Lesson 5-3, 5-5, 5-7

A<0
Inverse, Inverse Trig, and
Non-e Bases

Objective

Students will...

- Be able to test for existence of an inverse function, and differentiate/integrate them.
- Be able to know the derivatives and integrals of inverse trig functions.
- Be able to find the derivatives and integrals of exponential functions with a non-e base.

One-to-One Functions

Function is defined as a relation having one output, per input. This only deals with the number of outputs, not necessarily the type of outputs. A one-to-one function is a function where no input shares a same output with another input. In other words,

$$
\begin{gathered}
f\left(x_{1}\right)=f\left(x_{2}\right) \text { if and only if } x_{1}=x_{2} \\
\text { or } \\
f\left(x_{1}\right) \neq f\left(x_{2}\right) \text { if and only if } x_{1} \neq x_{2}
\end{gathered}
$$

Again, the definition of a function only deals with the number of outputs. Two different inputs could share the same output, as long as they both have one single output.

Inverse Functions

The whole point of finding out whether a function is one-to-one or not has to do with inverse functions. For any one-to-one function, an inverse function must exist.

Inverse functions is the "opposite" function. By definition, for a function f , let $f(x)=y$. Then, the inverse function f^{-1},
$f^{-1}(y)=x$, for any y.

You can also think inverse function as the function that "undo's" the its original function.

How to find the inverse function

1. Write " $\mathrm{y}=$ " instead of " $\mathrm{f}(\mathrm{x})=$ "
2. Replace the switch the " y " and the " x "
3. Solve the equation for " y "
4. The resulting equation is the inverse function, $f^{-1}(x)$

Showing One-to-One-ness (Existence of Inverse)

One of the ways to visually identify one-to-one functions is using the horizontal line test, which simply states that a function is one-to-one if and only if no horizontal line intersects its graph more than once.

But using the differentiation, we can prove the one-to-one-ness in another way.

Theorem 5.7- If f is strictly monotonic (only increasing or only decreasing) on its entire domain, then it is one-to-one and therefore has an inverse function.

We can use derivative to determine whether a function is monotonic or not.

Examples

Determine whether the following functions has an inverse.
a. $f(x)=x^{3}+x-1$
b. $f(x)=x^{3}-x+1$

Example

Find the inverse function of $f(x)=\sqrt{2 x-3}$

Derivative of an inverse function

What do we know about the differentiation (derivatives) of inverse functions?

Let f be a function that is differentiable on an interval I. Let g be the inverse function of f.
$g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$, where $f^{\prime}(g(x)) \neq 0$ (cannot divide by zero)

Example

Let $f(x)=\frac{1}{4} x^{3}+x-1$.
a. What is the value of $f^{-1}(x)$ when $x=3$?
b. What is the value of $\left(f^{-1}\right)^{\prime}(x)$ when $x=3$?

Bases other than e

We learned how to differentiate and integrate exponential or logarithmic functions with base e. What about non-e bases? For these, we need to introduce a little trick or a different approach. Consider...

If a is a positive real number $(a \neq 1)$ and x is any real number, then the exponential function to the base a is denoted by a^{x} and is defined by

$$
a^{x}=e^{\ln a^{x}}=e^{(\ln a) x}
$$

If a is a positive real number $(a \neq 1)$ and x is any real number, then the logarithmic function to the base a is denoted by $\log _{a} x$ and is defined by

$$
\log _{a} x=\frac{1}{\ln a} \ln x=\frac{\ln x}{\ln a} \text { (change of base!) }
$$

Example

Find $\frac{d}{d x} a^{x}$

Example

Find $\frac{d}{d x} \log _{a} x$

Example

Find $\int a^{x} d x$

General Rule

THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN e

Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}$

Derivatives of Inverse Trig

THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

Let u be a differentiable function of x.

$$
\begin{aligned}
\frac{d}{d x}[\arcsin u] & =\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\arccos u] & =\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
\frac{d}{d x}[\arctan u] & =\frac{u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{arccot} u] & =\frac{-u^{\prime}}{1+u^{2}} \\
\frac{d}{d x}[\operatorname{arcsec} u] & =\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}} & \frac{d}{d x}[\operatorname{arccsc} u] & =\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
$$

Integrals of Inverse Trig

THEOREM 5.17 INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS

Let u be a differentiable function of x, and let $a>0$.

1. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C$
2. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C$
3. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C$

Homework 2/12
5.3 \#23-28, 29-35 (odd), 47-51 (odd)
5.5 \#37-47 (odd), 61-69 (odd)

