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Chapter Overview

In this chapter we study sequences and series of numbers. Roughly speaking, a 
sequence is a list of numbers written in a specific order. The numbers in the sequence
are often written as a1, a2, a3, . . . . The dots mean that the list continues forever. 
A simple example is the sequence

� � � � �

Sequences arise in many real-world situations. For example, if you deposit a sum
of money into an interest-bearing account, the interest earned each month forms a 
sequence. If you drop a ball and let it bounce, the height the ball reaches at each 
successive bounce is a sequence. An interesting sequence is hidden in the internal
structure of a nautilus shell.

We can describe the pattern of the sequence displayed above by the formula:

You may have already thought of a different way to describe the pattern—namely,
“you go from one number to the next by adding 5.” This natural way of describing the
sequence is expressed by the recursive formula:

starting with a1 � 5. Try substituting n � 1, 2, 3, . . . in each of these formulas to see

an � an�1 � 5

an � 5n

1

1/2

1/4
1/8
1/16

a5 . . .a4a3a2a1

5,  10,  15,  20,  25, . . .
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822 CHAPTER 11 Sequences and Series

SUGGESTED TIME

AND EMPHASIS

1 class.
Optional material.

POINTS TO STRESS

1. Definition and notation of
sequences.

2. Recursively defined sequences,
including the Fibonacci
sequence.

3. Partial sums, including
summation notation.

IN-CLASS MATERIALS

Students often confuse the idea of a function with a sequence. Have the students graph the function
f(n) = sin(2πn), and then the sequence an = sin(2πn) to make sure they understand the difference.

how they produce the numbers in the sequence.
We often use sequences to model real-world phenomena—for example, the

monthly payments on a mortgage form a sequence. We will explore many other ap-
plications of sequences in this chapter and in Focus on Modeling on page 874.

11.1 Sequences and Summation Notation

Many real-world processes generate lists of numbers. For instance, the balance in a
bank account at the end of each month forms a list of numbers when tracked over
time. Mathematicians call such lists sequences. In this section we study sequences
and their applications.

Sequences

A sequence is a set of numbers written in a specific order:

The number a1 is called the first term, a2 is the second term, and in general an is the
nth term. Since for every natural number n there is a corresponding number an, we
can define a sequence as a function.

a1, a2, a3, a4, . . . , an, . . .

822 CHAPTER 11 Sequences and Series

1st
term

2nd
term

3rd
term

4th 
term

nth
term

Definition of a Sequence

A sequence is a function f whose domain is the set of natural numbers. The
values are called the terms of the sequence.f 11 2 , f 12 2 , f 13 2 , . . .

We usually write an instead of the function notation for the value of the function
at the number n.

Here is a simple example of a sequence:

The dots indicate that the sequence continues indefinitely. We can write a sequence
in this way when it’s clear what the subsequent terms of the sequence are. This se-
quence consists of even numbers. To be more accurate, however, we need to specify
a procedure for finding all the terms of the sequence. This can be done by giving a
formula for the nth term an of the sequence. In this case,

and the sequence can be written as

2,     4,     6,     8,  . . . ,  2n,  . . .

an � 2n

2, 4, 6, 8, 10, . . .

f 1n 2

Another way to write this sequence is
to use function notation:

so a11 2 � 2, a12 2 � 4, a13 2 � 6, . . .

a1n 2 � 2n
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CHAPTER 11 Sequences and Series 823

ALTERNATE EXAMPLE 1a
Find the first five terms and the
150th term of the sequence
defined by the following formula: 
an = 8n - 2.

ANSWER

ALTERNATE EXAMPLE 1b
Find the first five terms and the
100th term of the sequence
defined by the following formula:
cn = n2 - 4.

ANSWER

IN-CLASS MATERIALS

Have the students try to figure out
the pattern of this sequence:
3, 3, 5, 4, 4, 3, 5, 5, 4, 3, . . . .

Answer

It counts the number of letters in
the words ‘one,’ ‘two,’ ‘three,’ . . . .

c4 = 12, c5 = 21, c100 = 9996
c1 = 3, c2 = 0, c3 = 5,

a4 = 30, a5 = 38, a150 = 1198
a1 = 6, a2 = 14, a3 = 22, 

IN-CLASS MATERIALS

Craig High School teacher Melissa Pfohl’s favorite sequence is an = n2 + (-1)n n. Starting with n = 0, the
sequence goes as follows: 0, 0, 6, 6, 20, 20, 42, 42, . . . . Note that the formula is far from obvious, and the
tantalizing “doubling property” can be proved using elementary methods.

