Lesson 6-1
$\Delta<0$

Slope Fields

 And
Euler's Method

Objective

Students will...

- Be able to write general solution of a differential equation.
- Be able to sketch slope fields.
- Be able to approximate a solution using Euler's Method.

General Vs Particular Solution

Recall that a general form of the solution involves variables, giving you with an option to come up with any particular solution. For example, the area formula might be a general solution, which then can be used to find the area of a particular polygon with specific dimensions.

Examples

Determine whether the function is a solution of the differential equation $y^{\prime \prime}-y=0$.
a. $y=\sin x$
b. $y=4 e^{-x}$
c. $y=C e^{x}$

Slope Fields

A slope field is a graph that shows the slopes at different points. Recall that the derivative function gives the slopes of a function.

Ex. $y=3 x^{2}$

Examples

Sketch a slope field for the differential equation $y^{\prime}=x-y$ for the points $(-1,1),(0,1),(1,1)$.

Examples

EXAMPLE 4 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.
a.

b.

c.

Figure 6.3
i. $y^{\prime}=x+y$
ii. $y^{\prime}=x$
iii. $y^{\prime}=y$

Euler's Method

Euler's Method is a numerical approach to approximating the particular solution of the differential equation $y^{\prime}=F(x, y)$ that passes through the point $\left(x_{0}, y_{0}\right)$. Given a small step, say h, we can move along the tangent line until we arrive at a certain point $\left(x_{1}, y_{1}\right)$. Moreover,

$$
\begin{aligned}
& x_{1}=x_{0}+h \\
& x_{2}=x_{1}+h \\
& x_{3}=x_{2}+h
\end{aligned}
$$

$$
x_{n}=x_{n-1}+h
$$

and

$$
\begin{aligned}
& y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right) \\
& y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right) \\
& y_{3}=y_{2}+h F\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$$
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
$$

Example

Use Euler's Method to approximate the particular solution of the differential equation: $y^{\prime}=x-y$, passing through $(0,1)$. Use a step of $h=0.1$.

Homework 2/14
6.1 \#13-23 (odd), 31-35 (odd), 53-56, 69

