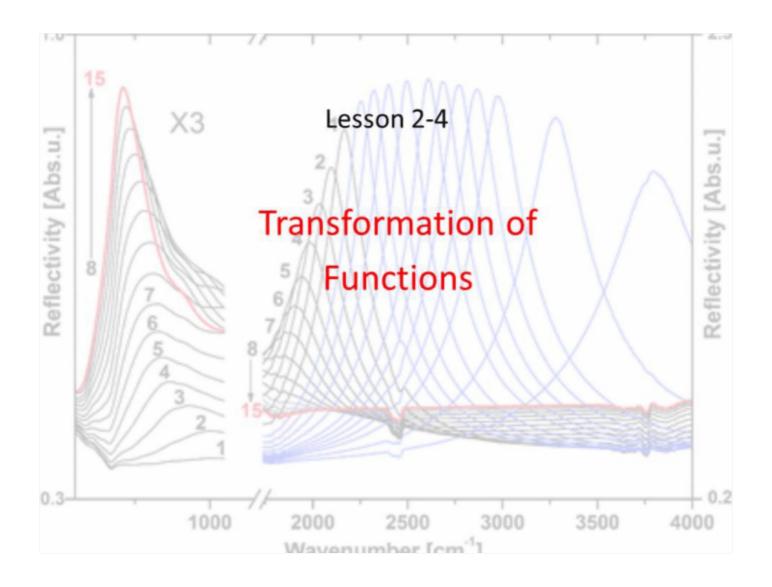
Warm Up 9/11

Describe the shift of the function: $g(x) = (x + 11)^2 - 2$ from its "parent" function, $f(x) = x^2$

Seft 11, down 2

Describe the shift of the function $h(x) = (x - 6)^5 + 1$ from its "parent" function, $f(x) = x^5$

Right 6, upl.



Objective

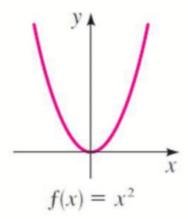
Students will...

- Be able to apply the properties of <u>reflections</u> in graphing various functions.
- Be able to determine whether a function is even or odd.

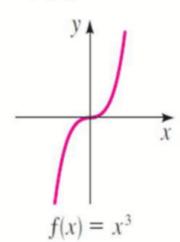
"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example.

$$f(x)=x^2$$

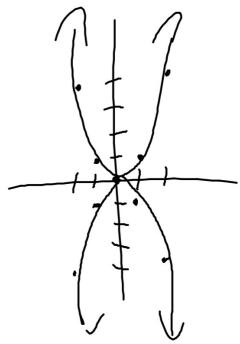


$$f(x)=x^3$$



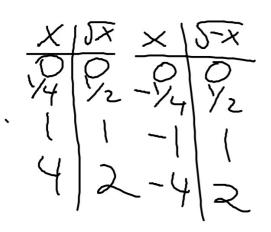
$-x^2 \neq (-x)^2$ Transformation of Functions

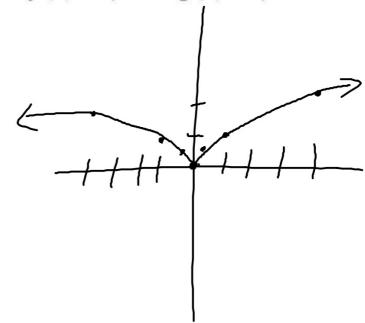
Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = -x^2$



Transformation of Functions

Now let's compare the functions: $f(x) = \sqrt{x}$ and $g(x) = \sqrt{-x}$





Transformation: Reflection

As observed, the differences between the two functions were either **horizontal or vertical** reflection. This can be generalized by the following:

Along the y-axis (horizontal)

y = f(-x) reflects the graph of y = f(x) along the y-axis (horizontal reflection).

Along the x-axis (vertical)

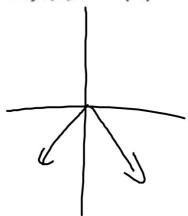
y = -f(x) reflects the graph of y = f(x) along the x-axis (vertical reflection).

|x|

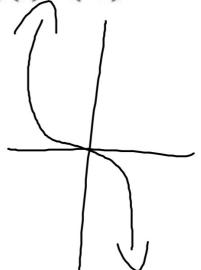
Examples

Sketch the following functions by transforming its "parent" function.

$$a. f(x) = -|x|$$



b.
$$f(x) = (-x)^3$$



Even Functions

Consider the function $f(x) = x^2$. We observed that it can be reflected vertically, i.e. along the x-axis. What happens when we try to reflect this function horizontally, i.e. along the y-axis?

This would mean that the equation would be written in the form of $f(x) = (-x)^2 = x^2$

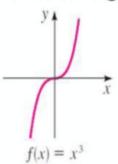
 $f(x) = x^2$

So, as you can see horizontal reflection really did not change anything. This can easily be seen on its graph. y_{*}

Any function that has this characteristic is called an **even** function.

Odd Functions

Now consider the function $f(x) = x^3$. We have already seen it reflected horizontally, i.e. along the y-axis. What happens when we reflect this graph vertically, i.e. along the x-axis? Look at the graph!



Here the graph looks the same whether it is reflected vertically or horizontally. This can easily be seen algebraically: $(-x)^3 = -x^3$

Any function that has this characteristic is called an odd function.

Even and Odd Functions

So now we give a formal, generalized definition of even and odd functions:

Let f be a function,

f is even if f(-x) = f(x), for all x in the domain of f f is odd if f(-x) = -f(x) for all x in the domain of f

Ex. Determine whether the following functions are even or odd.

a.
$$f(x) = x^5 + x$$
 b. $g(x) = 1 - x^4$ c. $h(x) = 2x - x^2$ b. $f(-x) = (-x)^5 + ($

Homework 9/11

TB pg. 190 #16, 35, 36, 40, 61-68