this type.

Example 5 Using Square Roots of Negative Numbers

Evaluate and express in the form a � bi.

Solution

■

Complex Roots of Quadratic Equations

We have already seen that, if a � 0, then the solutions of the quadratic equation 
ax 2 � bx � c � 0 are

If b 2 � 4ac � 0, then the equation has no real solution. But in the complex number
system, this equation will always have solutions, because negative numbers have
square roots in this expanded setting.

x �
�b � 2b2 � 4ac

2a

 � 8 13 � i 13

 � 16 13 � 2 13 2 � i12 # 2 13 � 3 13 2
 � 12 13 � i 13 2 13 � 2i 2

 1112 � 1�3 2 13 � 1�4 2 � 1112 � i 13 2 13 � i 14 2

1112 � 1�3 2 13 � 1�4 2

i 1r

1�2 # 1�3 � 11�2 2 1�3 2
11�2 2 1�3 2 � 16

1�2 # 1�3 � i 12 # i 13 � i2
 16 � �16

1a # 1b � 1ab

1�3 � i 13

1�16 � i 116 � 4i

1�1 � i 11 � i

1bi1b ii 1b

288 CHAPTER 3 Polynomial and Rational Functions

Square Roots of Negative Numbers

If �r is negative, then the principal square root of �r is

The two square roots of �r are and .�i 1ri 1r

1�r � i 1r

Leonhard Euler (1707–1783) was
born in Basel, Switzerland, the son
of a pastor. At age 13 his father sent
him to the University at Basel to
study theology, but Euler soon 
decided to devote himself to the
sciences. Besides theology he stud-
ied mathematics, medicine, astron-
omy, physics, andAsian languages.
It is said that Euler could calculate
as effortlessly as “men breathe or
as eagles fly.” One hundred years
before Euler, Fermat (see page
652) had conjectured that 
is a prime number for all n. The
first five of these numbers are 5,
17, 257, 65537, and 4,294,967,297.
It’s easy to show that the first four
are prime. The fifth was also
thought to be prime until Euler,
with his phenomenal calculating
ability, showed that it is the prod-
uct 641 
 6,700,417 and so is not
prime. Euler published more than
any other mathematician in history.
His collected works comprise 75
large volumes. Although he was
blind for the last 17 years of his
life, he continued to work and pub-
lish. In his writings he popularized
the use of the symbols p, e, and i,
which you will find in this text-
book. One of Euler’s most lasting
contributions is his development of
complex numbers.

22n

� 1
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ALTERNATE EXAMPLE 6
Solve each equation.
(a) x2 + 16 = 0
(b) x2 - 4x + 6.25 = 0

ANSWERS
(a) 4i and -4i
(b) 2 + 1.5i, 2 - 1.5i

ALTERNATE EXAMPLE 7
Show that the solutions of the
equation 2x2 + 5x + 10 = 0 are
complex conjugates of each other.

ANSWER
The quadratic formula gives the 
solutions and

. These are
conjugates of each other.

DRILL QUESTION

Simplify .

Answer

18

25
+

1

25
i

3i + 2

3 + 4i

1
4 (-5 - 155)

1
4 (-5 + 155)

IN-CLASS MATERIALS

There is a certain similarity to dividing complex numbers and rationalizing denominators. Make this
similarity explicit by having the students do these two problems:

1. Rationalize the denominator of .

2. Simplify .

Answers

1.

2.
24

13
-

16

13
i

24

7
-

8

7
22

8

3 + 2i

8

3 + 22i

SECTION 3.4 Complex Numbers 289

1–10 ■ Find the real and imaginary parts of the complex number.

1. 5 � 7i 2. �6 � 4i

3. 4.

5. 3 6.

7. 8.

9. 10. 2 � 1�513 � 1�4

i 13� 
2
3 i

� 
1
2

4 � 7i

2

�2 � 5i

3

11–22 ■ Perform the addition or subtraction and write the result
in the form a � bi.

11.

12.

13.

14.

15. 3i � 16 � 4i 2
13 � 2i 2 � A�5 � 1

3 iB
1�6 � 6i 2 � 19 � i 2
12 � 5i 2 � 14 � 6i 2
12 � 5i 2 � 13 � 4i 2

Example 6 Quadratic Equations with Complex Solutions

Solve each equation.

(a) x 2 � 9 � 0 (b) x 2 � 4x � 5 � 0

Solution

(a) The equation x 2 � 9 � 0 means x 2 � �9, so

The solutions are therefore 3i and �3i.

(b) By the quadratic formula we have

So, the solutions are �2 � i and �2 � i. ■

Example 7 Complex Conjugates as Solutions

of a Quadratic

Show that the solutions of the equation

are complex conjugates of each other.

Solution We use the quadratic formula to get

So, the solutions are and , and these are complex conjugates. ■

3.4 Exercises

3 � 1
2 i3 � 1

2 i

 � 
24 � 1�16

8
�

24 � 4i

8
� 3 �

1

2
 i

 x �
24 � 2124 2 2 � 414 2 137 2

214 2

4x2 � 24x � 37 � 0

 � 
�4 � 2i

2
�

21�2 � i 2
2

� �2 � i

 � 
�4 � 1�4

2

 x �
�4 � 242 � 4 # 5

2

x � �1�9 � �i 19 � �3i

The two solutions of any quadratic
equation that has real coefficients are
complex conjugates of each other. To
understand why this is true, think about
the � sign in the quadratic formula.
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EXAMPLES
Sample operations with complex numbers: Let a = 3 + 2i and b = 7 - 2i. Then 

a + b = 10
a - b = -4 + 4i

ab = 25 + 8i
a

b
=

17

53
+

20

53
i

290 CHAPTER 3 Polynomial and Rational Functions

16.

17.

18.

19.

20.

21.

22.

23–56 ■ Evaluate the expression and write the result in the
form a � bi.

23.

24.

25.

26.

27.

28.

29.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. i 3 44.

45. i 100 46. i 1002

47. 48.

49. 50.

51.

52.

53.
2 � 1�8

1 � 1�2

1 � 1�1

1 � 1�1

13 � 1�5 2 11 � 1�1 2
21

3 1�271�3 1�12

B
�9

4
1�25

12i 2 4
11 � 2i 2 13 � i 2

2 � i

1

1 � i
�

1

1 � i

�3 � 5i

15i

4 � 6i

3i

12 � 3i 2�110i

1 � 2i

25

4 � 3i

26 � 39i

2 � 3i

5 � i

3 � 4i

2 � 3i

1 � 2i

1

1 � i

1

i

1�2 � i 2 13 � 7i 2
16 � 5i 2 12 � 3i 2
A23 � 12iB A16 � 24iB
13 � 4i 2 15 � 12i 2
15 � 3i 2 11 � i 2
17 � i 2 14 � 2i 2
2iA12 � iB
41�1 � 2i 2

10.1 � 1.1i 2 � 11.2 � 3.6i 2
1
3 i � A14 � 1

6 iB
6i � 14 � i 2
1�12 � 8i 2 � 17 � 4i 2
1�4 � i 2 � 12 � 5i 2
A7 � 1

2 iB � A5 � 3
2 iB

A12 � 1
3 iB � A12 � 1

3 iB 54.

55.

56.

57–70 ■ Find all solutions of the equation and express them in
the form a � bi.

57. x 2 � 9 � 0 58. 9x 2 � 4 � 0

59. x 2 � 4x � 5 � 0 60. x 2 � 2x � 2 � 0

61. x 2 � x � 1 � 0 62. x 2 � 3x � 3 � 0

63. 2x 2 � 2x � 1 � 0 64. 2x 2 � 3 � 2x

65. 66.

67. 6x 2 � 12x � 7 � 0 68. 4x 2 � 16x � 19 � 0

69. 70.

71–78 ■ Recall that the symbol represents the complex conju-
gate of z. If z � a � bi and „ � c � di, prove each statement.

71.

72.

73.

74.

75. is a real number

76. is a pure imaginary number

77. is a real number

78. if and only if z is real

Discovery • Discussion

79. Complex Conjugate Roots Suppose that the equation
ax 2 � bx � c � 0 has real coefficients and complex roots.
Why must the roots be complex conjugates of each other?
(Think about how you would find the roots using the 
quadratic formula.)

80. Powers of i Calculate the first 12 powers of i, that is,
i, i 2, i 3, . . . , i 12. Do you notice a pattern? Explain how
you would calculate any whole number power of i, using 
the pattern you have discovered. Use this procedure to cal-
culate i 4446.

81. Complex Radicals The number 8 has one real cube root,
. Calculate and to 

verify that 8 has at least two other complex cube roots. Can
you find four fourth roots of 16?

1�1 � i 13 2 31�1 � i 13 2 313 8 � 2

z � z

z # z
z � z

z � z

z � z

1z 2 2 � z2

z„ � z # „
z � „ � z � „

z

x2 � 1
2 x � 1 � 01

2 x2 � x � 5 � 0

z � 4 �
12
z

� 0t � 3 �
3

t
� 0

1�71�49

128

1�36

1�2 1�9

113 � 1�4 2 116 � 1�8 2
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SUGGESTED TIME 

AND EMPHASIS

class. 
Essential material.

1
2

POINTS TO STRESS

1. The Complete Factorization Theorem.
2. The Conjugate Zeros Theorem.
3. The Linear and Quadratic Factors Theorem.

3.5 Complex Zeros and the Fundamental 
Theorem of Algebra

We have already seen that an nth-degree polynomial can have at most n real zeros. In
the complex number system an nth-degree polynomial has exactly n zeros, and so can
be factored into exactly n linear factors. This fact is a consequence of the Fundamental
Theorem of Algebra, which was proved by the German mathematician C. F. Gauss in
1799 (see page 294).

The Fundamental Theorem of Algebra 

and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and
solving polynomial equations.

SECTION 3.5 Complex Zeros and the Fundamental Theorem of Algebra 291

Fundamental Theorem of Algebra

Every polynomial

with complex coefficients has at least one complex zero.

P1x 2 � an  
xn � an�1xn�1 � . . . � a1x � a0  1n � 1, an � 0 2

Because any real number is also a complex number, the theorem applies to poly-
nomials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that
a polynomial can be factored completely into linear factors, as we now prove.

Complete Factorization Theorem

If is a polynomial of degree n � 1, then there exist complex numbers a,
c1, c2, . . . , cn (with a � 0) such that

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
P1x 2

■ Proof By the Fundamental Theorem of Algebra, P has at least one zero. Let’s
call it c1. By the Factor Theorem, can be factored as

where is of degree n � 1. Applying the Fundamental Theorem to the quotient
gives us the factorization

where is of degree n � 2 and c2 is a zero of . Continuing this process
for n steps, we get a final quotient of degree 0, a nonzero constant that we
will call a. This means that P has been factored as

■P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
Qn1x 2

Q11x 2Q21x 2
P1x 2 � 1x � c1 2 # 1x � c2 2 # Q21x 2

Q11x 2
Q11x 2

P1x 2 � 1x � c1 2 # Q11x 2
P1x 2
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ALTERNATE EXAMPLE 1
Find the complete factorization of
the polynomial P(x) = x3 + x2 +
81x + 81 into linear factors with
complex coefficients.

ANSWER

SAMPLE QUESTIONS

Text Questions

Let f(x) = x3 + ax2 + bx + c.

(a) What is the maximum number
of zeros this polynomial
function can have?

(b) What is the minimum number
of real zeros this polynomial
function can have?

Answers

(a) 3
(b) 1

ALTERNATE EXAMPLE 2
Let P(x) = x4 - 3x3 + 7x2 + 21x - 26.
(a) Find all the zeros of P.
(b) Find the complete factorization

of P.

ANSWERS
(a) 1, -2, 2 + 3i, 2 - 3i
(b) P(x) = (x - 1)(x + 2)(x - 2

- 3i)(x - 2 + 3i)

(x - 9i)
P(x) = (x + 1) # (x + 9i) #

IN-CLASS MATERIALS

It is possible to use the techniques of the previous sections to solve polynomials with nonreal coefficients.
If you want to demonstrate this fact, consider the polynomial f(z) = z3 + (2 - 3i)z2 + (-3 - 6i) + 9i, and
use synthetic division to obtain f (z) = (z - 1)(z + 3)(z - 3i).

To actually find the complex zeros of an nth-degree polynomial, we usually first
factor as much as possible, then use the quadratic formula on parts that we can’t fac-
tor further.

Example 1 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

Solution

(a) We first factor P as follows.

Given

Group terms

Factor x � 3

We find the zeros of P by setting each factor equal to 0:

Setting x � 3 � 0, we see that x � 3 is a zero. Setting x 2 � 1 � 0, we get 
x 2 � �1, so x � �i. So the zeros of P are 3, i, and �i.