Notice how the formula an � 2n gives all the terms of the sequence. For instance, sub-
stituting 1, 2, 3, and 4 for n gives the first four terms:

To find the 103rd term of this sequence, we use n � 103 to get

Example 1 Finding the Terms of a Sequence

Find the first five terms and the 100th term of the sequence defined by each 
formula.

(a) (b)

(c) (d)

Solution To find the first five terms, we substitute n � 1, 2, 3, 4, and 5 in the
formula for the nth term. To find the 100th term, we substitute n � 100. This gives
the following.

nth term First five terms 100th term

(a) 2n � 1 1, 3, 5, 7, 9 199

(b) n2 � 1 0, 3, 8, 15, 24 9999

(c)

(d) ■

In Example 1(d) the presence of in the sequence has the effect of making
successive terms alternately negative and positive.

It is often useful to picture a sequence by sketching its graph. Since a sequence is
a function whose domain is the natural numbers, we can draw its graph in the Cartesian
plane. For instance, the graph of the sequence

is shown in Figure 1. Compare this to the graph of

shown in Figure 2. The graph of every sequence consists of isolated points that are
not connected.

Graphing calculators are useful in analyzing sequences. To work with 
sequences on a TI-83, we put the calculator in Seq mode (“sequence” mode) as in 
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1
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1

32

1�1 2 n
2n

100

101

1

2
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2

3
, 

3

4
, 

4

5
, 

5

6

n

n � 1

rn �
1�1 2 n

2ntn �
n

n � 1

cn � n2 � 1an � 2n � 1

a103 � 2 # 103 � 206

a3 � 2 # 3 � 6   a4 � 2 # 4 � 8

a1 � 2 # 1 � 2   a2 � 2 # 2 � 4
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an

n0

1

1 2 3 4 5 6

Terms are
decreasing.

Figure 1

Figure 2

an

n0

1

1

_1

3 5

Terms alternate
in sign.
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824 CHAPTER 11 Sequences and Series

EXAMPLE
A non-obvious telescoping series: 

Consider the sequence , , ,

This can 

be rewritten as an

Thus

(as shown in the text).

ALTERNATE EXAMPLE 2
Find the first five terms of the
sequence defined recursively by
a1 = 4 and an = 2(an - 1 + 5).

ANSWER

a4 = 102, a5 = 214 
a1 = 4, a2 = 18, a3 = 46,

a
k

n = 1
an = 1 -

1

k + 1

=
1
n

-
1

n + 1
.

, . . . , an =
1

n(n + 1)
.

1

20

1

12

1

6

1

2

IN-CLASS MATERIALS

There are several ways of making the terms of a sequence alternate. The text gives the term (-1)n. Another
alternating sequence is cos πn. Ask the students to come up with a formula for the following sequence: 0, 

1, 0, -1, 0, 1, 0, -1, . . . . There are several ways to do this, but the cleanest is sin ap
2

 nb .

Figure 3(a). If we enter the sequence of Example 1(c), we can 
display the terms using the command as shown in Figure 3(b). We can also
graph the sequence as shown in Figure 3(c).

Finding patterns is an important part of mathematics. Consider a sequence that 
begins

Can you detect a pattern in these numbers? In other words, can you define a sequence
whose first four terms are these numbers? The answer to this question seems easy;
these numbers are the squares of the numbers 1, 2, 3, 4. Thus, the sequence we are
looking for is defined by an � n2. However, this is not the only sequence whose first
four terms are 1, 4, 9, 16. In other words, the answer to our problem is not unique (see
Exercise 78). In the next example we are interested in finding an obvious sequence
whose first few terms agree with the given ones.

Example 2 Finding the nth Term of a Sequence

Find the nth term of a sequence whose first several terms are given.

(a) (b) �2, 4, �8, 16, �32, . . .

Solution

(a) We notice that the numerators of these fractions are the odd numbers and the
denominators are the even numbers. Even numbers are of the form 2n, and odd
numbers are of the form 2n � 1 (an odd number differs from an even number
by 1). So, a sequence that has these numbers for its first four terms is given by

(b) These numbers are powers of 2 and they alternate in sign, so a sequence that
agrees with these terms is given by

You should check that these formulas do indeed generate the given terms. ■

Recursively Defined Sequences

Some sequences do not have simple defining formulas like those of the preceding ex-
ample. The nth term of a sequence may depend on some or all of the terms preceding
it. A sequence defined in this way is called recursive. Here are two examples.

an � 1�1 2 n2n

an �
2n � 1

2n

1
2, 

3
4, 

5
6, 

7
8, . . .

