

Objective

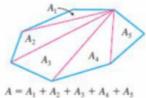
Students will...

- Be able to define limits.
- Be able to estimate limits from numerical tables.
- Be able to estimate limits from a graph.

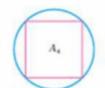
Limits

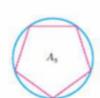
The concept of <u>limit</u> is the central idea underlying Calculus. Calculus involves focuses on studying and solving problems pertaining to situations involving <u>change</u> or <u>motion</u>. To gain a better understanding of limits consider the following example.

Finding the area of a polygon:



Finding the area of a circle:

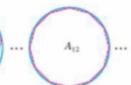




area =

 $\lim A_n$

 $n \rightarrow \infty$



Definition of Limit

Let's start by defining limit mathematically.

Definition of the Limit of a Function:

We write, $\lim_{x\to\infty} f(x) = L$, and say, "the limit of f(x), as x approaches a, equals L," if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a, but not equal to a.

In other words, this says that the values of f(x) get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but $x \neq a$.

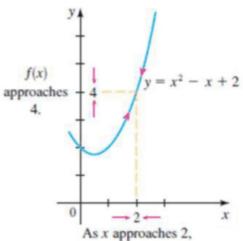
0.00

Alternative notation for $\lim_{x\to\infty} f(x) = L$ is $f(x) \to L$ as $x \to a$

Example

Consider the following function: $f(x) = x^2 - x + 2$. Here are the tables and graph concerning this function, with x surrounding 2, but not equal to 2.

x	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001



Estimating Limits

Guess the value of $\lim_{x\to 1} \frac{x-1}{x^2-1}$, using the table.

x < 1	f(x)	
0.5	0.666667	
0.9	0.526316	
0.99	0.502513	
0.999	0.500250	
0.9999	0.500025	

x > 1	f(x)	
1.5	0.4000000	
1.1	0.476190	
1.01	0.497512	
1.001	0.499750	
1.0001	0.499975	

$$\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$$

Guess the value of $\lim_{x\to 0} \frac{\tan 3x}{x} = D \mathbb{Z}$

x	$\frac{\tan 3x}{x}$
0.1	3.093362496
0.01	3.000900324
0.001	3.000009000
0.0001	3.000000090
-0.0001	-3.000000090
-0.001	-3.000009000
-0.01	-3.000900324
-0.1	-3.093362496

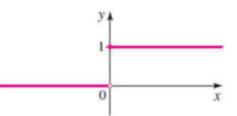
Limits that Fail to Exist

There are certain occasions where the limit does not exist.

1. A function with a "Jump."

Ex.
$$H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$$

Limit as $t \to 0$ does not exist.



2. A function that oscillates.

Ex.
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
.

$$f(1) = \sin \pi = 0$$

$$f\left(\frac{1}{2}\right) = \sin 2\pi = 0$$

$$\lim_{x\to 0}\sin\frac{\pi}{x}.$$

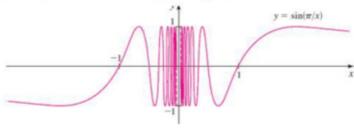
$$f\left(\frac{1}{3}\right) = \sin 3\pi = 0$$

$$f\left(\frac{1}{4}\right) = \sin 4\pi = 0$$

$$f(0.1) = \sin 10\pi = 0$$

$$f(0.01) = \sin 100\pi = 0$$

Is it zero? However... Limit does not exist!

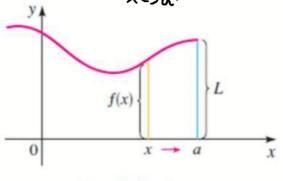


One-Sided Limit

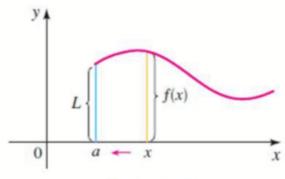
One of the ways we can consider whether a function has a limit or not, is to consider them **one side at a time**.

We write $\lim_{x\to a^-} f(x) = L$, for x approaching a from the left side.

We write $\lim_{x\to\infty} f(x) = L$, for x approaching a from the right side.



(a)
$$\lim_{x \to a^{-}} f(x) = L$$



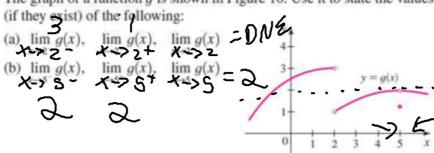
(b)
$$\lim_{x \to a^+} f(x) = L$$

Existence of Limit

So in comparing the two sides of the limit, we see that the following is true.

 $\lim f(x) = L$ if and only if $\lim f(x) = L$ $\lim f(x) = L$ and

Ex. The graph of a function g is shown in Figure 10. Use it to state the values

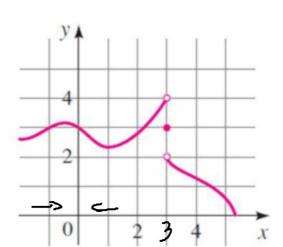


Homework Problem

14. For the function f whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.

(a) $\lim_{x \to 0} f(x) = 3$ (b) $\lim_{x \to 3^{-}} f(x) = 4$ (c) $\lim_{x \to 3^{+}} f(x) = 4$

(d) $\lim_{x \to 3} f(x) = 0$ Ng(e) f(3) = 3



Homework 5/25

TB pgs. 889-890 #13, 15