(b) Since the zeros are 3, i, and �i, by the Complete Factorization Theorem P
factors as

■

Example 2 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

Solution

(a) The possible rational zeros are the factors of 4, which are �1, �2, �4. Using
synthetic division (see the margin) we find that �2 is a zero, and the polyno-
mial factors as

P1x 2 � 1x � 2 2 1x2 � 2x � 2 2

P1x 2 � x3 � 2x � 4

 � 1x � 3 2 1x � i 2 1x � i 2
 P1x 2 � 1x � 3 2 1x � i 2 3x � 1�i 2 4

P1x 2 � 1x � 3 2 1x2 � 1 2

 � 1x � 3 2 1x2 � 1 2
 � x21x � 3 2 � 1x � 3 2

 P1x 2 � x3 � 3x2 � x � 3

P1x 2 � x3 � 3x2 � x � 3

292 CHAPTER 3 Polynomial and Rational Functions

This factor is 0 when x � 3. This factor is 0 when x � i or �i.

�2 � 1 �0 �2 �4

�2 4 �4

1 �2 �2 0

This factor is 0 when x � �2. Use the quadratic formula to find
when this factor is 0.
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IN-CLASS MATERIALS

Stress the power of the Complete Factorization Theorem, and how it dovetails with the Linear and
Quadratic Factors Theorem. Once we allow complex numbers, we can view all polynomial functions as
functions of the form f (x) = a(x - c1)(x - c2) . . . (x - cn); simple products of linear factors. If we don’t
want to allow complex numbers (the preference of many students), we still can write all polynomials
almost as simply, as the product of linear and (irreducible) quadratic factors.

To find the zeros, we set each factor equal to 0. Of course, x � 2 � 0 means 
x � �2. We use the quadratic formula to find when the other factor is 0.

Set factor equal to 0

Quadratic formula

Take square root

Simplify

So the zeros of P are �2, 1 � i, and 1 � i.

(b) Since the zeros are �2, 1 � i, and 1 � i, by the Complete Factorization 
Theorem P factors as

■

Zeros and Their Multiplicities

In the Complete Factorization Theorem the numbers c1, c2, . . . , cn are the zeros of P.
These zeros need not all be different. If the factor x � c appears k times in the com-
plete factorization of , then we say that c is a zero of multiplicity k (see page
259). For example, the polynomial

has the following zeros:

The polynomial P has the same number of zeros as its degree—it has degree 10 and
has 10 zeros, provided we count multiplicities. This is true for all polynomials, as we
prove in the following theorem.

1 1multiplicity 3 2 ,  �2 1multiplicity 2 2 ,  �3 1multiplicity 5 2

P1x 2 � 1x � 1 2 31x � 2 2 21x � 3 2 5
P1x 2

 � 1x � 2 2 1x � 1 � i 2 1x � 1 � i 2
 P1x 2 � 3x � 1�2 2 4 3x � 11 � i 2 4 3x � 11 � i 2 4

 x � 1 � i

 x � 
2 � 2i

2

 x � 
2 � 14 � 8

2

x2 � 2x � 2 � 0

SECTION 3.5 Complex Zeros and the Fundamental Theorem of Algebra 293

Zeros Theorem

Every polynomial of degree n � 1 has exactly n zeros, provided that a zero 
of multiplicity k is counted k times.

■ Proof Let P be a polynomial of degree n. By the Complete Factorization
Theorem

Now suppose that c is a zero of P other than c1, c2, . . . , cn. Then

Thus, by the Zero-Product Property one of the factors c � ci must be 0, so c � ci

for some i. It follows that P has exactly the n zeros c1, c2, . . . , cn. ■

P1c 2 � a1c � c1 2 1c � c2 2 p 1c � cn 2 � 0

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
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ALTERNATE EXAMPLE 3
Find the complete factorization of
the polynomial
P(x) = 3x5 + 54x3 + 243x.

ANSWER
P(x) = 3x((x - 3i)(x + 3i))2

IN-CLASS MATERIALS

Point out that when graphing y = f (x), the real zeros appear as x-intercepts, as expected. Remind students
how the multiplicities of the real zeros can be seen. A multiplicity of 1 crosses the x-axis, an even multi-
plicity touches the x-axis, and an odd multiplicity greater than one crosses the x-axis and is flat there. 
(See Section 2.1.) Note that the complex zeros don’t appear on the real plane.

Example 3 Factoring a Polynomial with

Complex Zeros

Find the complete factorization and all five zeros of the polynomial

Solution Since 3x is a common factor, we have

To factor x 2 � 4, note that 2i and �2i are zeros of this polynomial. Thus
, and so

The zeros of P are 0, 2i, and �2i. Since the factors x � 2i and x � 2i each occur
twice in the complete factorization of P, the zeros 2i and �2i are of multiplicity 2
(or double zeros). Thus, we have found all five zeros. ■

The following table gives further examples of polynomials with their complete
factorizations and zeros.

 � 3x1x � 2i 2 21x � 2i 2 2
 P1x 2 � 3x 3 1x � 2i 2 1x � 2i 2 4 2

x2 � 4 � 1x � 2i 2 1x � 2i 2

 � 3x1x2 � 4 2 2
 P1x 2 � 3x1x4 � 8x2 � 16 2

P1x 2 � 3x5 � 24x3 � 48x

294 CHAPTER 3 Polynomial and Rational Functions

This factor is 0 when x � 0. This factor is 0 when 
x � 2i or x � �2i.

Degree Polynomial Zero(s) Number of zeros

1 4 1

2 5 1multiplicity 22 2

3 0, i, �i 3

4 3i 1multiplicity 22, 4
�3i 1multiplicity 22

5 0 1multiplicity 32, 5
1 1multiplicity 22 � x31x � 1 2 2

 P1x 2 � x5 � 2x4 � x3

 � 1x � 3i 2 21x � 3i 2 2
 P1x 2 � x4 � 18x2 � 81

 � x1x � i 2 1x � i 2
 P1x 2 � x3 � x

 � 1x � 5 2 1x � 5 2
 P1x 2 � x2 � 10x � 25

P1x 2 � x � 4

0 is a zero of
multiplicity 1.

2i is a zero of
multiplicity 2.

�2i is a zero of
multiplicity 2.

Carl Friedrich Gauss (1777–
1855) is considered the greatest
mathematician of modern times.
His contemporaries called him the
“Prince of Mathematics.” He was
born into a poor family; his father
made a living as a mason. As a very
small child, Gauss found a calcula-
tion error in his father’s accounts,
the first of many incidents that
gave evidence of his mathematical
precocity. (See also page 834.) At
19 Gauss demonstrated that the
regular 17-sided polygon can be
constructed with straight-edge and
compass alone. This was remark-
able because, since the time of Eu-
clid, it was thought that the only
regular polygons constructible in
this way were the triangle and pen-
tagon. Because of this discovery
Gauss decided to pursue a career in
mathematics instead of languages,
his other passion. In his doctoral
dissertation, written at the age of
22, Gauss proved the Fundamen-
tal Theorem of Algebra: A poly-
nomial of degree n with complex
coefficients has n roots. His other
accomplishments range over every
branch of mathematics, as well as
physics and astronomy.

Co
rb

is

57050_03_ch03_p248-325.qxd  07/04/2008  05:18 PM  Page 294



CHAPTER 3 Polynomial and Rational Functions 295

ALTERNATE EXAMPLE 4
Find the polynomial of degree 4,
with zeros i, -i, 2, and -2 and
with P(5) = 273.

ANSWER

ALTERNATE EXAMPLE 5
Find all four zeros of P(x) =
2x4 - 7x3 - 4x2 - 50x - 25.

ANSWER

,

-1 - i119

2

5,-
1

2
, 

-1 + i119

2

P(x) = 1
2x4 - 3

2x2 - 2

IN-CLASS MATERIALS

Exercise 70 discusses roots of
unity—the zeros of polynomials
of the form f (x) = xn - 1 or,
equivalently, the solutions of
xn = 1. It is easy to find the real
solutions, 1 if n is odd and �1 
if n is even. Exercise 70
prompts students to solve xn = 1
for n = 2, 3, and 4. If your
students have been exposed to
trigonometric functions, then you
can show them the general formula:

for k = 0, . . . , n.

+ i sin a2pk
n
b

xn = 1 3 x = cos a2pk
n
b

Example 4 Finding Polynomials with Specified Zeros

(a) Find a polynomial of degree 4, with zeros i, �i, 2, and �2 and with
.

(b) Find a polynomial of degree 4, with zeros �2 and 0, where �2 is a zero
of multiplicity 3.

Solution

(a) The required polynomial has the form

Difference of squares

Multiply

We know that , so . Thus

(b) We require

Special Product Formula 4 (Section 1.3)

Since we are given no information about Q other than its zeros and their multiplic-
ity, we can choose any number for a. If we use a � 1, we get

■

Example 5 Finding All the Zeros of a Polynomial

Find all four zeros of .

Solution Using the Rational Zeros Theorem from Section 3.3, we obtain the fol-
lowing list of possible rational zeros: �1, �2, �4, , , . Checking these 
using synthetic division, we find that 2 and are zeros, and we get the following
factorization.

Factor x � 2

Factor x �

Factor 3

The zeros of the quadratic factor are

Quadratic formula

so the zeros of are

■2, � 

1

3
, �

1

2
� i 

17

2
,  and  � 

1

2
� i 

17

2

P1x 2
x �

�1 � 11 � 8

2
� �

1

2
� i 

17

2

 � 31x � 2 2 Ax � 1
3B 1x2 � x � 2 2

1
3 � 1x � 2 2 Ax � 1

3B 13x2 � 3x � 6 2
 � 1x � 2 2 13x3 � 4x2 � 7x � 2 2

 P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

� 
1
3

�4
3�2

3�1
3

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

 Q1x 2 � x4 � 6x3 � 12x2 � 8x

 � a1x4 � 6x3 � 12x2 � 8x 2
 � a1x3 � 6x2 � 12x � 8 2x
 � a1x � 2 2 3x

 Q1x 2 � a 3x � 1�2 2 4 31x � 0 2

P1x 2 � 1
2x4 � 3

2x2 � 2

a � 1
2P13 2 � a134 � 3 # 32 � 4 2 � 50a � 25

 � a1x4 � 3x2 � 4 2
 � a1x2 � 1 2 1x2 � 4 2

 P1x 2 � a1x � i 2 1x � 1�i 22 1x � 2 2 1x � 1�2 22

Q1x 2
P13 2 � 25

P1x 2

SECTION 3.5 Complex Zeros and the Fundamental Theorem of Algebra 295

40

_20

_2 4

Figure 1

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

Figure 1 shows the graph of the polyno-
mial P in Example 5. The x-intercepts
correspond to the real zeros of P. The
imaginary zeros cannot be determined
from the graph.

1

1

y

x0

n=2

1

1

y

x0

n=3

1

1

y

x0

n=4

1

1

y

x0

n=5

Interestingly enough, if you plot the solutions in the complex plane, there is a wonderful amount of symmetry. Even if you don’t want to discuss
the general formula, you can show your students where the roots of unity live. The complex roots of unity can be thought of as points that are
evenly distributed around the unit circle. 
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ALTERNATE EXAMPLE 6
Find a polynomial P(x) of degree
3 that has integer coefficients and
zeros and 5 - 2i.

ANSWER
P(x) = 3(x - )(x - 5 - 2i) 

(x - 5 + 2i) = 3x3 - 31x2

+ 97x - 29

1
3

1
3

EXAMPLE
A polynomial with many rational zeros: f(x) = 6x5 + 17x4 - 40x3 - 45x2 + 14x + 8

Factored form: (2x - 1)(3x + 1)(x + 4)(x + 1)(x - 2)

Zeros: x =
1

2
, 

1

3
,-4, -1, and 2

Complex Zeros Come in Conjugate Pairs

As you may have noticed from the examples so far, the complex zeros of poly-
nomials with real coefficients come in pairs. Whenever a � bi is a zero, its complex
conjugate a � bi is also a zero.

296 CHAPTER 3 Polynomial and Rational Functions

Conjugate Zeros Theorem

If the polynomial P has real coefficients, and if the complex number z is a
zero of P, then its complex conjugate is also a zero of P.z

■ Proof Let

where each coefficient is real. Suppose that . We must prove that .
We use the facts that the complex conjugate of a sum of two complex numbers is
the sum of the conjugates and that the conjugate of a product is the product of the
conjugates (see Exercises 71 and 72 in Section 3.4).

Because the coefficients are real

This shows that is also a zero of , which proves the theorem. ■

Example 6 A Polynomial with a Specified Complex Zero

Find a polynomial of degree 3 that has integer coefficients and zeros and
3 � i.

