Lesson 5-2b $\Delta < 0$ **Trigonometric Functions** of Real Numbers II

Objective

Students will...

- Be able to use a calculator to evaluate trigonometric functions (both radians and degree)
- Be able to know and apply the even-odd properties of trigonometric functions.

Trigonometric Functions

The concept of trigonometric functions can be defined in terms of the unit circle. The definition of trigonometric functions is as follows:

$$\cos t = x$$

$$\sin t = y$$

$$\tan t = \frac{y}{x} (x \neq 0) \frac{\sin t}{\cos t}$$

$$\sec t = \frac{1}{\cos t} = \frac{1}{x}$$

$$(x \neq 0)$$

$$\csc t = \frac{1}{\sin t} = \frac{1}{y}$$

$$(y \neq 0)$$

$$\sec t = \frac{1}{\cos t} = \frac{1}{x} \qquad \csc t = \frac{1}{\sin t} = \frac{1}{y} \qquad \cot t = \frac{1}{\tan t} = \frac{x}{y} \frac{\cos t}{\sin t}$$

$$(y \neq 0) \qquad (y \neq 0)$$

Evaluating Trigonometric Functions

The previous definitions of trigonometric functions are only helpful to us if t happens to be one of the values on the unit circle. Consider for example, $\cos\frac{\pi}{7}$

Since $\frac{\pi}{7}$ is not on the unit circle, we would have to use a calculator to evaluate this function.

One thing to keep in mind is that trigonometric functions can be evaluated using both degrees and radians. It is **CRUCIAL** that the calculator is in the right mode. For most calculators, DEG=Degrees, and RAD=Radians.

So, going back to our problem, since $\frac{\pi}{7}$ is a value in radians (no degree sign), we need to put our calculator in radian mode.

$$\cos\frac{\pi}{7} \approx 0.9 \, OO9 \, 7$$

Try doing these problems. Note that they are all in radians.

$$\sin \frac{\pi}{5} \approx 0.5878$$
 $\tan \frac{7\pi}{9} \approx -0.8391$ $\cos \frac{6\pi}{31} \approx 0.8208$

$$\tan\frac{11\pi}{8} \approx 2.414^2$$

$$\sin\frac{7\pi}{5} \approx -0.951$$

Now, let's try a couple problems in degree mode.

$$\sin 33^{\circ} \approx 0.5446 \quad \cos 67^{\circ} \approx 0.3907 \quad \tan 0.889^{\circ} \approx 0.0155$$

$$\tan 0.889^{\circ} \approx 0 0 | 55$$

Also, remember that
$$\sec t = \frac{1}{\cos t}$$
 , $\csc t = \frac{1}{\sin t}$, and $\cot t = \frac{1}{\tan t}$

Thus,
$$\csc 67^\circ = \frac{1}{\sin 67} \approx 1.0864$$
 and $\sec \frac{\pi}{8} = \frac{1}{\cos \pi/8} \approx 1.0824$

$$\sec \frac{\pi}{8} = \frac{1}{\cos \pi/8} \approx 1.082 \text{ }$$

Try these. Make sure you're in the right mode.

$$\cot \frac{\pi}{19} \approx 5.9927$$
 $\csc 65.98^{\circ} \approx 1.0948$ $\sec \frac{27\pi}{16} \approx 1.79995$.

$$\mathcal{I}_3 \rightarrow (1/2, \frac{\sqrt{3}}{2})$$
 Even-Odd Properties

Consider the following.

$$\sin\frac{\pi}{3} = \sqrt{3}$$

sin
$$\left(-\frac{\pi}{3}\right) = \sin\left(\frac{53\pi}{3}\right) = -\frac{5\pi}{3}$$

Now, what about...

$$\cos\frac{\pi}{3} = \sqrt{2}$$

$$\cos\left(-\frac{\pi}{3}\right) = \cos(3) = 2$$

$$\cos \frac{\pi}{3} = \frac{1}{2}$$

$$\cos \left(-\frac{\pi}{3}\right) = \cos(\frac{\pi}{3}) = \frac{1}{2}$$

$$\tan t = \frac{1}{2} \frac{\sin t}{\cos t}$$
Turns out, these results can be generalized.
$$\Rightarrow \tan(-t) = \frac{\sin t}{\cos t}$$
Even-Odd Properties:
$$\cos(-t) = \cos t \qquad \sin(-t) = -\sin t \qquad \tan(-t) = -\tan t$$

$$\cos(-t) = \cos t$$

$$\sin(-t) = -\sin t$$

$$\tan(-t) = -\tan t$$

$$\csc(-t) = -\csc(t)$$

$$\sec(-t) = \sec t$$

$$\cot(-t) = -\cot t$$

Examples

Use the Even-Odd Properties to evaluate the following.

$$\frac{\sqrt{\sin\left(\frac{\pi}{6}\right)} = -\sin\left(\frac{\pi}{6}\right)}{= -\left(\frac{1}{2}\right) \cdot \frac{1}{2}} = -\left(\frac{1}{2}\right) \cdot \frac{1}{2}$$

$$\cot\left(\frac{5\pi}{6}\right) = -\left(\frac{5\pi}{6}\right) = -\left(\frac{5\pi}{6}\right)$$

$$\cos\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \left(\frac{52}{2}\right)$$

$$\cos\left(\frac{\pi}{4}\right) = -\cos\left(\frac{2\pi}{3}\right) = -\cos\left(\frac{2\pi}{3}\right)$$

$$tan\left(\frac{11\pi}{6}\right) = -tan\left(\frac{11\sqrt{3}}{6}\right)$$

$$\sec\left(\mathbf{M}^{\frac{\pi}{2}}\right) = 5e\left(\sqrt{\frac{3}{2}}\right)$$

Homework 12/3

Worksheet