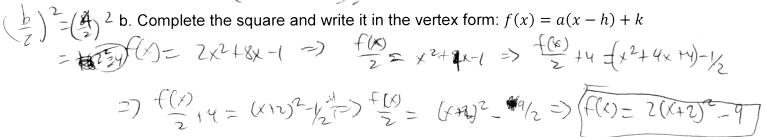
____ Period: ____ Date:

PreCalculus Chapter 2 Practice Test

Answer the following questions. No work is necessary unless it is specified.

1. Define function.

2. Let $f(x) = 2x^2 + 8x - 1$. Evaluate each function value.

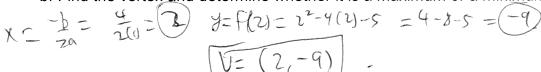

a.
$$f(1)$$
 b. $f(3)$ c. $f(10)$ d. $f(a)$ e. $f(x^{2})$

$$f(1) = 2(1)^{2} + 8(1) + (3) = 18 + 14 + (43) = 100 + 80 + (43) = 20^{2} + 8(1) + (42)^{2} + 8(1)^{2} + (42)^{2} + 8(1)^{2} + (42)$$

3. For the same function f(x) from #2,

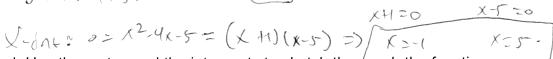
a. Find its domain.

$$\int_{-\pi}^{\pi} \left(-\infty, \infty \right)$$

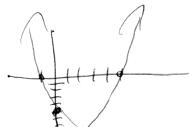

c. Find its vertex and determine whether it's a maximum or a minimum point.

d. Describe the graph's change (shift, stretch, compress, etc.) from $f(x) = x^2$

4. Let
$$f(x) = x^2 - 4x - 5$$

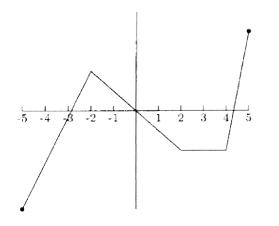

a. Find its domain.

b. Find the vertex and determine whether it is a maximum or a minimum point.



c. Find the x and the y intercepts.

$$y-int$$
: $F(0) = 0-0-5 = -5$


d. Use the vertex and the intercepts to sketch the graph the function

5. Write the following equation for y in terms of x: 3x + 4y = 2

6. Write the following equation for x in terms of y: x - 2y - 3 = 0 (x = 2y + 3)

7. Use the graph to state the intervals in which the function is increasing, decreasing, and neither.

8. For the function f(x) = 3x - 2, determine the average rate of change between

$$x = 2, \text{ and } x = 3.$$

$$f(2) = 3(2) - 2 = 4$$

$$f(3) = 3(3) - 2 = 7$$

$$x = 2, \text{ and } x = 3.$$

$$f(2) = 3(2) - 2 = 4$$

$$f(3) = 3(3) - 2 = 7$$

$$f(3) = 3(3) - 2 = 7$$

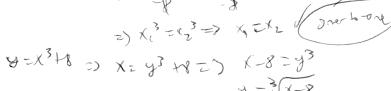
$$f(3) = 3(3) - 2 = 7$$

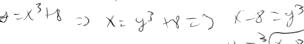
9. Determine whether the following functions are one-to-one. If they are, find their inverse function.

a.
$$f(x) = -2x + 4$$

a.
$$f(x) = -2x + 4$$

$$f(x_1) = f(x_2) \Rightarrow -2(x_1) \Rightarrow x = -2(x_1) \Rightarrow y = -2x + y$$


$$\Rightarrow -2x_1 \Rightarrow -2x_2 \Rightarrow x = -2x_1 \Rightarrow x = -2x_2 \Rightarrow x = -$$


c.
$$g(x) = x^2 - 2x$$

b.
$$f(x) = \sqrt{x}$$

d.
$$h(x) = x^3 + 8$$

h(4)=h(x2)=> X348=X2348

10. Let
$$f(x) = x - 3$$
 and

10. Let
$$f(x) = x - 3$$
 and $g(x) = 4x^2$. Find $f + g$, $f - g$, fg , $\frac{f}{g}$, $f \circ g$, $g \circ f$

$$f(x) + f(x) = (x - 3 + 4x^2)$$

$$f \circ g = f(g(x)) = f(y(x)) = f(y(x$$

$$f \circ g = f(g(x)) = f(4x^2) = (4x^2 - 3)$$
.