Solution Since 3 � i is a zero, then so is 3 � i by the Conjugate Zeros 
Theorem. This means that has the form

Regroup

Difference of Squares Formula

Expand

Expand

To make all coefficients integers, we set a � 2 and get

Any other polynomial that satisfies the given requirements must be an integer 
multiple of this one. ■

P1x 2 � 2x3 � 13x2 � 26x � 10

 � aAx3 �  13 

2 x2 � 13x � 5B
 � aAx � 1

2B 1x2 � 6x � 10 2
 � aAx � 1

2B 3 1x � 3 2 2 � i2 4
 � aAx � 1

2B 3 1x � 3 2 � i 4 3 1x � 3 2 � i 4
 P1x 2 � aAx � 1

2B 3x � 13 � i 2 4 3x � 13 � i 2 4
P1x 2

1
2P1x 2

P1x 2z

 � P1z 2 � 0 � 0

 � anzn � an�1zn�1 � . . . � a1z � a0

 � an  
zn � an�1 zn�1 � . . . � a1z � a0

 � an zn � an�1 zn�1 � . . . � a1 z � a0

 P1z 2 � an1z 2 n � an�11z 2 n�1 � . . . � a1z � a0

P1z 2 � 0P1z 2 � 0

P1x 2 � an  
xn � an�1x

n�1 � . . . � a1x � a0

Gerolamo Cardano (1501–1576)
is certainly one of the most color-
ful figures in the history of math-
ematics. He was the most 
well-known physician in Europe in
his day, yet throughout his life he
was plagued by numerous mal-
adies, including ruptures, hemor-
rhoids, and an irrational fear of
encountering rabid dogs. A doting
father, his beloved sons broke his
heart—his favorite was eventually
beheaded for murdering his own
wife. Cardano was also a compul-
sive gambler; indeed, this vice may
have driven him to write the Book
on Games of Chance, the first
study of probability from a mathe-
matical point of view.

In Cardano’s major mathemati-
cal work, the Ars Magna, he de-
tailed the solution of the general
third- and fourth-degree polyno-
mial equations. At the time of its
publication, mathematicians were
uncomfortable even with negative
numbers, but Cardano’s formulas
paved the way for the acceptance
not just of negative numbers, but
also of imaginary numbers, be-
cause they occurred naturally in
solving polynomial equations. For
example, for the cubic equation

one of his formulas gives the 
solution

(See page 282, Exercise 102). This
value for x actually turns out to be
the integer 4, yet to find it Cardano
had to use the imaginary number

.1�121 � 11i

� 23 2 � 1�121

x � 23 2 � 1�121

x3 � 15x � 4 � 0
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ALTERNATE EXAMPLE 7
Without actually factoring,
determine how many positive real
zeros, negative real zeros, and
imaginary zeros the following
polynomial could have:
P(x) = x3 - 100x2 + 32x + 50

ANSWER
There are two sign changes. By
Descartes’ Rule of Signs, there are
two or zero positive zeros.

P(-x) = -x3 - 100x2 - 32x + 50

There is one sign change. By
Descartes’ Rule of Signs, there is
one negative zero.

There are three zeros in all.
So here are the possibilities:

Positive Negative
Real Real Complex
Zeros Zeros Zeros

0 1 2

2 1 0

EXAMPLES
1. A polynomial that is the product of two irreducible quadratic terms:

f (x) = x4 + 2x3 + 9x2 + 2x + 8 = (x2 + 1)(x2 + 2x + 8) 

This can be factored by noting that x = i is a zero, and therefore x = -i is a zero, and then dividing by
(x2 + 1).

2. A polynomial that is the product of two linear terms and an irreducible quadratic term:

f (x) = x4 + 5x3 + 10x2 + 16x - 32 = (x2 + 2x + 8)(x - 1)(x + 4)

Example 7 Using Descartes’ Rule to Count Real 

and Imaginary Zeros

Without actually factoring, determine how many positive real zeros, negative real
zeros, and imaginary zeros the following polynomial could have:

Solution Since there is one change of sign, by Descartes’ Rule of Signs, P has
one positive real zero. Also, has three
changes of sign, so there are either three or one negative real zero(s). So P has a 
total of either four or two real zeros. Since P is of degree 4, it has four zeros in all,
which gives the following possibilities.

P1�x 2 � x4 � 6x3 � 12x2 � 14x � 24

P1x 2 � x4 � 6x3 � 12x2 � 14x � 24

SECTION 3.5 Complex Zeros and the Fundamental Theorem of Algebra 297

Positive real zeros Negative real zeros Imaginary zeros

1 3 0
1 1 2

Linear and Quadratic Factors

We have seen that a polynomial factors completely into linear factors if we use com-
plex numbers. If we don’t use complex numbers, then a polynomial with real
coefficients can always be factored into linear and quadratic factors. We use this prop-
erty in Section 9.8 when we study partial fractions. A quadratic polynomial with no
real zeros is called irreducible over the real numbers. Such a polynomial cannot be
factored without using complex numbers.

■

Linear and Quadratic Factors Theorem

Every polynomial with real coefficients can be factored into a product of 
linear and irreducible quadratic factors with real coefficients.

■ Proof We first observe that if c � a � bi is a complex number, then

The last expression is a quadratic with real coefficients.
Now, if P is a polynomial with real coefficients, then by the Complete 

Factorization Theorem

Since the complex roots occur in conjugate pairs, we can multiply the factors corre-
sponding to each such pair to get a quadratic factor with real coefficients. This results
in P being factored into linear and irreducible quadratic factors. ■

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2

 � x2 � 2ax � 1a2 � b2 2
 � 1x � a 2 2 � 1bi 2 2
 � 3 1x � a 2 � bi 4 3 1x � a 2 � bi 4

 1x � c 2 1x � c 2 � 3x � 1a � bi 2 4 3x � 1a � bi 2 4
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ALTERNATE EXAMPLE 8
Factor the polynomial P(x)
completely into linear factors with
complex coefficients: 
P(x) = x4 + 9x2 - 112 

ANSWER

(x + 4i)(x - 4i)
P(x) = (x - 17)(x + 17) *

DRILL QUESTION

Consider the polynomial f(x) = x5 - 2x4 + 16x3 + 8x2 + 20x + 200. It is a fact that -2 is a zero of this
polynomial, and that (x - 1 - 3i)2 is a factor of this polynomial. Using this information, factor the 
polynomial completely.

Answer

f(x) = (x - 1 - 3i)2(x - 1 + 3i)2(x + 2)

298 CHAPTER 3 Polynomial and Rational Functions

1–12 ■ A polynomial P is given.

(a) Find all zeros of P, real and complex.

(b) Factor P completely.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13–30 ■ Factor the polynomial completely and find all its 
zeros. State the multiplicity of each zero.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. P1x 2 � x6 � 16x3 � 64P1x 2 � x5 � 6x3 � 9x

P1x 2 � x5 � 7x3P1x 2 � x4 � 3x2 � 4

Q1x 2 � x4 � 10x2 � 25Q1x 2 � x4 � 2x2 � 1

P1x 2 � x6 � 729P1x 2 � x3 � x2 � 9x � 9

P1x 2 � x3 � 64P1x 2 � 16x4 � 81

Q1x 2 � x4 � 625Q1x 2 � x4 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 4x

Q1x 2 � x2 � 8x � 17Q1x 2 � x2 � 2x � 2

P1x 2 � 4x2 � 9P1x 2 � x2 � 25

P1x 2 � x6 � 7x3 � 8P1x 2 � x6 � 1

P1x 2 � x3 � 8P1x 2 � x3 � 8

P1x 2 � x4 � 6x2 � 9P1x 2 � x4 � 16

P1x 2 � x4 � x2 � 2P1x 2 � x4 � 2x2 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 2x2 � 2x

P1x 2 � x5 � 9x3P1x 2 � x4 � 4x2

31–40 ■ Find a polynomial with integer coefficients that
satisfies the given conditions.

31. P has degree 2, and zeros 1 � i and 1 � i.

32. P has degree 2, and zeros and .

33. Q has degree 3, and zeros 3, 2i, and �2i.

34. Q has degree 3, and zeros 0 and i.

35. P has degree 3, and zeros 2 and i.

36. Q has degree 3, and zeros �3 and 1 � i.

37. R has degree 4, and zeros 1 � 2i and 1, with 1 a zero of
multiplicity 2.

38. S has degree 4, and zeros 2i and 3i.

39. T has degree 4, zeros i and 1 � i, and constant term 12.

40. U has degree 5, zeros , �1, and �i, and leading coefficient
4; the zero �1 has multiplicity 2.

41–58 ■ Find all zeros of the polynomial.

41.

42.

43.

44.

45. P1x 2 � x3 � 3x2 � 3x � 2

P1x 2 � x3 � 7x2 � 18x � 18

P1x 2 � x3 � 2x2 � 2x � 1

P1x 2 � x3 � 7x2 � 17x � 15

P1x 2 � x3 � 2x2 � 4x � 8

1
2

1 � i121 � i12

Example 8 Factoring a Polynomial into Linear 

and Quadratic Factors

Let .

(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

Solution

(a)

The factor x 2 � 4 is irreducible since it has only the imaginary zeros �2i.

(b) To get the complete factorization, we factor the remaining quadratic factor.

■

3.5 Exercises

 � 1x � 12 2 1x � 12 2 1x � 2i 2 1x � 2i 2
 P1x 2 � 1x � 12 2 1x � 12 2 1x2 � 4 2

 � 1x � 12 2 1x � 12 2 1x2 � 4 2
 � 1x2 � 2 2 1x2 � 4 2

 P1x 2 � x4 � 2x2 � 8

P1x 2 � x4 � 2x2 � 8
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SUGGESTED TIME 

AND EMPHASIS

1 class. 
Essential material.

POINTS TO STRESS

1. Various kinds of asymptotes and end behavior of functions, particularly rational functions.
2. Graphing rational functions.

SECTION 3.6 Rational Functions 299

46.

47.

48.

49.

50.

51.

52. [Hint: Factor by grouping.]

53.

54.

55.

56.

57.

58.

59–64 ■ A polynomial P is given.

(a) Factor P into linear and irreducible quadratic factors with
real coefficients.

(b) Factor P completely into linear factors with complex
coefficients.

59.

60.

61.

62.

63.

64.

65. By the Zeros Theorem, every nth-degree polynomial equa-
tion has exactly n solutions (including possibly some that
are repeated). Some of these may be real and some may be
imaginary. Use a graphing device to determine how many
real and imaginary solutions each equation has.

(a) x 4 � 2x 3 � 11x 2 � 12x � 0

(b) x 4 � 2x 3 � 11x 2 � 12x � 5 � 0

(c) x 4 � 2x 3 � 11x 2 � 12x � 40 � 0

P1x 2 � x5 � 16x

P1x 2 � x6 � 64

P1x 2 � x4 � 8x2 � 16

P1x 2 � x4 � 8x2 � 9

P1x 2 � x3 � 2x � 4

P1x 2 � x3 � 5x2 � 4x � 20

P1x 2 � x5 � 2x4 � 2x3 � 4x2 � x � 2

P1x 2 � x5 � 3x4 � 12x3 � 28x2 � 27x � 9

P1x 2 � 4x4 � 2x3 � 2x2 � 3x � 1

P1x 2 � 4x4 � 4x3 � 5x2 � 4x � 1

P1x 2 � x4 � x2 � 2x � 2

P1x 2 � x4 � 6x3 � 13x2 � 24x � 36

P1x 2 � x5 � x3 � 8x2 � 8

P1x 2 � x5 � x4 � 7x3 � 7x2 � 12x � 12

P1x 2 � x4 � 2x3 � 2x2 � 2x � 3

P1x 2 � x4 � x3 � 7x2 � 9x � 18

P1x 2 � 2x3 � 8x2 � 9x � 9

P1x 2 � 2x3 � 7x2 � 12x � 9

P1x 2 � x3 � x � 6 66–68 ■ So far we have worked only with polynomials that
have real coefficients. These exercises involve polynomials with
real and imaginary coefficients.

66. Find all solutions of the equation.

(a) 2x � 4i � 1

(b) x 2 � ix � 0

(c) x 2 � 2ix � 1 � 0

(d) ix 2 � 2x � i � 0

67. (a) Show that 2i and 1 � i are both solutions of the 
equation

but that their complex conjugates �2i and 1 � i are not.

(b) Explain why the result of part (a) does not violate the
Conjugate Zeros Theorem.

68. (a) Find the polynomial with real coefficients of the small-
est possible degree for which i and 1 � i are zeros and
in which the coefficient of the highest power is 1.

(b) Find the polynomial with complex coefficients of the
smallest possible degree for which i and 1 � i are zeros
and in which the coefficient of the highest power is 1.

