

Objective

Students will...

- Be able to find polynomials with specified zeros.
- Be able to understand what Conjugate Zeros Theorem says and use it to find polynomials.

Finding Polynomials with Specified Zeros

We have been learning how to factor a polynomial in order to find its zeros. The backward process can also be done. Consider a polynomial P with zeros 0 and -3. Based on what we know about factored polynomials. These zeros can be derived from P(x) = x(x+3)

polynomials. These zeros can be derived from P(x) = x(x+3) $e^{-2x}(x+3)$ So, when we multiply it out, $P(x) = x^2 + 3x$ $e^{-2x}(x+3)$ $e^{-2x}(x+3)$

Hence, if the degree of the polynomial is known, along with its zeros, we can derive the original function.

Example

Find a polynomial Q(x) of degree 4, with zeros -2 and 0, where -2 is

a zero of multiplicity 3. Note:
$$(A + B)^3 = (A^3 + 3A^2B + 3AB^2 + B^3)$$

$$Q(X) = X(X + Z)^3 - X(X^3 + 6x^2 + 12x^2 + 8).$$

$$\sqrt{(x)} = x_4 + e^{x_3} + 15x_5 + 8x$$

Example

Find a polynomial P(x) of degree 4, with zeros i, -i, 2, and -2.

$$P(X) = (X - i)(X + i)(X - i)(X + l).$$

$$= (X^{2} - i^{2})(X^{2} - 4) = (X^{2} + 1)(X^{2} - 4)$$

$$= X^{4} - 4x^{2} + x^{2} - 4 = XP(X) = X^{4} - 3x^{2} - 4$$

Conjugate Pairs $P(X) = \frac{1}{12} + \frac{1}{12}$

There is an interesting thing to observe regarding conjugates of $\frac{ex}{3} = 3 + 0i$.

Conjugate Zeros Theorem- If the polynomial P has real coefficients, and if the complex number z is a zero of P, then its complex conjugate is also a zero of P.

In other words, if a certain a + bi is a zero (x-intercept) of a polynomial, then its conjugate, a - bi is also a zero.

Example

Find a polynomial P(x) of degree 3 that has integer coefficients and zeros $\frac{1}{2}$ and 3-i. 3+i

$$P(X) = (2x-1)(x-(3-i))(X-(3+i)).$$

$$P(X) = (2x-1)(x-3+i)(x-3-i).$$

$$= (2x-1)(x^2-3x-(x-3x+9+3(+x-3x-10)))$$

$$= (2x-1)(x^2-6x+10) = 2x^2-12x^2+10x-x^2+6x-10)$$

$$P(X) = (2x-1)(x^2-6x+10) = 2x^2-12x^2+10x-x^2+6x-10)$$

Homework 10/28

TB pg. 298 #31-37 (odd), 41, 46