


Objective

Students will...

- Be able to differentiate between a sequence
and a series.

- Be able to understand convergence and
divergence of a sequence and series.

- Be able to define monotonic and bounded
sequences.



Sequences

Mathematically, a sequence is defined as a function whose domain is
the set of positive integers. Think of a sequence as a horizontal table of

values of a function with the use of a subscript. an = )/}7’
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Limit of a Sequence

If a sequence approaches a certain number, it is said to converge. If it
does not (i.e. 0 or —0), then it is said to diverge.

B 149,16, 25,36, ..



Limit of a Sequence

Consider the previous two examples again: [im __{_ — @
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We see that the¢ gssociated function of these sequences match the
limit of the sequences.



Examples

Determine whether the associated sequence converges or diverges.
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Determine whether the associated sequence converges or diverges.
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Squeeze Theorem for Sequences

If lim a,, = L = lim b,, and there exists an integer N such that a,, <
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Absolute Value Theorem

For the sequence a,,, if lim Ianl = 0, then lim a, =0

Ex. Find the limit of the sequence a,, = (— 1)"(n) ..
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f! L, ), /, ] Monotonic Sequences
eite’”
A sequence a,, is monotonic if its terms ar ondecreasing, or if its
terms are nonincreasing. (WM)’ o ral limys dtl(«-, l?’&of‘%’(),
Ex.a, = —n
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Examples

Determine whether each sequence having the given with nth term is
monotonic.

2n A
a'bjzmﬁ/ 7 71+ :,21—5/7’
() = W= = ()
A (T o duite ® 17
e G T
2}“ ﬁ fﬁ?lhw’: }’1 }7” i,y"ﬂll"‘*' ¥



Examples

Determine whether each sequence having the given with nth term is
monotonic.

2 + T :
b.bn=,’}—_1+7(/ B 1 400 a |
( é(ﬁn‘bﬁ“ﬁz(zn)” & i pant?"
(éq)“i———/”" - i bl

U it @



Bounded Sequences

1. Asequence is bounded above if there is a biggest number in the .
sequence. The biggest number is called the upper bound. '/(,e [ lﬂg"’

2. Asequence is bounded below if there is a smallest number in the )
sequence. The smallest number is called the lower bound. * ! [{2ar

3. Asequence is deemed bounded if it is bounded both above and
below. m;((ﬂ? I%“HD“{

Theorem 9.5- If a sequence is bounded and monotonic, then it
converges.



Examples

Determine whether the following sequence converges.
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Examples

Determine whether the following sequence converges.

an=4+%



Series

A series is the sum of all of the numbers in the sequence, denoted by
the £ (summation) notation.

Ex. For the sequence a,, = a4, a,,as, ...

¥ 1a, = a, + a, + az + -+ is its series.
)
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A%kries that never ends is called an infinite series.



% Geometric Series

Aseriesgivenby Y% sar®* =a+ar+ar?+-+ar®+--,a#0,is
known as a geometric series with,a common ratio o
" ( C A
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Theorem 9.6- A geometrlc series with ratio r divergesif [r| = 1.I1f 0 <
|| < 1, then the series converges to the sum,
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Determine if the following series converges, and if so, find its limit( { ))/f
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Examples )~
Determine if the following series converges, and if so, find its limit.
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T heorem 9.8 and 9.9 = N
Theorem 9.8-If .., a, converges, then 7{1_{130 a,=0 }Z‘M \E —0
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Theorem 9.9- If lim a, # 0, then )., a,, diverges. o
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Properties of Infinite Series

THEOREM 9.7 PROPERTIES OF INFINITE SERIES

Let X a, and 2 b, be convergent series, and let A, B, and ¢ be real numbers. If
2a, =Aand £ b, = B, then the following series converge to the indicated
sums.
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Homework 4/27

9.1 #31-41 (odd), 47-67 (e.0.0), 83, 87, 91, 95, 97
9.2 #7-15 (odd), 23-27 (odd), 57-69 (e.0.0)