1, 4, 9, 16, . . .

FIGURE 3

(b) (c)

1.5

0 15

   u( )
 1 .5
 2 .66667
 3 .75
 4 .8
 5 .83333
 6 .85714
 7 .875

 =1

(a)

 Plot1 Plot2 Plot3
 Min=1

 u( ) = /( +1)=

TABLE

u1n 2 � n/ 1n � 1 2
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Figure 3

u1n 2 � n/ 1n � 1 2

Not all sequences can be defined by a
formula. For example, there is no
known formula for the sequence of
prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

Large Prime Numbers

The search for large primes fas-
cinates many people. As of this
writing, the largest known prime
number is

It was discovered in 2005 by Dr.
Martin Nowak, an eye surgeon and
math hobbyist in Michelfeld, Ger-
many, using a 2.4-GHz Pentium 4
computer. In decimal notation this
number contains 7,816,230 digits.
If it were written in full, it would
occupy almost twice as many pages
as this book contains. Nowak was
working with a large Internet group
known as GIMPS (the Great Inter-
net Mersenne Prime Search). Num-
bers of the form 2 p � 1, where p is
prime, are called Mersenne num-
bers and are more easily checked
for primality than others. That is
why the largest known primes are
of this form.

225,964,951 � 1
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CHAPTER 11 Sequences and Series 825

ALTERNATE EXAMPLE 3 
Find the first 11 terms of the
sequence defined recursively by
F1 = 3, F2 = 8, and 
Fn = Fn-1 + Fn-2.

ANSWER
F1 = 3, F2 = 8, F3 = 11, 
F4 = 19, F5 = 30, F6 = 49, 
F7 = 79, F8 = 128, F9 = 207, 
F10 = 335, F11 = 542

EXAMPLE
A sequence whose values look
random: an = sin(n2)

ALTERNATE EXAMPLE 4
Find the nth term of a sequence
whose first five terms are given
below. 
-2, 4, -8, 16, -32, . . . 

ANSWER
(-1)n · 2n

IN-CLASS MATERIALS

Note that there are many sequences that have no pattern: 1, π, 3, e, -27, . . . . Also point out that not every
sequence with a pattern has a rule that is easily written as a formula. For example,

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, . . .
3, 3.1, 3.14, 3.141, 3.1415, . . .
0, 0.1, 0.12, 0.123, . . . , 0.123456789, 0.12345678910, 0.1234567891011, . . .

(The limit of this last sequence is called the Champernowe constant.)

Example 3 Finding the Terms of a Recursively

Defined Sequence

Find the first five terms of the sequence defined recursively by a1 � 1 and

Solution The defining formula for this sequence is recursive. It allows us to find
the nth term an if we know the preceding term an�1. Thus, we can find the second
term from the first term, the third term from the second term, the fourth term from
the third term, and so on. Since we are given the first term a1 � 1, we can proceed
as follows.

Thus, the first five terms of this sequence are

■

Note that in order to find the 20th term of the sequence in Example 3, we must first
find all 19 preceding terms. This is most easily done using a graphing calculator. Fig-
ure 4(a) shows how to enter this sequence on the TI-83 calculator. From Figure 4(b)
we see that the 20th term of the sequence is a20 � 4,649,045,865.

Example 4 The Fibonacci Sequence

Find the first 11 terms of the sequence defined recursively by F1 � 1,
F2 � 1 and

Solution To find Fn, we need to find the two preceding terms Fn�1 and Fn�2.
Since we are given F1 and F2, we proceed as follows.

F5 � F4 � F3 � 3 � 2 � 5

F4 � F3 � F2 � 2 � 1 � 3

F3 � F2 � F1 � 1 � 1 � 2

Fn � Fn�1 � Fn�2

(a) (b)

u(20)
4649045865

 Plot1 Plot2 Plot3
  Min=1
 u( )=3(u( -1)+2)
 u( Min)={1}

1, 9, 33, 105, 321, . . .

