

Objective

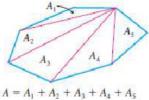
Students will...

- Be able to define limits (right vs left-hand)
- Be able to estimate limits from numerical tables.
- Be able to estimate limits from a graph.

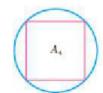
Limits

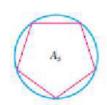
The concept of <u>limit</u> is the central idea underlying Calculus. Calculus involves focuses on studying and solving problems pertaining to situations involving <u>change</u> or <u>motion</u>. To gain a better understanding of limits consider the following example.

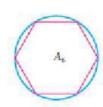
Finding the area of a polygon:

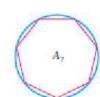


Finding the area of a circle:









$$area = \lim_{n \to \infty} A_n$$

Definition of Limit

Let's start by defining limit mathematically.

Definition of the Limit of a Function:

We write, $\lim_{x\to a} f(x) = L$, and say, "the limit of f(x), as x approaches a, equals L," if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a, but not equal to a.

In other words, this says that the values of f(x) get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but $x \neq a$.

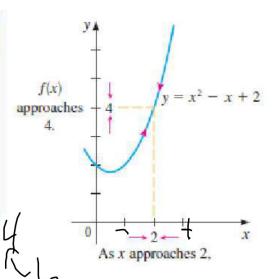
Alternative notation for $\lim_{x\to a} f(x) = L$ is $f(x) \to L$ as $x \to a$

Example $f(1) = 2^2 - 2 + 2 = 9$

Consider the following function: $f(x) = x^2 - x + 2$. Here are the tables and graph concerning this function, with x surrounding 2, but not equal to 2.

х	f(x)
1.0	2.000000
1.5	2.750000
1.8	3.440000
1.9	3.710000
1.95	3.852500
1.99	3.970100
1.995	3.985025
1.999	3.997001

f(x)
8.000000
5.750000
4.640000
4.310000
4.152500
4.030100
4.015025
4.003001

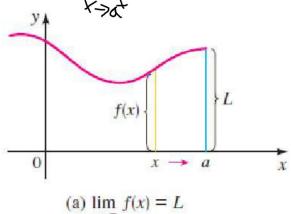


One-Sided Limit

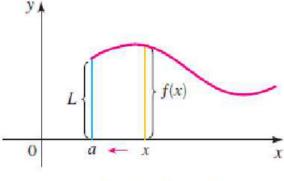
One of the ways we can consider whether a function has a limit or not, is to consider them one side at a time.

We write $\lim_{x\to a^-} f(x) = L$, for x approaching a from the left side.

We write $\lim_{x \to \infty} f(x) = L$, for x approaching a from the right side.



(a)
$$\lim_{x \to a^{-}} f(x) = L$$



(b)
$$\lim_{x \to a^+} f(x) = L$$

Estimating Limits Guess the value of $\lim_{x\to 1} \frac{x-1}{x^2-1}$ using the table.

Guess the value of $\lim_{x\to 0} \frac{\tan 3x}{x}$

$$-3$$

Existence of Limit

 $^{f \setminus}$ So in comparing the two sides of the limit, we see that the following is true.

$$\lim_{x \to a} f(x) = L \qquad \text{if and only if} \qquad \lim_{x \to a^{-}} f(x) = L \qquad \text{and} \qquad \lim_{x \to a^{+}} f(x) = L$$

The graph of a function g is shown in Figure 10. Use it to state the values Ex. (if they exist) of the following:

 $\lim_{x \to \infty} g(x) = 9N^{C_0}$ (a) $\lim_{x \to a} g(x)$? $\lim_{x\to 2^+} g(x),$

 $\lim g(x)$ (b) $\lim_{x\to 5} g(x)$,

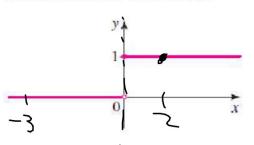
Limits that Fail to Exist

There are certain occasions where the limit does not exist.

1. A function with a "Jump."

$$H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$$

Limit as t → 0 does not exist.



2. A function that oscillates.

Ex.

$$\lim_{x\to 0}\sin\frac{\pi}{x}.$$

 $f(1) = \sin \pi = 0$

$$f\left(\frac{1}{3}\right) = \sin 3\pi = 0$$

 $f(0.1) = \sin 10\pi = 0$

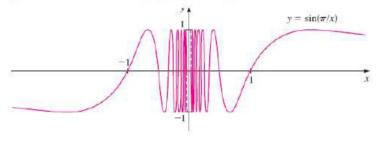
 $f\left(\frac{1}{2}\right) = \sin 2\pi = 0$

$$f\left(\frac{1}{4}\right) = \sin 4\pi = 0$$

 $f(0.01) = \sin 100\pi = 0$

Is it zero? However...

Limit does not exist!



Homework 8/30

WKSHT #13, 15, 16, 25