# Warm Up 9/29 √0 =0

1. Find the domain of the function

$$a. \quad f(x) = x^2 + 4x - 1$$

$$0: \left( -\infty \right)$$

# Lesson 2-8 One-to-One Functions and Their Inverses

#### Objective

#### Students will...

- Be able to define one-to-one functions.
- Be able to prove whether a given function is one-to-one, using horizontal line test and algebraically.
- Be able to find the inverse function of one-toone functions.

# "an"

#### One-to-One Functions

Function is defined as a relation having one output, per input. This only deals with the <u>number</u> of outputs, not necessarily the <u>type</u> of outputs. A <u>one-to-one</u> function is a function where no input shares a same output with another input. In other words,

$$f(x_1) = f(x_2)$$
 if and **only** if  $x_1 = x_2$   
or  
 $f(x_1) \neq f(x_2)$  if and **only** if  $x_1 \neq x_2$ 

Again, the definition of a function only deals with the number of outputs. Two different inputs could share the same output, as long as they both have **one** single output.

#### **Horizontal Line Test**

One of the ways to visually identify one-to-one functions is using the horizontal line test, which simply states that a function is one-to-one if and only if no horizontal line intersects its graph more than once.

Ex. Use the horizontal line test to determine whether the following

functions are one-to-one. a. f(x) = x - 2





#### Proving One-to-one-"ness"

Sometimes horizontal line test may not be suitable, because drawing the graph of a function may be difficult. In this case, we need to determine whether a function is one-to-one algebraically.  $f(x_i) = f(x_i)$  iff  $f(x_i) = f(x_i)$ 

Ex. Show that the following function is one-to-one

1. 
$$f(x) = 3x + 4$$
  
 $f(x_1) = f(x_2) = 3 \Rightarrow x$ ,  $f(x) = 3x + 4$   
 $f(x_1) = f(x_2) = 3 \Rightarrow x$ ,  $f(x) = 3x + 4$   
3.  $f(x) = x^3$   
 $f(x_1) = f(x_2) \Rightarrow x^3 \Rightarrow$ 

#### **Examples**

Algebraically, show whether the following functions are one-to-one

a. 
$$f(x) = x + 2$$

$$-((X_1) = f(X_2)$$

$$= X_1 + P = x_2 + P$$

$$= X_1 - X_2$$

$$= X_1 - X_2$$

$$= X_1 - X_2$$

$$= X_1 - X_2$$

b. 
$$g(x) = 6x^2 - 4$$
 $f(x) = 6 - 4 = 1$ 
 $f(x) = 6$ 

$$f(x) = f(x_1) = f(x_2)$$

$$f(x_1) = f(x_2)$$

$$f(x_2) = f(x_2)$$

$$f(x$$



#### **Inverse Functions**

The whole point of finding out whether a function is one-to-one or not has to do with inverse functions. For any one-to-one function, an inverse function must exist.

Inverse functions is the "opposite" function. By definition, for a function 
$$f$$
, let  $f(x) = y$ . Then, the inverse function  $f^{-1}$ ,  $ex$ ,  $f(x) = x^2$ 

$$f^{-1}(y) = x$$
, for any  $y$ .
$$f(x) = \frac{1}{x^2} + \frac{1}{x$$

You can also think inverse function as the function that "undo's" the its original function.

#### Example

Assume f is one-to-one...

If 
$$f(5) = 18$$
, find  $f^{-1}(18) = 5$  If  $f^{-1}(3) = 6$ , find  $f(6) = 3$ 

$$f(6)=16$$
If  $f(x) = 3x - 2$ , find  $f^{-1}(16) = 6$ 
 $16 = 3x - 2$ 
 $18 = 3x$ 
 $6 = x$ 

#### How to find the inverse function

- 1. Write "y =" instead of "f(x) ="
- 2. Replace switch the "y" and the "x"
- 3. Solve the equation for "y"
- 4. The resulting equation is the inverse function,  $f^{-1}(x)$

# 1. $f(x) = x^3$ 3. $y = x^3$

# Example

$$2. f(x) = x + 1$$

$$3.4=x^{-1}$$

$$3. f(x) = 2x - 3$$

$$3. h = \frac{3}{x+3}$$

#### Example

Remember! Only one-to-one functions can have an inverse function. So, it's important to make sure that the function is one-to-one before you try to find its inverse.

I.E.  $f(x) = x^2$  does not have an inverse function!



## Homework 9/29

TB pg. 230-231 #1-13 (e.o.o), 17, 19, 33, 37, 45