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(y(x^2)) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(x^2) = (y(x^2) - y(x^2))^2$$

$$f \circ g = f(g(x)) = f(g(x)) = f(g(x)) = f(g(x))$$

$$f \circ g = f(g(x)) = f(g(x)) = f(g(x))$$

$$f \circ g = f(g(x)) = f(g(x)) = f(g(x))$$

$$f \circ g = f(g(x)) = f(g(x)) = f(g(x))$$

$$f \circ g = f(g(x)) = f(g(x)) = f(g(x))$$

$$f \circ g = f(g(x))$$

$$f \circ g = f(g(x)) = f(g(x))$$

11. Use f(x) = 3x - 5 and $g(x) = 2 - x^2$ to evaluate the following expressions.

a.
$$(f \circ g)(0)$$

a.
$$(f \circ g)(0)$$
 b. $(f \circ g)(2)$

c.
$$(f \circ f)(3)$$

d.
$$(g \circ f)(1)$$

$$f(g(u)) = f(v) = f(f(v)) = f(u)$$

$$f(g(u)) = f(f(v)) = f(u)$$

$$f(g(u)) = f(f(v)) = f(u)$$

$$= g(f(v)) = f(u)$$

$$= g(f(v)) = f(u)$$

- 12. (T) or F) Only one-to-one functions can have an inverse function.
- 13. (T or F) If a graph stretches vertically, then it also stretches horizontally.
- 14. (Tor F) The set of all inputs (domain) of a function becomes the set of all outputs (range) for the inverse function.
- 15. (T or F) You can test for one-to-one-ness of a function using the vertical line test.
- 16. The effectiveness of a television commercial depends on how many times a viewer watches it. After some experiments an advertising agency found that if the effectiveness E is measured on a scale of 0 to 10, then $E(n) = \frac{2}{3}n \frac{1}{90}n^2$, where n is the number of times a viewer watches a given commercial. For a commercial to have maximum effectiveness, how many times should a viewer watch it?

$$\xi(n) = \frac{2}{3}n - \frac{1}{90}n^{2} = \frac{1}{90}n^{2} + \frac{2}{30}$$

$$x = \frac{-\frac{2}{3}}{2(-\frac{1}{90})} = \frac{1}{13} \cdot \frac{1}{130} = \frac{1}{30}$$

max = vertex.

(nput): # of times watched. X

output: Effectiveness.

17. A gardener has 240 feet of fencing to fence in a rectangular vegetable garden. Find the dimensions of the largest area she can fence. What is the maximum area?

Aren = length xwidth

=
$$xy$$
.

 $A(x) = x(120 + x) = 120x - x^2$ (1 put: dimension x)

 $x = \frac{b}{2n} = \frac{-120}{-2} = 60$.

 $A(60) = 60(120-60) = 3600$

18. A hockey team plays in an arena with a seating capacity of 10,500 spectators. With the ticket price set at \$10, average attendance at recent games has been 9000. A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000.

let X = ficket prive.

a. What ticket price is so high that no one attends, and hence no revenue is generated?

function of R(X) = X [(10-X)(1000 + 9,000) = X (10000 - (000 X + 9,000) = X (19000 - (000 X))

=> R(x) = 19000x -1000 x'Z

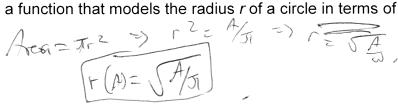
No Revolue => R(0)=0. So, 0= (900) x - (000 x 2.= x (1900 - (000 x)).

=) X=0 or (9000 - (000 x).

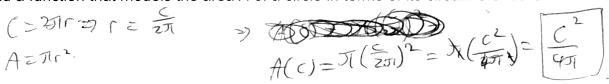
100x = 1900--100 (-19)

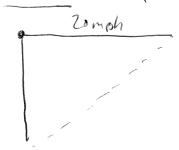
b. Find the price that maximizes revenue from ticket sales.

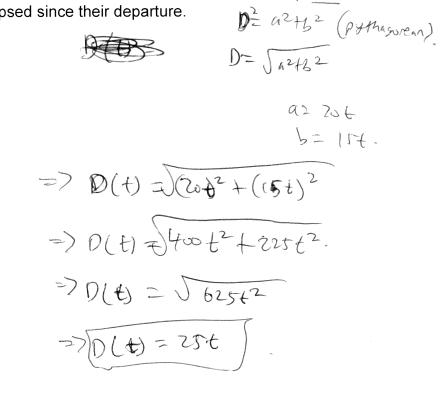
 $R(R) = (9000 \times - (000)$


X= 7(900) - (900 - \$9,50)

R(R)= 19000x-1000x (April + i Kevenue y


19. A rectangular building lot is three times as long as it is wide. Find a function that models its area A in terms of its width w.


20. Find a function that models the radius r of a circle in terms of its area A.



21. Find a function that models the area A of a circle in terms of its circumference C.

22. Two ships leave port at the same time. One sails south at 15mi/h and the other sails east at 20mi/h. Find a function that models the distance D between the ships in terms of the time *t* (in hours) elapsed since their departure.