Discovery • Discussion

69. Polynomials of Odd Degree The Conjugate Zeros The-
orem says that the complex zeros of a polynomial with real
coefficients occur in complex conjugate pairs. Explain how
this fact proves that a polynomial with real coefficients and
odd degree has at least one real zero.

70. Roots of Unity There are two square roots of 1, namely 1
and �1. These are the solutions of x 2 � 1. The fourth roots of
1 are the solutions of the equation x 4 � 1 or x 4 � 1 � 0. How
many fourth roots of 1 are there? Find them. The cube roots
of 1 are the solutions of the equation x 3 � 1 or x 3 � 1 � 0.
How many cube roots of 1 are there? Find them. How would
you find the sixth roots of 1? How many are there? Make a
conjecture about the number of nth roots of 1.

x2 � 11 � i 2x � 12 � 2i 2 � 0

3.6 Rational Functions

A rational function is a function of the form

where P and Q are polynomials. We assume that and have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs
look quite different than the graphs of polynomial functions.

Q1x 2P1x 2
r 1x 2 �

P1x 2
Q1x 2
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ALTERNATE EXAMPLE 1
For the graph of the rational

function evaluate the 

values of r(x) as x approaches

ANSWER

IN-CLASS MATERIALS

This is a good time to remind stu-
dents of parameters. For example,
give each section of the class a
different value of c and have them
sketch 

Note that when c is positive, there
is a middle piece which disappears
when c = 0 (the two vertical
asymptotes become one). Note
how the curve still gets large at
x = 0 when c is small and 
negative.

f (x) =
x

x2 - c

0, - q, q , 0

- q , 0-, 0+ , + q .

r(x) =
3
x

Rational Functions and Asymptotes

The domain of a rational function consists of all real numbers x except those for
which the denominator is zero. When graphing a rational function, we must pay spe-
cial attention to the behavior of the graph near those x-values. We begin by graphing
a very simple rational function.

Example 1 A Simple Rational Function

Sketch a graph of the rational function .

Solution The function f is not defined for x � 0. The following tables show that
when x is close to zero, the value of is large, and the closer x gets to zero,
the larger gets.0 f 1x 2 0 0 f 1x 2 0

f 1x 2 �
1
x

300 CHAPTER 3 Polynomial and Rational Functions

x

�0.1 �10
�0.01 �100
�0.00001 �100,000

f 1x 2For positive real numbers,

1

small number
� BIG NUMBER

1

BIG NUMBER
� small number

Domains of rational expressions are
discussed in Section 1.4.

x

0.1 10
0.01 100
0.00001 100,000

f 1x 2

We describe this behavior in words and in symbols as follows. The first table shows
that as x approaches 0 from the left, the values of decrease without bound.
In symbols,

“y approaches negative infinity 
as x approaches 0 from the left”

The second table shows that as x approaches 0 from the right, the values of 
increase without bound. In symbols,

The next two tables show how changes as becomes large.0 x 0f 1x 2

“y approaches infinity as x
approaches 0 from the right”

f 1x 2 �q as x � 0�

f 1x 2
f 1x 2 � �q as x � 0�

y � f 1x 2

Approaching 0� Approaching �
 Approaching 0� Approaching 


x

�10 �0.1
�100 �0.01

�100,000 �0.00001

f 1x 2 x

10 0.1
100 0.01

100,000 0.00001

f 1x 2

Approaching �
 Approaching 0 Approaching 
 Approaching 0

These tables show that as becomes large, the value of gets closer and closer
to zero. We describe this situation in symbols by writing

f 1x 2 � 0 as x � �q  and  f 1x 2 � 0 as x �q

f 1x 20 x 0

_3

c=4

_2

_1
0

1

2

_2 _1 x1 2

y

_3

c=1

_2

_1
0

1

2

_3 _2 _1 x1 2

y

_3

c=0

_2

_1
0

1

2

_3 _2 _1 x1 2

y

_3

c=_0.05

_1
0

1

2

_3 _1 x1 2

y

_3

c=_0.1

_2

_1
0

1

2

_3 _1 x1 2

y

_3

c =_1

_2

_1
0

1

2

_3 _2 _1 1 2

y

x
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CHAPTER 3 Polynomial and Rational Functions 301

Using the information in these tables and plotting a few additional points, we obtain
the graph shown in Figure 1.

SECTION 3.6 Rational Functions 301

x

2

2

y

0

f(x) → `
as x → 0+

as x → 0_

f(x) → 0 as
x → `

f(x) → 0 as
x → _`

f(x) → _`
Figure 1

■f 1x 2 � 1
x

x

�2

�1 �1

�2

2

1 1

2 1
2

1
2

� 
1
2

�1
2

f 1x 2 � 1
x

In Example 1 we used the following arrow notation.

Symbol Meaning

x � a� x approaches a from the left
x � a� x approaches a from the right
x � �q x goes to negative infinity; that is, x decreases without bound
x �q x goes to infinity; that is, x increases without bound

The line x � 0 is called a vertical asymptote of the graph in Figure 1, and the line
y � 0 is a horizontal asymptote. Informally speaking, an asymptote of a function is a
line that the graph of the function gets closer and closer to as one travels along that line.

Definition of Vertical and Horizontal Asymptotes

1. The line x � a is a vertical asymptote of the function if y approaches �q as x approaches a from the
right or left.

2. The line y � b is a horizontal asymptote of the function if y approaches b as x approaches �q.

y → b as x → `

x
b

y

y → b as x → −`

x
b

y

y � f 1x 2
y → ` as x → a+

xa

y

y → ` as x → a−

xa

y

y → −` as x → a+

xa

y

y → −` as x → a−

xa

y

y � f 1x 2
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ALTERNATE EXAMPLE 2
Sketch a graph of each rational
function.
(a) r(x) = 3/(x + 1)

(b)

ANSWERS
(a) We start with f (x) = 1�x and

shift the graph one unit to the
left, and then stretch vertically
by a factor of 3.

(b) . So we
start with f (x) = 1/x, shift it
two units to the right, stretch
vertically by a factor of three,
then shift vertically down by
one.

s(x) = 3
x - 2 - 1

s(x) = -
x - 5

x - 2

IN-CLASS MATERIALS

A bit of care should be exercised when checking vertical asymptotes. For example, have students examine 

. If they are alert, they will notice an apparent x-intercept at x = -1, making it impos-

sible to follow the text’s dictum: “When choosing test values, we must make sure that there is no x-intercept 
between the test point and the vertical asymptote.” The reason there is not a vertical asymptote at 

x = -1 is that there is a hole there, as seen when f is factored: . See Exercise 75 in 
the text.

f (x) =
(x + 1)(x + 2)

(x + 1)(x - 1)

f (x) =
x2 + 3x + 2

x2 - 1

A rational function has vertical asymptotes where the function is undefined, that
is, where the denominator is zero.

Transformations of 

A rational function of the form

can be graphed by shifting, stretching, and/or reflecting the graph of shown
in Figure 1, using the transformations studied in Section 2.4. (Such functions are
called linear fractional transformations.)

Example 2 Using Transformations to Graph 

Rational Functions

Sketch a graph of each rational function.

(a)

(b)

Solution

(a) Let . Then we can express r in terms of f as follows:

Factor 2

Since f(x) �

From this form we see that the graph of r is obtained from the graph of f by
shifting 3 units to the right and stretching vertically by a factor of 2. Thus, r has
vertical asymptote x � 3 and horizontal asymptote y � 0. The graph of r is
shown in Figure 2.

(b) Using long division (see the margin), we get . Thus, we can
express s in terms of f as follows:

Rearrange terms

Since f(x) �

From this form we see that the graph of s is obtained from the graph of f
by shifting 2 units to the left, reflecting in the x-axis, and shifting upward

1
x � �f 1x � 2 2 � 3

 � �
1

x � 2
� 3

 s1x 2 � 3 �
1

x � 2

s1x 2 � 3 � 1
x � 2

1
x � 21f 1x � 3 22

 � 2 a 1

x � 3
b

 r 1x 2 �
2

x � 3

f 1x 2 � 1
x

s1x 2 �
3x � 5

x � 2

r 1x 2 �
2

x � 3

f 1x 2 � 1
x

r 1x 2 �
ax � b

cx � d

y �
1
x

302 CHAPTER 3 Polynomial and Rational Functions

Horizontal
asymptote
y = 0

Vertical
asymptote
x = 3

2
x-3r(x)=

x

1

3

y

0

Figure 2

3

x � 2�3x � 5

3x � 6

�1

y

_3_5 _1 542 310

5
4
3
2
1

_1
_2
_3
_4
_5

x

y

_1_3 54 62 310

5
4
3
2
1

_1
_2
_3
_4
_5

7 x
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ALTERNATE EXAMPLE 3
Graph the rational function:

ANSWER
Factoring the denominator gives
vertical asymptotes at x = 1
and x = 4. There is a horizontal
asymptote at y = 3.

r(x) =
3x2 + x + 12

x2 - 5x + 4

IN-CLASS MATERIALS

A good example to do with students is . A curve of this type is called a Witch of Agnesi.

Its history may amuse your students. Italian mathematician Maria Agnesi (1718–1799) was a scholar
whose first paper was published when she was nine years old. She called a particular curve versiera or
“turning curve.” John Colson from Cambridge confused the word with avversiera or “wife of the devil,”
and translated it “witch.”

f (x) =
1

x2 + 1

_25 25

10

3

10 4

_25

x

y

3 units. Thus, s has vertical asymptote x � �2 and horizontal asymptote 
y � 3. The graph of s is shown in Figure 3.

Figure 3 ■

Asymptotes of Rational Functions

The methods of Example 2 work only for simple rational functions. To graph more
complicated ones, we need to take a closer look at the behavior of a rational function
near its vertical and horizontal asymptotes.

Example 3 Asymptotes of a Rational Function

Graph the rational function .

Solution

VERTICAL ASYMPTOTE: We first factor the denominator

The line x � 1 is a vertical asymptote because the denominator of r is zero when
x � 1.

To see what the graph of r looks like near the vertical asymptote, we make tables
of values for x-values to the left and to the right of 1. From the tables shown below
we see that

x � 1�x � 1�

y �q as x � 1�  and  y �q as x � 1�

r 1x 2 �
2x2 � 4x � 5

1x � 1 2 2

r 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

x

3

y

0_2

3x+5
x+2s(x)=

Vertical asymptote
x = −2

Horizontal asymptote
y = 3

SECTION 3.6 Rational Functions 303

x y

0 5
0.5 14
0.9 302
0.99 30,002

x y

2 5
1.5 14
1.1 302
1.01 30,002

Approaching 1� Approaching 
 Approaching 1� Approaching 
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304 CHAPTER 3 Polynomial and Rational Functions

EXAMPLE
A rational function with a slant asymptote:

Intercepts: (1, 0), (-2, 0), (0, 1) 

Asymptotes: x = 2, y = x +
3

2

f (x) =
x2 + x - 2

x - 2
=

(x - 1) (x + 2)

x - 2

Thus, near the vertical asymptote x � 1, the graph of r has the shape shown in 
Figure 4.

HORIZONTAL ASYMPTOTE: The horizontal asymptote is the value y approaches
as x � �q. To help us find this value, we divide both numerator and denominator
by x 2, the highest power of x that appears in the expression:

The fractional expressions , , , and all approach 0 as x � �q (see Exercise 79,

Section 1.1). So as x � �q, we have

Thus, the horizontal asymptote is the line y � 2.
Since the graph must approach the horizontal asymptote, we can complete it as in

Figure 5.

From Example 3 we see that the horizontal asymptote is determined by the 
leading coefficients of the numerator and denominator, since after dividing through
by x 2 (the highest power of x) all other terms approach zero. In general, if

x

1

5

−1 1 2

y

0

y → 2 as
x → −`

y → 2 as
x → `

y �

2 �
4
x

�
5

x2

1 �
2
x

�
1

x2

  �   
2 � 0 � 0

1 � 0 � 0
� 2

1
x 2

2
x

5
x 2

4
x

y �
2x2 � 4x � 5

x2 � 2x � 1
#

1

x2

1

x2

�

2 �
4
x

�
5

x2

1 �
2
x

�
1

x2
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These terms approach 0.

These terms approach 0.

Figure 5

■
r1x 2 �

2x2 � 4x � 5

x2 � 2x � 1

y → ` as
x → 1−

y → ` as
x → 1+

x

1

5

−1 1 2

y

0

Figure 4

_4
_2

0

2
4
6

_8 8

8

x

y
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ALTERNATE EXAMPLE 4
Find the vertical and horizontal
asymptotes of 

ANSWER
The vertical asymptotes are 
at x = and x = . There is a 
horizontal asymptote at y = . 
If students want to see these
asymptotes, they should choose
their graphing window carefully.

