Lesson 6-1

Slope Fields And Euler's Method

Objective

Students will...

- Be able to write general solution of a differential equation.
- Be able to sketch slope fields.
- Be able to approximate a solution using Euler's Method.

General Vs Particular Solution

Recall that a general form of the solution involves variables, giving you with an option to come up with any particular solution. For example, the area formula might be a general solution, which then can be used to find the area of a particular polygon with specific dimensions.

Examples

Determine whether the function is a solution of the differential equation y'' - y = 0. a. $y = \sin x$

b.
$$y = 4e^{-x}$$

c.
$$y = Ce^x$$

Slope Fields

A slope field is a graph that shows the slopes at different points. Recall that the derivative function gives the slopes of a function.

Ex. $y = 3x^2$

Examples

Sketch a slope field for the differential equation y' = x - y for the points (-1, 1), (0, 1), (1, 1).

Examples

EXAMPLE 4 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.

Figure 6.3

i. y' = x + y **ii.** y' = x **iii.** y' = y

Euler's Method

Euler's Method is a numerical approach to approximating the particular solution of the differential equation y' = F(x, y) that passes through the point (x_0, y_0) . Given a small step, say h, we can move along the tangent line until we arrive at a certain point (x_1, y_1) . Moreover,

$$x_1 = x_0 + h$$
and $y_1 = y_0 + hF(x_0, y_0)$ $x_2 = x_1 + h$ $y_2 = y_1 + hF(x_1, y_1)$ $x_3 = x_2 + h$ $y_3 = y_2 + hF(x_2, y_2)$

$$x_n = x_{n-1} + h$$
 $y_n = y_{n-1} + hF(x_{n-1}, y_{n-1})$

Example

Use Euler's Method to approximate the particular solution of the differential equation: y' = x - y, passing through (0, 1). Use a step of h = 0.1.

Homework 2/14

6.1 #13-23 (odd), 31-35 (odd), 53-56, 69