a5 � 31a4 � 2 2 � 31105 � 2 2 � 321

a4 � 31a3 � 2 2 � 3133 � 2 2 � 105

a3 � 31a2 � 2 2 � 319 � 2 2 � 33

a2 � 31a1 � 2 2 � 311 � 2 2 � 9

an � 31an�1 � 2 2

SECTION 11.1 Sequences and Summation Notation 825

Figure 4

u1n 2 � 31u1n � 1 2 � 2 2 , u11 2 � 1

Eratosthenes (circa 276–195 B.C.)
was a renowned Greek geographer,
mathematician, and astronomer.
He accurately calculated the cir-
cumference of the earth by an in-
genious method (see Exercise 72,
page 476). He is most famous,
however, for his method for finding
primes, now called the sieve of Er-
atosthenes. The method consists of
listing the integers, beginning with
2 (the first prime), and then cross-
ing out all the multiples of 2, which
are not prime. The next number re-
maining on the list is 3 (the second
prime), so we again cross out all
multiples of it. The next remaining
number is 5 (the third prime num-
ber), and we cross out all multiples
of it, and so on. In this way all
numbers that are not prime are
crossed out, and the remaining
numbers are the primes.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
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826 CHAPTER 11 Sequences and Series

It’s clear what is happening here. Each term is simply the sum of the two terms that
precede it, so we can easily write down as many terms as we please. Here are the
first 11 terms:

■

The sequence in Example 4 is called the Fibonacci sequence, named after the
13th-century Italian mathematician who used it to solve a problem about the breed-
ing of rabbits (see Exercise 77). The sequence also occurs in numerous other appli-
cations in nature. (See Figures 5 and 6.) In fact, so many phenomena behave like the
Fibonacci sequence that one mathematical journal, the Fibonacci Quarterly, is de-
voted entirely to its properties.

1 1

2
3

5

8

13

21

34

Fibonacci spiral Nautilus shellFigure 6

1

1

2

3

5

8

Figure 5

The Fibonacci sequence in the 
branching of a tree

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
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Fibonacci (1175–1250) was born
in Pisa, Italy, and educated in
North Africa. He traveled widely in
the Mediterranean area and learned
the various methods then in use for
writing numbers. On returning to
Pisa in 1202, Fibonacci advocated
the use of the Hindu-Arabic deci-
mal system, the one we use today,
over the Roman numeral system
used in Europe in his time. His
most famous book, Liber Abaci,
expounds on the advantages of the
Hindu-Arabic numerals. In fact,
multiplication and division were 
so complicated using Roman num-
erals that a college degree was 
necessary to master these skills. 
Interestingly, in 1299 the city of
Florence outlawed the use of the
decimal system for merchants and
businesses, requiring numbers to
be written in Roman numerals or
words. One can only speculate
about the reasons for this law.
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CHAPTER 11 Sequences and Series 827

DRILL QUESTION

If we have a sequence defined by
a1 = 4, a2 = -3, and an = an - 2 +
an - 1, what is a4?

Answer

-2

ALTERNATE EXAMPLE 5
Find the first four partial sums
and the nth partial sum of the
sequence given by 

ANSWER
S1 = 1, S2 = 4, S3 = 9, S4 = 16, 
Sn = n2

an = 2n - 1.

IN-CLASS MATERIALS

Have students compute some partial sums that converge quickly to a recognizable number, such as the one

associated with (with a1 = 1) which converges to e, and which converges to 3.

Then have them look at some partial sums that go off to infinity, such as the ones associated with an = 10n

and an = n. Then have them conjecture about the fate of an = .
1
n

an = a3

4
bn

an =
1

(n - 1)!

Example 5 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by 
an � 1/2n.

Solution The terms of the sequence are

The first four partial sums are

S4 �
1

2
�

1

4
�

1

8
�

1

16
 �

15

16

S3 �
1

2
�

1

4
�

1

8
 �

7

8

S2 �
1

2
�

1

4
 �

3

4

S1 �
1

2
 �

1

2

1

2
, 

1

4
, 

1

8
, . . .

SECTION 11.1 Sequences and Summation Notation 827

The Partial Sums of a Sequence

For the sequence

the partial sums are

.

.

.

.

.

.

S1 is called the first partial sum, S2 is the second partial sum, and so on. Sn

is called the nth partial sum. The sequence S1, S2, S3, . . . , Sn, . . . is called
the sequence of partial sums.

 Sn � a1 � a2 � a3 � . . . � an

 S4 � a1 � a2 � a3 � a4

 S3 � a1 � a2 � a3

 S2 � a1 � a2

 S1 � a1

a1, a2, a3, a4, . . . , an, . . .

The Partial Sums of a Sequence

In calculus we are often interested in adding the terms of a sequence. This leads to
the following definition.
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828 CHAPTER 11 Sequences and Series

ALTERNATE EXAMPLE 6
Find the first four partial sums
and the nth partial sum of the
sequence given by 

ANSWER

Sn =
1

2
-

1

n + 2

S4 =
1

2
-

1

6
,S3 =

1

2
-

1

5
,

S2 =
1

2
-

1

4
,S1 =

1

2
-

1

3
,

an =
1

n + 1
-

1

n + 2
.