EXAMPLE
A rational function with many
asymptotes and intercepts that are
hard to find by inspecting a single
viewing rectangle: 

f(x) = 

=
3(x + 1)(x - 1)(x + 2)

x (x - 2)(x - 3)

3x3 + 6x2 - 3x - 6

x3 - 5x2 + 6x

1
9

2
3

1
3

r (x) =
x2 - 4x + 4

9x2 - 9x + 2

_2

_1

0

1

_3 _2 _1 1 x

y

2

_20

_10

0

10

20

_1 1 x

y

2

_500

0

500

2 31 x

y

2.5

3

0

3.5

4

_100 _50 50 x

y

100

and the degrees of P and Q are the same (both n, say), then divid-
ing both numerator and denominator by xn shows that the horizontal asymptote is

The following box summarizes the procedure for finding asymptotes.

y �
leading coefficient of P

leading coefficient of Q

r 1x 2 � P1x 2/Q1x 2

SECTION 3.6 Rational Functions 305

Asymptotes of Rational Functions

Let r be the rational function

1. The vertical asymptotes of r are the lines x � a, where a is a zero of the
denominator.

2. (a) If n � m, then r has horizontal asymptote y � 0.

(b) If n � m, then r has horizontal asymptote .

(c) If n � m, then r has no horizontal asymptote.

y �
an

bm

r 1x 2 �
an  

xn � an�1x
n�1 � . . . � a1x � a0

bm  
xm � bm�1x

m�1 � . . . � b1x � b0

Example 4 Asymptotes of a Rational Function

Find the vertical and horizontal asymptotes of .

Solution

VERTICAL ASYMPTOTES: We first factor

r 1x 2 �
3x2 � 2x � 1

12x � 1 2 1x � 2 2

r 1x 2 �
3x2 � 2x � 1

2x2 � 3x � 2

This factor is O
when .x � 1

2

This factor is O
when x � �2.

The vertical asymptotes are the lines and x � �2.

HORIZONTAL ASYMPTOTE: The degrees of the numerator and denominator are
the same and

Thus, the horizontal asymptote is the line .y � 3
2

leading coefficient of numerator

leading coefficient of denominator
�

3

2

x � 1
2

Intercepts: (1, 0), (-1, 0), (-2, 0) 
Asymptotes: x = 0, x = 2, x = 3, y = 3
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ALTERNATE EXAMPLE 5
Graph the rational function

We factor to obtain 

The x-intercept is at x = 2. The 
y-intercept is at y = . The
vertical asymptotes are at x = -3,
x = 3, and x = 6. The horizontal
asymptote is at y = 0. We plot a
few additional points to obtain the
graph:

8
27

r(x) =
4(x - 2)2

(x + 3)(x - 3)(x - 6)

r(x) =
4x2 - 16x + 16

x3 - 6x2 - 9x + 54

EXAMPLE
A rational function with no asymptote: 

Note that the end behavior of this function is 
similar to that of y = x2 + 4x + 14.

f (x) =
x4 + 3x2 + 2

x2 - 4x + 5
=

(x2 + 1)(x2 + 2)

x2 - 4x + 5

To confirm our results, we graph r using a graphing calculator (see Figure 6).

Graphing Rational Functions

We have seen that asymptotes are important when graphing rational functions. In
general, we use the following guidelines to graph rational functions.

10

_10

_6 3

306 CHAPTER 3 Polynomial and Rational Functions

Figure 6

■
r1x 2 �

3x2 � 2x � 1

2x2 � 3x � 2

Sketching Graphs of Rational Functions

1. Factor. Factor the numerator and denominator.

2. Intercepts. Find the x-intercepts by determining the zeros of the numera-
tor, and the y-intercept from the value of the function at x � 0.

3. Vertical Asymptotes. Find the vertical asymptotes by determining the
zeros of the denominator, and then see if y �q or y � �q on each side of
each vertical asymptote by using test values.

4. Horizontal Asymptote. Find the horizontal asymptote (if any) by divid-
ing both numerator and denominator by the highest power of x that appears
in the denominator, and then letting x � �q.

5. Sketch the Graph. Graph the information provided by the first four
steps. Then plot as many additional points as needed to fill in the rest of the
graph of the function.

Example 5 Graphing a Rational Function

Graph the rational function .

Solution We factor the numerator and denominator, find the intercepts and 
asymptotes, and sketch the graph.

FACTOR:

x-INTERCEPTS: The x-intercepts are the zeros of the numerator, and 
x � �4.

x � 1
2

y �
12x � 1 2 1x � 4 2
1x � 1 2 1x � 2 2

r 1x 2 �
2x2 � 7x � 4

x2 � x � 2

Graph is drawn using dot mode to
avoid extraneous lines.

A fraction is 0 if and only if its 
numerator is 0.

62 3-3-10

-10

10

8
27

10

y

x

x

y

400

300

200

100

100-10

y=f(x) y=x2+4x+14

-4 -2 20 4

60
y

x

50
40
30
20
10
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DRILL QUESTION

Find all the asymptotes of the rational function 

Answer

Horizontal asymptote at y = , vertical asymptotes at x = - and x = 3.1
2

1
2

f  (x) =
x2 + 1

2x2 - 5x - 3
.

y-INTERCEPT: To find the y-intercept, we substitute x � 0 into the original form
of the function:

The y-intercept is 2.

VERTICAL ASYMPTOTES: The vertical asymptotes occur where the denominator
is 0, that is, where the function is undefined. From the factored form we see that the
vertical asymptotes are the lines x � 1 and x � �2.

BEHAVIOR NEAR VERTICAL ASYMPTOTES: We need to know whether y �q
or y � �q on each side of each vertical asymptote. To determine the sign of y for
x-values near the vertical asymptotes, we use test values. For instance, as x � 1�,
we use a test value close to and to the left of to check whether y is
positive or negative to the left of x � 1:

So y � �q as x � 1�. On the other hand, as x � 1�, we use a test value close to
and to the right of 1 , to get

So y �q as x � 1�. The other entries in the following table are calculated similarly.

y �
1211.1 2 � 1 2 1 11.1 2 � 4 2
1 11.1 2 � 1 2 1 11.1 2 � 2 2   whose sign is  

1� 2 1� 2
1� 2 1� 2 1positive 2

1x � 1.1, say 2

y �
1210.9 2 � 1 2 1 10.9 2 � 4 2
1 10.9 2 � 1 2 1 10.9 2 � 2 2   whose sign is  

1� 2 1� 2
1� 2 1� 2 1negative 2

1 1x � 0.9, say 2

r 10 2 �
210 2 2 � 710 2 � 4

10 22 � 10 2 � 2
�

�4

�2
� 2

SECTION 3.6 Rational Functions 307

When choosing test values, we must
make sure that there is no x-intercept
between the test point and the vertical
asymptote.

HORIZONTAL ASYMPTOTE: The degrees of the numerator and denominator are
the same and

Thus, the horizontal asymptote is the line y � 2.

ADDITIONAL VALUES: GRAPH:

leading coefficient of numerator

leading coefficient of denominator
�

2

1
� 2

x

5

3

y

0

x y

�6 0.93
�3 �1.75
�1 4.50

1.5 6.29
2 4.50
3 3.50

Figure 7

■
r 1x 2 �

2x2 � 7x � 4

x2 � x � 2

As x �

the sign of is

so y �

y �
12x � 1 2 1x � 4 2
1x � 1 2 1x � 2 2

�2� �2� 1� 1�

�q q �q q

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2
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ALTERNATE EXAMPLE 6
Graph the rational function

ANSWER

Factor: 

x-intercept: -2
y-intercept: 
Vertical asymptote: x = 2
Behavior near vertical asymptote:

Horizontal asymptote: y = 0
y : +q as x : 2+
y : +q  as x : 2- ,  

3
2

r (x) =
3x + 6

(x - 2)2

r(x) =
3x + 2

x2 - 4x + 4

SAMPLE QUESTION

Text Question

What is a slant asymptote?

Answer

Answers will vary.

HORIZONTAL ASYMPTOTE: y � 0, because degree of numerator is less than 
degree of denominator

ADDITIONAL VALUES: GRAPH:

Example 6 Graphing a Rational Function

Graph the rational function .

Solution

FACTOR:

x-INTERCEPT: , from 5x � 21 � 0

y-INTERCEPT: , because 

VERTICAL ASYMPTOTE: x � �5, from the zeros of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE:

�
21

25

r 10 2 �
5 # 0 � 21

02 � 10 # 0 � 25

21

25

�
21

5

y �
5x � 21

1x � 5 2 2

r 1x 2 �
5x � 21

x2 � 10x � 25

308 CHAPTER 3 Polynomial and Rational Functions

Mathematics in the

Modern World

Unbreakable Codes

If you read spy novels, you know
about secret codes, and how the
hero “breaks” the code. Today se-
cret codes have a much more com-
mon use. Most of the information
stored on computers is coded to
prevent unauthorized use. For ex-
ample, your banking records, med-
ical records, and school records are
coded. Many cellular and cordless
phones code the signal carrying
your voice so no one can listen in.
Fortunately, because of recent ad-
vances in mathematics, today’s
codes are “unbreakable.”

Modern codes are based on a
simple principle: Factoring is
much harder than multiplying. For
example, try multiplying 78 and
93; now try factoring 9991. It takes
a long time to factor 9991 because
it is a product of two primes 97 

103, so to factor it we had to find
one of these primes. Now imagine
trying to factor a number N that is
the product of two primes p and q,
each about 200 digits long. Even
the fastest computers would take
many millions of years to factor
such a number! But the same com-
puter would take less than a second
to multiply two such numbers. This
fact was used by Ron Rivest, Adi
Shamir, and Leonard Adleman in
the 1970s to devise the RSA code.
Their code uses an extremely large
number to encode a message but
requires us to know its factors to
decode it. As you can see, such a
code is practically unbreakable.

(continued )

x

1

5

y

0

Figure 8

■
r 1x 2 �

5x � 21

x2 � 10x � 25

x y

�15 �0.5
�10 �1.2

�3 1.5
�1 1.0

3 0.6
5 0.5

10 0.3

From the graph in Figure 8 we see that, contrary to the common misconception, a
graph may cross a horizontal asymptote. The graph in Figure 8 crosses the x-axis (the
horizontal asymptote) from below, reaches a maximum value near x � �3, and then
approaches the x-axis from above as x �q.

As x �

the sign of is

so y �

y �
5x � 21

1x � 5 2 2

�5� �5�

�q �q

1� 2
1� 2 1� 2

1� 2
1� 2 1� 2

2-2-4
-2

10

1.5

7

y

x
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ALTERNATE EXAMPLE 7
Graph the rational function 

Factor:

x-intercepts: -5 and 5
y-intercept: 
Vertical asymptotes: x = 2 and
x = -2
Behavior near vertical asymptotes: 

Horizontal asymptote: y = 1
2

y : +q  as x : -2+
y : -q  as x : -2- ,  
y : -q  as x : 2+
y : +q  as x : 2- ,  

25
8

r(x) =
(x + 5)(x - 5)

2(x + 2)(x - 2)

r(x) =
x2 - 25

2x2 - 8

As x �

the sign of is

so y �

y �
1x � 1 2 1x � 4 2

2x1x � 2 2

Example 7 Graphing a Rational Function

Graph the rational function .

Solution

FACTOR:

x-INTERCEPTS: �1 and 4, from x � 1 � 0 and x � 4 � 0

y-INTERCEPT: None, because is undefined

VERTICAL ASYMPTOTES: x � 0 and x � �2, from the zeros of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTES:

r 10 2

y �
1x � 1 2 1x � 4 2

2x1x � 2 2

r 1x 2 �
x2 � 3x � 4

2x2 � 4x

SECTION 3.6 Rational Functions 309

The RSA code is an example of
a “public key encryption” code. In
such codes, anyone can code a
message using a publicly known
procedure based on N, but to de-
code the message they must know
p and q, the factors of N. When the
RSA code was developed, it was
thought that a carefully selected
80-digit number would provide an
unbreakable code. But interest-
ingly, recent advances in the study
of factoring have made much
larger numbers necessary.

HORIZONTAL ASYMPTOTE: , because degree of numerator and denomina-
tor are the same and

ADDITIONAL VALUES: GRAPH:

leading coefficient of numerator

leading coefficient of denominator
�

1

2

y � 1
2

x

2

y

3

Figure 9

■
r 1x 2 �

x2 � 3x � 4

2x2 � 4x

x y

�3 2.33
�2.5 3.90
�0.5 1.50

1 �1.00
3 �0.13
5 0.09

Slant Asymptotes and End Behavior

If is a rational function in which the degree of the numerator is one
more than the degree of the denominator, we can use the Division Algorithm to ex-
press the function in the form

where the degree of R is less than the degree of Q and a � 0. This means that as 

r 1x 2 � ax � b �
R1x 2
Q1x 2

r 1x 2 � P1x 2 /Q1x 2

�2� �2� 0� 0�

q �q q �q

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2

1� 2 1� 2
1� 2 1� 2

-10

-6

8

102 5-5 -2

y

x

25
8
1
2
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ALTERNATE EXAMPLE 8
Graph the rational function

.

