

Objective

Students will...

- Be able to recognize improper integrals.
- Be able to evaluate improper integrals that have an infinite limit of integration.
- Be able to evaluate improper integrals that have an infinite discontinuity.

Improper Integrals

Integrals are said to be improper when they have an unbounded or infinite upper and/or lower bounds, i.e. \int_a^∞ , $\int_{-\infty}^b$, $\int_{-\infty}^\infty$

These can be evaluated by doing the following

DEFINITION OF IMPROPER INTEGRALS WITH INFINITE INTEGRATION LIMITS

1. If f is continuous on the interval $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

2. If f is continuous on the interval $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

3. If f is continuous on the interval $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

where c is any real number (see Exercise 120).

Evaluate $\int_{1}^{\infty} \frac{dx}{x}$

Evaluate $\int_0^\infty e^{-x} dx$

Examples

Evaluate
$$\int_0^\infty \frac{1}{x^2+1} dx$$

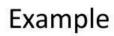
Evaluate $\int_0^\infty (1-x)e^{-x} dx$

Examples

Evaluate
$$\int_{-\infty}^{\infty} \frac{e^x}{1+e^{2x}} dx$$

Special Type of Improper Integral

Theorem 8.5-
$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \begin{cases} \frac{1}{p-1}, & if \ p > 1 \\ diverges & if \ p \leq 1 \end{cases}$$



Evaluate $\int_1^\infty \frac{4}{\sqrt[4]{x}} dx$

Homework 4/12

8.8 #15-31 (odd)

Improper Integrals with Discontinuities

The second type of improper integrals is one that has an infinite discontinuity **at or between** the limits of integration.

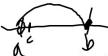
DEFINITION OF IMPROPER INTEGRALS WITH INFINITE DISCONTINUITIES

1. If f is continuous on the interval [a, b) and has an infinite discontinuity at b, then

b, then $\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx.$

If f is continuous on the interval (a, b] and has an infinite discontinuity at a, then

 $\int_a^b f(x) \ dx = \lim_{c \to a^+} \int_c^b f(x) \ dx.$



3. If f is continuous on the interval [a, b], except for some c in (a, b) at which f has an infinite discontinuity, then

 $\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_a^b f(x) \ dx.$

In the first two cases, the improper integral **converges** if the limit exists—otherwise, the improper integral **diverges**. In the third case, the improper integral on the left diverges if either of the improper integrals on the right diverges.

disc & X=D=a Example

Evaluate
$$\int_0^1 \frac{dx}{\sqrt[3]{x}}$$

$$= \lim_{(70^+)^{-1}} \left(\frac{3}{2} \times \frac{7}{3} \right) \left($$

Evaluate
$$\int_0^2 \frac{dx}{x^3} = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-3}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{-2}{4} \right) = \lim_{C \to 0^+} \left(\frac{1}{2} \times \frac{$$

$$U = 5x$$

$$du = \frac{1}{2}x^{2} = \frac{1}{2}x$$
Evaluate
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x}(x+1)} = \int_{0}^{1} \frac{dx}{\sqrt{x}(x+1)} + \int_{0}^{1} \frac{dx}{\sqrt{x}(x+$$

Homework 4/17

8.8 #33-47 (odd), 49, 50

$$\frac{2}{\sqrt{3}} = \frac{dx}{\sqrt{3}} = \frac{dx}{\sqrt{3}} + \frac{dx}{\sqrt{3}}$$

$$\frac{dx}{\sqrt{3}} = \frac{dx}{\sqrt{3}} + \frac{dx}{\sqrt{3}}$$

$$= \lim_{x \to 0} \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

$$\int_{-1}^{2} x^{-3} dx = \left(-\frac{1}{2}x^{-2}\right)^{2} - \frac{1}{2}x^{-2} = \left(-\frac{1}{2}x^{-2}\right)^{2}$$