ANSWER
Factor: r(x) =

x-intercepts: 

y-intercept: -1
Vertical asymptote: x = 1
Behavior near vertical asymptote: 

Slant asymptote: r(x) =
-x + 2 + 3�(x - 1)
Slant asymptote at y = -x + 2

y : + q  as x : 1+
y :  - q  as x : 1- , 

3 ; 113

2

ax -
3 + 113

2
b ax -

3 - 113

2
b

-(x - 1)

r(x) =
x2 - 3x - 1

1 - x

x � �q, , so for large values of , the graph of ap-
proaches the graph of the line y � ax � b. In this situation we say that y � ax � b is
a slant asymptote, or an oblique asymptote.

Example 8 A Rational Function with a Slant Asymptote

Graph the rational function .

Solution

FACTOR:

x-INTERCEPTS: �1 and 5, from x � 1 � 0 and x � 5 � 0

y-INTERCEPTS: , because 

HORIZONTAL ASYMPTOTE: None, because degree of numerator is greater than
degree of denominator

VERTICAL ASYMPTOTE: x � 3, from the zero of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE: y �q as x � 3� and y � �q as 
x � 3�

SLANT ASYMPTOTE: Since the degree of the numerator is one more than the 
degree of the denominator, the function has a slant asymptote. Dividing (see the
margin), we obtain

Thus, y � x � 1 is the slant asymptote.

ADDITIONAL VALUES: GRAPH:

r 1x 2 � x � 1 �
8

x � 3

r 10 2 �
02 � 4 # 0 � 5

0 � 3
�

5

3

5

3

y �
1x � 1 2 1x � 5 2

x � 3

r 1x 2 �
x2 � 4x � 5

x � 3

y � r 1x 20 x 0R1x 2 /Q1x 2 � 0

310 CHAPTER 3 Polynomial and Rational Functions

x � 1

x � 3�x2 � 4x � 5

x2 � 3x

�x � 5

�x � 3

�8

x

5

y

2

≈-4x-5
x-3r(x)=

y=x-1

Slant
asymptote

Figure 10 ■

x y

�2 �1.4
1 4
2 9
4 �5
6 2.33

So far we have considered only horizontal and slant asymptotes as end behaviors
for rational functions. In the next example we graph a function whose end behavior
is like that of a parabola.

-5

-5

5

5-1 1
0

y

x

3-œ13
2

3+œ13
2
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ALTERNATE EXAMPLE 9
Graph the rational function 

.

ANSWER
Factor: Examining the graph of
x4 - x3 + 1 shows us that the
numerator has no real factors.
x-intercepts: none
y-intercept: -1
Vertical asymptote: x = 1
Behavior near vertical asymptote:

Horizontal asymptote: none
End behavior: 

The end behavior is like the power
function y = x3.

r (x) = x3 +
1

x - 1
.

y : +q  as x : 1+
y : -q  as x : 1- ,  

r(x) =
x4 - x3 + 1

x - 1

-3

-20

20

3-1 10

y

x

Example 9 End Behavior of a Rational Function

Graph the rational function

and describe its end behavior.

Solution

FACTOR:

x-INTERCEPTS: �1, from x � 1 � 0 (The other factor in the numerator has no
real zeros.)

y-INTERCEPTS: , because 

VERTICAL ASYMPTOTE: x � 2, from the zero of the denominator

BEHAVIOR NEAR VERTICAL ASYMPTOTE: y � �q as x � 2� and y �q as 
x � 2�

HORIZONTAL ASYMPTOTE: None, because degree of numerator is greater than
degree of denominator

END BEHAVIOR: Dividing (see the margin), we get

This shows that the end behavior of r is like that of the parabola y � x 2 because
is small when is large. That is, as x � �q. This means

that the graph of r will be close to the graph of y � x 2 for large .

GRAPH: In Figure 11(a) we graph r in a small viewing rectangle; we can see the
intercepts, the vertical asymptotes, and the local minimum. In Figure 11(b) we
graph r in a larger viewing rectangle; here the graph looks almost like the graph of
a parabola. In Figure 11(c) we graph both and y � x 2; these graphs are
very close to each other except near the vertical asymptote.

y � r 1x 2

0 x 03/ 1x � 2 2 � 00 x 03/ 1x � 2 2

r 1x 2 � x2 �
3

x � 2

r 10 2 �
03 � 2 # 02 � 3

0 � 2
� � 

3

2
� 

3

2

y �
1x � 1 2 1x2 � 3x � 3 2

x � 2

r 1x 2 �
x3 � 2x2 � 3

x � 2

SECTION 3.6 Rational Functions 311

x2

x � 2�x3 � 2x2 � 0x � 3

x3 � 2x2

3

20

_20

_4 4

(a)

200

_200

_30 30

(b)

20

_5

_8 8

(c)

y=≈

Applications

Rational functions occur frequently in scientific applications of algebra. In the next
example we analyze the graph of a function from the theory of electricity.

■

Figure 11

r 1x 2 �
x3 � 2x2 � 3

x � 2

57050_03_ch03_p248-325.qxd  07/04/2008  05:19 PM  Page 311



312 CHAPTER 3 Polynomial and Rational Functions

ALTERNATE EXAMPLE 10
When two resistors with
resistances R1 and R2 are
connected in parallel, their
combined resistance R is given by

the formula 

Suppose that a fixed 10 ohm
resistor is connected in parallel
with a variable resistor. Graph R
as a function of the resistance of
the variable resistor, x.

ANSWER 
Substituting R1 = 10 and R2 = x
into the formula gives: 

The analysis

proceeds as in the text. No matter
how large the variable resistance x,
the combined resistance is never
greater than 10 ohms. 

R(x) =
10x

10 + x
.

R =
R1R2

R1 + R2
.

312 CHAPTER 3 Polynomial and Rational Functions

1–4 ■ A rational function is given. (a) Complete each table 
for the function. (b) Describe the behavior of the function near
its vertical asymptote, based on Tables 1 and 2. (c) Determine
the horizontal asymptote, based on Tables 3 and 4.

1. 2.

3. 4. r 1x 2 �
3x2 � 1

1x � 2 2 2r 1x 2 �
3x � 10

1x � 2 2 2

r 1x 2 �
4x � 1

x � 2
r 1x 2 �

x

x � 2

Example 10 Electrical Resistance

When two resistors with resistances R1 and R2 are connected in parallel, their 
combined resistance R is given by the formula

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor,
as shown in Figure 12. If the resistance of the variable resistor is denoted by x, then
the combined resistance R is a function of x. Graph R and give a physical interpre-
tation of the graph.

Solution Substituting R1 � 8 and R2 � x into the formula gives the function

Since resistance cannot be negative, this function has physical meaning only when
x � 0. The function is graphed in Figure 13(a) using the viewing rectangle 30, 204
by 30, 104. The function has no vertical asymptote when x is restricted to positive
values. The combined resistance R increases as the variable resistance x increases.
If we widen the viewing rectangle to 30,1004 by 30, 104, we obtain the graph in 
Figure 13(b). For large x, the combined resistance R levels off, getting closer and
closer to the horizontal asymptote R � 8. No matter how large the variable resis-
tance x, the combined resistance is never greater than 8 ohms.

3.6 Exercises

10

0 20

(a)

10

0 100

(b)

R1x 2 �
8x

8 � x

R �
R1R2

R1 � R2
x

8 ohms

Figure 12

Figure 13

■
R1x 2 �

8x

8 � x

x

1.5
1.9
1.99
1.999

r 1x 2 x

2.5
2.1
2.01
2.001

r 1x 2

x

10
50

100
1000

r 1x 2 x

�10
�50

�100
�1000

r 1x 2

Table 1 Table 2

Table 3 Table 4

15

20

y

x

10

0

15

10

100

y

x0
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SECTION 3.6 Rational Functions 313

5–10 ■ Find the x- and y-intercepts of the rational function.

5. 6.

7. 8.

9. 10.

11–14 ■ From the graph, determine the x- and y-intercepts and
the vertical and horizontal asymptotes.

11. 12.

13. 14.

15–24 ■ Find all horizontal and vertical asymptotes (if any).

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25–32 ■ Use transformations of the graph of to graph the
rational function, as in Example 2.

25. 26.

27. 28. s 1x 2 �
�2

x � 2
s 1x 2 �

3

x � 1

r 1x 2 �
1

x � 4
r 1x 2 �

1

x � 1

y � 1
x

r 1x 2 �
x3 � 3x2

x2 � 4
t 1x 2 �

x2 � 2

x � 1

s 1x 2 �
3x2

x2 � 2x � 5
r 1x 2 �

6x � 2

x2 � 5x � 6

t 1x 2 �
1x � 1 2 1x � 2 2
1x � 3 2 1x � 4 2s 1x 2 �

6

x2 � 2

r 1x 2 �
2x � 4

x2 � 2x � 1
t 1x 2 �

x2

x2 � x � 6

s 1x 2 �
2x � 3

x � 1
r 1x 2 �

3

x � 2

2

0 x

y

−4 4

−6

10

2

3−3

y

x

y

x0
1

2

y

x0

4

4

r 1x 2 �
x3 � 8

x2 � 4
r 1x 2 �

x2 � 9

x2

r 1x 2 �
2

x2 � 3x � 4
t 1x 2 �

x2 � x � 2

x � 6

s 1x 2 �
3x

x � 5
r 1x 2 �

x � 1

x � 4

29. 30.

31. 32.

33–56 ■ Find the intercepts and asymptotes, and then sketch a
graph of the rational function. Use a graphing device to confirm
your answer.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57–64 ■ Find the slant asymptote, the vertical asymptotes, and
sketch a graph of the function.

57. 58.

59. 60.

61. 62.

63. 64. r 1x 2 �
2x3 � 2x

x2 � 1
r 1x 2 �

x3 � x2

x2 � 4

r 1x 2 �
x3 � 4

2x2 � x � 1
r 1x 2 �

x2 � 5x � 4

x � 3

r 1x 2 �
3x � x2

2x � 2
r 1x 2 �

x2 � 2x � 8
x

r 1x 2 �
x2 � 2x

x � 1
r 1x 2 �

x2

x � 2

t 1x 2 �
x3 � x2

x3 � 3x � 2
s 1x 2 �

x2 � 2x � 1

x3 � 3x2

r 1x 2 �
5x2 � 5

x2 � 4x � 4
r 1x 2 �

3x2 � 6

x2 � 2x � 3

r 1x 2 �
x2 � 3x

x2 � x � 6
r 1x 2 �

x2 � x � 6

x2 � 3x

r 1x 2 �
2x2 � 2x � 4

x2 � x
r 1x 2 �

2x2 � 10x � 12

x2 � x � 6

r 1x 2 �
4x2

x2 � 2x � 3
r 1x 2 �

x2 � 2x � 1

x2 � 2x � 1

r 1x 2 �
2x 1x � 2 2

1x � 1 2 1x � 4 2r 1x 2 �
1x � 1 2 1x � 2 2
1x � 1 2 1x � 3 2

t 1x 2 �
x � 2

x2 � 4x
t 1x 2 �

3x � 6

x2 � 2x � 8

s 1x 2 �
2x � 4

x2 � x � 2
s 1x 2 �

6

x2 � 5x � 6

s 1x 2 �
x � 2

1x � 3 2 1x � 1 2s 1x 2 �
4x � 8

1x � 4 2 1x � 1 2

r 1x 2 �
x � 2

1x � 1 2 2r 1x 2 �
18

1x � 3 2 2

s 1x 2 �
1 � 2x

2x � 3
s 1x 2 �

4 � 3x

x � 7

r 1x 2 �
2x � 6

�6x � 3
r 1x 2 �

4x � 4

x � 2

r 1x 2 �
2x � 9

x � 4
r 1x 2 �

x � 2

x � 3

t 1x 2 �
3x � 3

x � 2
t 1x 2 �

2x � 3

x � 2
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314 CHAPTER 3 Polynomial and Rational Functions

65–68 ■ Graph the rational function f and determine all 
vertical asymptotes from your graph. Then graph f and g in a
sufficiently large viewing rectangle to show that they have the
same end behavior.

65.

66.

67.

68.

69–74 ■ Graph the rational function and find all vertical 
asymptotes, x- and y-intercepts, and local extrema, correct to 
the nearest decimal. Then use long division to find a polynomial
that has the same end behavior as the rational function, and
graph both functions in a sufficiently large viewing rectangle to
verify that the end behaviors of the polynomial and the rational
function are the same.

69.

70.

71. 72.

73. 74.

Applications

75. Population Growth Suppose that the rabbit population
on Mr. Jenkins’ farm follows the formula

where t � 0 is the time (in months) since the beginning of
the year.

(a) Draw a graph of the rabbit population.

(b) What eventually happens to the rabbit population?

p1t 2 �
3000t

t � 1

r 1x 2 �
4 � x2 � x4

x2 � 1
r 1x 2 �

x4 � 3x3 � 6

x � 3

y �
x4

x2 � 2
y �

x5

x3 � 1

y �
x4 � 3x3 � x2 � 3x � 3

x2 � 3x

y �
2x2 � 5x

2x � 3

f 1x 2 �
�x4 � 2x3 � 2x

1x � 1 2 2 , g1x 2 � 1 � x2

f 1x 2 �
x3 � 2x2 � 16

x � 2
, g1x 2 � x2

f 1x 2 �
�x3 � 6x2 � 5

x2 � 2x
, g1x 2 � �x � 4

f 1x 2 �
2x2 � 6x � 6

x � 3
, g1x 2 � 2x

76. Drug Concentration After a certain drug is injected into
a patient, the concentration c of the drug in the bloodstream
is monitored. At time t � 0 (in minutes since the injection),
the concentration (in mg/L) is given by

(a) Draw a graph of the drug concentration.

(b) What eventually happens to the concentration of drug in
the bloodstream?

77. Drug Concentration A drug is administered to a patient
and the concentration of the drug in the bloodstream is 
monitored. At time t � 0 (in hours since giving the drug),
the concentration (in mg/L) is given by

Graph the function c with a graphing device.

(a) What is the highest concentration of drug that is
reached in the patient’s bloodstream?

(b) What happens to the drug concentration after a long 
period of time?

(c) How long does it take for the concentration to drop 
below 0.3 mg/L?

78. Flight of a Rocket Suppose a rocket is fired upward from
the surface of the earth with an initial velocity √ (measured
in m/s). Then the maximum height h (in meters) reached by
the rocket is given by the function

where R � 6.4 
 106 m is the radius of the earth and 
g � 9.8 m/s2 is the acceleration due to gravity. Use a graph-
ing device to draw a graph of the function h. (Note that 
h and √ must both be positive, so the viewing rectangle 
need not contain negative values.) What does the vertical 
asymptote represent physically?

h1√ 2 �
R√ 

2

2gR � √ 
2

c 1t 2 �
5t

t2 � 1

c 1t 2 �
30t

t2 � 2
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79. The Doppler Effect As a train moves toward an observer
(see the figure), the pitch of its whistle sounds higher to the
observer than it would if the train were at rest, because the
crests of the sound waves are compressed closer together.
This phenomenon is called the Doppler effect. The observed
pitch P is a function of the speed √ of the train and is given by

where P0 is the actual pitch of the whistle at the source and
s0 � 332 m/s is the speed of sound in air. Suppose that a
train has a whistle pitched at P0 � 440 Hz. Graph the 
function using a graphing device. How can 
the vertical asymptote of this function be interpreted 
physically?

80. Focusing Distance For a camera with a lens of fixed 
focal length F to focus on an object located a distance x
from the lens, the film must be placed a distance y behind
the lens, where F, x, and y are related by

(See the figure.) Suppose the camera has a 55-mm lens 
(F � 55).

(a) Express y as a function of x and graph the function.

(b) What happens to the focusing distance y as the object
moves far away from the lens?

(c) What happens to the focusing distance y as the object
moves close to the lens?

x F

y

1
x

�
1
y

�
1

F

y � P1√ 2

P1√ 2 � P0 a s0

s0 � √
b

Discovery • Discussion

81. Constructing a Rational Function from Its Asymptotes

Give an example of a rational function that has vertical as-
ymptote x � 3. Now give an example of one that has verti-
cal asymptote x � 3 and horizontal asymptote y � 2. Now
give an example of a rational function with vertical asymp-
totes x � 1 and x � �1, horizontal asymptote y � 0, and 
x-intercept 4.

82. A Rational Function with No Asymptote Explain how
you can tell (without graphing it) that the function

has no x-intercept and no horizontal, vertical, or slant 
asymptote. What is its end behavior?’

83. Graphs with Holes In this chapter we adopted the 
convention that in rational functions, the numerator and 
denominator don’t share a common factor. In this exercise
we consider the graph of a rational function that doesn’t 
satisfy this rule.

(a) Show that the graph of

is the line y � 3x � 3 with the point 12, 92 removed.
[Hint: Factor. What is the domain of r?]

(b) Graph the rational functions:

84. Transformations of y � 1/x2 In Example 2 we saw that
some simple rational functions can be graphed by shifting,
stretching, or reflecting the graph of y � 1/x. In this exercise
we consider rational functions that can be graphed by trans-
forming the graph of y � 1/x 2, shown on the following
page.

(a) Graph the function

by transforming the graph of y � 1/x 2.

r 1x 2 �
1

1x � 2 2 2

u 1x 2 �
x � 2

x2 � 2x

t 1x 2 �
2x2 � x � 1

x � 1

s 1x 2 �
x2 � x � 20

x � 5

r 1x 2 �
3x2 � 3x � 6

x � 2

r 1x 2 �
x6 � 10

x4 � 8x2 � 15
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1. (a) Write the defining equation for a polynomial P of 
degree n.

(b) What does it mean to say that c is a zero of P?

2. Sketch graphs showing the possible end behaviors of 
polynomials of odd degree and of even degree.

3. What steps would you follow to graph a polynomial by
hand?

4. (a) What is meant by a local maximum point or local 
minimum point of a polynomial?

(b) How many local extrema can a polynomial of degree n
have?

5. State the Division Algorithm and identify the dividend,
divisor, quotient, and remainder.

6. How does synthetic division work?

7. (a) State the Remainder Theorem.

(b) State the Factor Theorem.

8. (a) State the Rational Zeros Theorem.

(b) What steps would you take to find the rational zeros of
a polynomial?

9. State Descartes’ Rule of Signs.

10. (a) What does it mean to say that a is a lower bound and b
is an upper bound for the zeros of a polynomial?

(b) State the Upper and Lower Bounds Theorem.

11. (a) What is a complex number?

(b) What are the real and imaginary parts of a complex
number?

(c) What is the complex conjugate of a complex number?

(d) How do you add, subtract, multiply, and divide complex
numbers?

12. (a) State the Fundamental Theorem of Algebra.

(b) State the Complete Factorization Theorem.

(c) What does it mean to say that c is a zero of multiplicity
k of a polynomial P?

(d) State the Zeros Theorem.

(e) State the Conjugate Zeros Theorem.

13. (a) What is a rational function?

(b) What does it mean to say that x � a is a vertical 
asymptote of ?

(c) How do you locate a vertical asymptote?

(d) What does it mean to say that y � b is a horizontal 
asymptote of ?

(e) How do you locate a horizontal asymptote?

(f) What steps do you follow to sketch the graph of a 
rational function by hand?

(g) Under what circumstances does a rational function have
a slant asymptote? If one exists, how do you find it?

(h) How do you determine the end behavior of a rational
function?

y � f 1x 2

y � f 1x 2

(b) Use long division and factoring to show that the function

can be written as

Then graph s by transforming the graph of y � 1/x 2.

(c) One of the following functions can be graphed by 
transforming the graph of y � 1/x 2; the other cannot.
Use transformations to graph the one that can be,

s 1x 2 � 2 �
3

1x � 1 2 2

s 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

and explain why this method doesn’t work for the 
other one.

y

x

1

10

y= 1
≈

p1x 2 �
2 � 3x2

x2 � 4x � 4
   q 1x 2 �

12x � 3x2

x2 � 4x � 4

3 Review

Concept Check
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1–6 ■ Graph the polynomial by transforming an appropriate
graph of the form y � xn. Show clearly all x- and y-intercepts.

1. 2.

3. 4.

5. 6.

7–10 ■ Use a graphing device to graph the polynomial. Find
the x- and y-intercepts and the coordinates of all local extrema,
correct to the nearest decimal. Describe the end behavior of the
polynomial.

7. 8.

9.

10.

11. The strength S of a wooden beam of width x and depth y is
given by the formula S � 13.8xy 2. A beam is to be cut from
a log of diameter 10 in., as shown in the figure.

(a) Express the strength S of this beam as a function of x
only.

(b) What is the domain of the function S?

(c) Draw a graph of S.

(d) What width will make the beam the strongest?

12. A small shelter for delicate plants is to be constructed of thin
plastic material. It will have square ends and a rectangular
top and back, with an open bottom and front, as shown in the
figure. The total area of the four plastic sides is to be 1200 in2.

(a) Express the volume V of the shelter as a function of the
depth x.

(b) Draw a graph of V.

(c) What dimensions will maximize the volume of the 
shelter?

x

y

x

P1x 2 � x5 � x4 � 7x3 � x2 � 6x � 3

P1x 2 � 3x4 � 4x3 � 10x � 1

P1x 2 � �2x3 � 6x2 � 2P1x 2 � x3 � 4x � 1

P1x 2 � �31x � 2 2 5 � 96P1x 2 � 32 � 1x � 1 2 5
P1x 2 � 81 � 1x � 3 2 4P1x 2 � 21x � 1 2 4 � 32

P1x 2 � 2x3 � 16P1x 2 � �x3 � 64

13–20 ■ Find the quotient and remainder.

13. 14.

15. 16.

17. 18.

19. 20.

21–22 ■ Find the indicated value of the polynomial using the
Remainder Theorem.

21. ; find 

22. ; find 

23. Show that is a zero of the polynomial

24. Use the Factor Theorem to show that x � 4 is a factor of the
polynomial

25. What is the remainder when the polynomial

is divided by x � 1?

26. What is the remainder when x101 � x4 � 2 is divided by 
x � 1?

27–28 ■ A polynomial P is given.

(a) List all possible rational zeros (without testing to see if they
actually are zeros).

(b) Determine the possible number of positive and negative real
zeros using Descartes’ Rule of Signs.

27.

28.

29–36 ■ A polynomial P is given.

(a) Find all real zeros of P and state their multiplicities.

(b) Sketch the graph of P.

29. 30.

31. 32.

33.

34.

35. P1x 2 � 2x4 � x3 � 2x2 � 3x � 2

P1x 2 � x4 � 2x3 � 2x2 � 8x � 8

P1x 2 � x4 � 2x3 � 7x2 � 8x � 12

P1x 2 � x4 � 5x2 � 4P1x 2 � x4 � x3 � 2x2

P1x 2 � x3 � 3x2 � 4xP1x 2 � x3 � 16x

P1x 2 � 6x4 � 3x3 � x2 � 3x � 4

P1x 2 � x5 � 6x3 � x2 � 2x � 18

P1x 2 � x500 � 6x201 � x2 � 2x � 4

P1x 2 � x5 � 4x4 � 7x3 � 23x2 � 23x � 12

P1x 2 � 2x4 � x3 � 5x2 � 10x � 4

1
2

Q1�3 2Q1x 2 � x4 � 4x3 � 7x2 � 10x � 15

P15 2P1x 2 � 2x3 � 9x2 � 7x � 13

x4 � 2x2 � 7x

x2 � x � 3

2x3 � x2 � 8x � 15

x2 � 2x � 1

2x4 � 3x3 � 12

x � 4

x4 � 8x2 � 2x � 7

x � 5

x3 � 2x2 � 10

x � 3

x3 � x2 � 11x � 2

x � 4

x2 � x � 12

x � 3

x2 � 3x � 5

x � 2

Exercises
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36.

37–46 ■ Evaluate the expression and write in the form a � bi.

37. 38.

39. 40.

41. 42.

43. i 25 44.

45. 46.

47. Find a polynomial of degree 3 with constant coefficient 12
and zeros , 2, and 3.

48. Find a polynomial of degree 4 having integer coefficients
and zeros 3i and 4, with 4 a double zero.

49. Does there exist a polynomial of degree 4 with integer
coefficients that has zeros i, 2i, 3i, and 4i? If so, find it. If
not, explain why.

50. Prove that the equation 3x 4 � 5x 2 � 2 � 0 has no real root.

51–60 ■ Find all rational, irrational, and complex zeros (and
state their multiplicities). Use Descartes’ Rule of Signs, the 
Upper and Lower Bounds Theorem, the quadratic formula, or
other factoring techniques to help you whenever possible.

51.

52.

53.

54.

55.

56.

57.

58. P1x 2 � 18x3 � 3x2 � 4x � 1

P1x 2 � x6 � 64

P1x 2 � x4 � 81

P1x 2 � x5 � 3x4 � x3 � 11x2 � 12x � 4

P1x 2 � x4 � 7x3 � 9x2 � 17x � 20

P1x 2 � x4 � 6x3 � 17x2 � 28x � 20

P1x 2 � 2x3 � 5x2 � 6x � 9

P1x 2 � x3 � 3x2 � 13x � 15

� 
1
2

1�10 # 1�4011 � 1�1 2 11 � 1�1 2
11 � i 2 3
8 � 3i

4 � 3i

4 � 2i

2 � i

4i12 � 1
2i 212 � i 2 13 � 2i 2

13 � 6i 2 � 16 � 4i 212 � 3i 2 � 11 � 4i 2

P1x 2 � 9x5 � 21x4 � 10x3 � 6x2 � 3x � 1 59.

60.

61–64 ■ Use a graphing device to find all real solutions of the
equation.

61. 2x 2 � 5x � 3

62. x 3 � x 2 � 14x � 24 � 0

63. x 4 � 3x 3 � 3x 2 � 9x � 2 � 0

64. x 5 � x � 3

65–70 ■ Graph the rational function. Show clearly all x- and 
y-intercepts and asymptotes.

65. 66.

67. 68.

69. 70.

71–74 ■ Use a graphing device to analyze the graph of the ra-
tional function. Find all x- and y-intercepts; and all vertical, hori-
zontal, and slant asymptotes. If the function has no horizontal or
slant asymptote, find a polynomial that has the same end behav-
ior as the rational function.

71. 72.

73. 74.

75. Find the coordinates of all points of intersection of the
graphs of

y � x4 � x2 � 24x  and  y � 6x3 � 20

r 1x 2 �
2x3 � x2

x � 1
r 1x 2 �

x3 � 8

x2 � x � 2

r 1x 2 �
2x � 7

x2 � 9
r 1x 2 �

x � 3

2x � 6

r 1x 2 �
x3 � 27

x � 4
r 1x 2 �

x2 � 9

2x2 � 1

r 1x 2 �
2x2 � 6x � 7

x � 4
r 1x 2 �

x � 2

x2 � 2x � 8

r 1x 2 �
1

1x � 2 2 2r 1x 2 �
3x � 12

x � 1

P1x 2 � x4 � 15x2 � 54

P1x 2 � 6x4 � 18x3 � 6x2 � 30x � 36
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3 Test

1. Graph the polynomial , showing clearly all x- and y-intercepts.

2. (a) Use synthetic division to find the quotient and remainder when x 4 � 4x 2 � 2x � 5
is divided by x � 2.

(b) Use long division to find the quotient and remainder when 2x 5 � 4x 4 � x 3 � x 2 �
7 is divided by 2x 2 � 1.

3. Let .

(a) List all possible rational zeros of P.

(b) Find the complete factorization of P.

(c) Find the zeros of P.

(d) Sketch the graph of P.

4. Perform the indicated operation and write the result in the form a � bi.

(a) (b)

(c) (d)

(e) i 48 (f)

5. Find all real and complex zeros of .

6. Find the complete factorization of .

7. Find a fourth-degree polynomial with integer coefficients that has zeros 3i and �1, with
�1 a zero of multiplicity 2.

8. Let .

(a) Use Descartes’ Rule of Signs to determine how many positive and how many 
negative real zeros P can have.

(b) Show that 4 is an upper bound and �1 is a lower bound for the real zeros of P.

(c) Draw a graph of P and use it to estimate the real zeros of P, correct to two decimal
places.

(d) Find the coordinates of all local extrema of P, correct to two decimals.

9. Consider the following rational functions:

(a) Which of these rational functions has a horizontal asymptote?

(b) Which of these functions has a slant asymptote?

(c) Which of these functions has no vertical asymptote?

(d) Graph , showing clearly any asymptotes and x- and y-intercepts the 
function may have.

(e) Use long division to find a polynomial P that has the same end behavior as t. Graph
both P and t on the same screen to verify that they have the same end behavior.

y � u1x 2

r1x 2 �
2x � 1

x2 � x � 2
  s1x 2 �

x3 � 27

x2 � 4
  t1x 2 �

x3 � 9x

x � 2
  u1x 2 �

x2 � x � 6

x2 � 25

P1x 2 � 2x4 � 7x3 � x2 � 18x � 3

P1x 2 � x4 � 2x3 � 5x2 � 8x � 4

P1x 2 � x3 � x2 � 4x � 6

112 � 1�2 2 118 � 1�2 2
3 � 2i

4 � 3i
13 � 2i 2 14 � 3i 2

13 � 2i 2 � 14 � 3i 213 � 2i 2 � 14 � 3i 2

P1x 2 � 2x3 � 5x2 � 4x � 3

P1x 2 � �1x � 2 2 3 � 27

CHAPTER 3 Test 319
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320 CHAPTER 3 Polynomial and Rational Functions

We have learned how to fit a line to data (see Focus on Modeling, page 239). The line
models the increasing or decreasing trend in the data. If the data exhibits more vari-
ability, such as an increase followed by a decrease, then to model the data we need to
use a curve rather than a line. Figure 1 shows a scatter plot with three possible mod-
els that appear to fit the data. Which model fits the data best?

Polynomial Functions as Models

Polynomial functions are ideal for modeling data where the scatter plot has peaks or
valleys (that is, local maxima or minima). For example, if the data have a single peak
as in Figure 2(a), then it may be appropriate to use a quadratic polynomial to model
the data. The more peaks or valleys the data exhibit, the higher the degree of the poly-
nomial needed to model the data (see Figure 2).

Graphing calculators are programmed to find the polynomial of best fit of a
specified degree. As is the case for lines (see pages 239–240), a polynomial of a given
degree fits the data best if the sum of the squares of the distances between the graph
of the polynomial and the data points is minimized.

(a) (b) (c)

y

x

y

x

y

x

y

x

y

x
Linear model Quadratic model Cubic model

y

x

320

Focus on Modeling

Fitting Polynomial Curves to Data

Figure 1

Figure 2
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CHAPTER 3 Polynomial and Rational Functions 321

Example 1 Rainfall and Crop Yield

Rain is essential for crops to grow, but too much rain can diminish crop yields. The
data give rainfall and cotton yield per acre for several seasons in a certain county.
(a) Make a scatter plot of the data. What degree polynomial seems appropriate for

modeling the data?
(b) Use a graphing calculator to find the polynomial of best fit. Graph the polyno-

mial on the scatter plot.
(c) Use the model you found to estimate the yield if there are 25 in. of rainfall.

Fitting Polynomial Curves to Data 321
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Season Rainfall (in.) Yield (kg/acre)

1 23.3 5311
2 20.1 4382
3 18.1 3950
4 12.5 3137
5 30.9 5113
6 33.6 4814
7 35.8 3540
8 15.5 3850
9 27.6 5071

10 34.5 3881

Solution

(a) The scatter plot is shown in Figure 3. The data appear to have a peak, so it is
appropriate to model the data by a quadratic polynomial (degree 2).

(b) Using a graphing calculator, we find that the quadratic polynomial of best 
fit is

y � �12.6x2 � 651.5x � 3283.2

Figure 3

Scatter plot of yield vs. rainfall data

6000

1500
4010
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322 CHAPTER 3 Polynomial and Rational Functions

The calculator output and the scatter plot, together with the graph of the 
quadratic model, are shown in Figure 4.

(c) Using the model with x � 25, we get

We estimate the yield to be about 5130 kg per acre. ■

Example 2 Length-at-Age Data for Fish

Otoliths (“earstones”) are tiny structures found in the heads of fish. Microscopic
growth rings on the otoliths, not unlike growth rings on a tree, record the age of a
fish. The table gives the lengths of rock bass of different ages, as determined by the
otoliths. Scientists have proposed a cubic polynomial to model this data.

(a) Use a graphing calculator to find the cubic polynomial of best fit for the data.

(b) Make a scatter plot of the data and graph the polynomial from part (a).

(c) A fisherman catches a rock bass 20 in. long. Use the model to estimate 
its age.

y � �12.6125 2 2 � 651.5125 2 � 3283.2 � 5129.3

Figure 4

6000

1500
4010

(a) (b)

322 Focus on Modeling

Age (yr) Length (in.) Age (yr) Length (in.)

1 4.8 9 18.2
2 8.8 9 17.1
2 8.0 10 18.8
3 7.9 10 19.5
4 11.9 11 18.9
5 14.4 12 21.7
6 14.1 12 21.9
6 15.8 13 23.8
7 15.6 14 26.9
8 17.8 14 25.1

Cod Redfish Hake

Otoliths for several fish species.
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Solution

(a) Using a graphing calculator (see Figure 5(a)), we find the cubic polynomial of
best fit

(b) The scatter plot of the data and the cubic polynomial are graphed in 
Figure 5(b).

(c) Moving the cursor along the graph of the polynomial, we find that y � 20 when
x � 10.8. Thus, the fish is about 11 years old. ■

Problems

1. Tire Inflation and Treadware Car tires need to be inflated properly. Overinflation
or underinflation can cause premature treadwear. The data and scatter plot show tire life
for different inflation values for a certain type of tire.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of 
the data.

(c) Use your result from part (b) to estimate the pressure that gives the longest 
tire life.

30

0
150

(a) (b)Figure 5

y � 0.0155x3 � 0.372x2 � 3.95x � 1.21

Fitting Polynomial Curves to Data 323

2. Too Many Corn Plants per Acre? The more corn a farmer plants per acre the
greater the yield that he can expect, but only up to a point. Too many plants per acre can
cause overcrowding and decrease yields. The data give crop yields per acre for various
densities of corn plantings, as found by researchers at a university test farm.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of 
the data.

(c) Use your result from part (b) to estimate the yield for 37,000 plants per acre.

Pressure Tire life
(lb/in2) (mi)

26 50,000
28 66,000
31 78,000
35 81,000
38 74,000
42 70,000
45 59,000

y (mi)

x (lb/in2)
0

50,000

60,000

70,000

80,000

0 25 30 35 40 45 50Density Crop yield
(plants/acre) (bushels/acre)

15,000 43
20,000 98
25,000 118
30,000 140
35,000 142
40,000 122
45,000 93
50,000 67
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3. How Fast Can You List Your Favorite Things? If you are asked to make a list 
of objects in a certain category, how fast you can list them follows a predictable pattern.
For example, if you try to name as many vegetables as you can, you’ll probably think 
of several right away—for example, carrots, peas, beans, corn, and so on. Then after 
a pause you may think of ones you eat less frequently—perhaps zucchini, eggplant,
and asparagus. Finally a few more exotic vegetables might come to mind—artichokes,
jicama, bok choy, and the like. A psychologist performs this experiment on a number 
of subjects. The table below gives the average number of vegetables that the subjects
named by a given number of seconds.

(a) Find the cubic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Use your result from part (b) to estimate the number of vegetables that subjects
would be able to name in 40 seconds.

(d) According to the model, how long (to the nearest 0.1 s) would it take a person to
name five vegetables?

324 Focus on Modeling

Number of 
Seconds Vegetables

1 2
2 6
5 10

10 12
15 14
20 15
25 18
30 21

4. Clothing Sales Are Seasonal Clothing sales tend to vary by season with more
clothes sold in spring and fall. The table gives sales figures for each month at a certain
clothing store.

(a) Find the quartic (fourth-degree) polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Do you think that a quartic polynomial is a good model for these data? 
Explain.

Month Sales ($)

January 8,000
February 18,000
March 22,000
April 31,000
May 29,000
June 21,000
July 22,000
August 26,000
September 38,000
October 40,000
November 27,000
December 15,000

57050_03_ch03_p248-325.qxd  07/04/2008  05:19 PM  Page 324



CHAPTER 3 Polynomial and Rational Functions 325

5. Height of a Baseball A baseball is thrown upward and its height measured 
at 0.5-second intervals using a strobe light. The resulting data are given in the table.

(a) Draw a scatter plot of the data. What degree polynomial is appropriate for modeling
the data?

(b) Find a polynomial model that best fits the data, and graph it on the scatter plot.

(c) Find the times when the ball is 20 ft above the ground.

(d) What is the maximum height attained by the ball?

6. Torricelli’s Law Water in a tank will flow out of a small hole in the bottom faster
when the tank is nearly full than when it is nearly empty. According to Torricelli’s Law,
the height of water remaining at time t is a quadratic function of t.

A certain tank is filled with water and allowed to drain. The height of the water is
measured at different times as shown in the table.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of
the data.

(c) Use your graph from part (b) to estimate how long it takes for the tank to drain
completely.

h1t 2

Fitting Polynomial Curves to Data 325

Time (min) Height (ft)

0 5.0
4 3.1
8 1.9

12 0.8
16 0.2

Time (s) Height (ft)

0 4.2
0.5 26.1
1.0 40.1
1.5 46.0
2.0 43.9
2.5 33.7
3.0 15.8
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