Notice that in the value of each partial sum the denominator is a power of 2 and the
numerator is one less than the denominator. In general, the nth partial sum is

The first five terms of an and Sn are graphed in Figure 7. ■

Example 6 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by

Solution The first four partial sums are

Do you detect a pattern here? Of course. The nth partial sum is

■

Sigma Notation

Given a sequence

we can write the sum of the first n terms using summation notation, or sigma 
notation. This notation derives its name from the Greek letter � (capital sigma,
corresponding to our S for “sum”). Sigma notation is used as follows:

The left side of this expression is read “The sum of ak from k � 1 to k � n.” The let-
ter k is called the index of summation, or the summation variable, and the idea is
to replace k in the expression after the sigma by the integers 1, 2, 3, . . . , n, and add
the resulting expressions, arriving at the right side of the equation.

a1, a2, a3, a4, . . .

Sn � 1 �
1

n � 1

 S4 � a1 �
1

2
b � a 1

2
�

1

3
b � a 1

3
�

1

4
b � a 1

4
�

1

5
b � 1 �

1

5

 S3 � a1 �
1

2
b � a 1

2
�

1

3
b � a 1

3
�

1

4
b       � 1 �

1

4

 S2 � a1 �
1

2
b � a 1

2
�

1

3
b             � 1 �

1

3

 S1 � a1 �
1

2
b                  � 1 �

1

2

an �
1
n

�
1

n � 1

Sn �
2n � 1

2n � 1 �
1

2n

828 CHAPTER 11 Sequences and Series

a⁄

n0

1

1

1
2

S⁄

S¤

a¤

S‹

a‹

S›

a›

Sfi

afi

2 3 4 5

Partial sums of
the sequence

Terms of the
sequence

Figure 7

Graph of the sequence an and the
sequence of partial sums Sn

a
n

k�1
ak

This tells us to
end with k � n.

This tells us to
start with k � 1.

This tells
us to add. a

n

k�1
ak � a1 � a2 � a3 � a4 � . . . � an
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CHAPTER 11 Sequences and Series 829

ALTERNATE EXAMPLE 7a
Find the sum. 

ANSWER
1925

ALTERNATE EXAMPLE 7c
Find the sum. 

ANSWER
44

ALTERNATE EXAMPLE 7d
Find the sum. 

ANSWER
12

ALTERNATE EXAMPLE 8
Write the sum using sigma
notation, where the index of
summation k runs from 1 to 7. 
34 + 44 + 54 + 64 + 74

+ 84 + 94 

ANSWER

a
7

i = 2
(k + 2)4

a
7

i = 2
2

a
9

i = 2
i

a
9

k + 5
k

SAMPLE QUESTION

Text Question 

Compute .

Answer

15

a
5

k + 1
k

Example 7 Sigma Notation

Find each sum.

(a) (b) (c) (d)

Solution

(a)

(b)

(c)

(d) ■

We can use a graphing calculator to evaluate sums. For instance, Figure 8 shows
how the TI-83 can be used to evaluate the sums in parts (a) and (b) of Example 7.

Example 8 Writing Sums in Sigma Notation

Write each sum using sigma notation.

(a) 13 � 23 � 33 � 43 � 53 � 63 � 73

(b)

Solution

(a) We can write

(b) A natural way to write this sum is

However, there is no unique way of writing a sum in sigma notation. We could
also write this sum as

or ■13 � 14 � 15 � . . . � 177 � a
75

k�1
1k � 2

13 � 14 � 15 � . . . � 177 � a
74

k�0
1k � 3

13 � 14 � 15 � . . . � 177 � a
77

k�3
1k

13 � 23 � 33 � 43 � 53 � 63 � 73 � a
7

k�1
k3

13 � 14 � 15 � . . . � 177

sum(seq(K2 ,K,1,5,1))
55

sum(seq(1/J,J,3,5,
1)) Frac

47/60

Figure 8

a
6

i�1
2 � 2 � 2 � 2 � 2 � 2 � 2 � 12

a
10

i�5
i � 5 � 6 � 7 � 8 � 9 � 10 � 45

a
5

j�3

1

j
�

1

3
�

1

4
�

1

5
�

47

60

a
5

k�1
k2 � 12 � 22 � 32 � 42 � 52 � 55

a
6

i�1
2a

10

i�5
ia

5

j�3

1

ja
5

k�1
k2
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The ancient Greeks considered a
line segment to be divided into 
the golden ratio if the ratio of the
shorter part to the longer part is the
same as the ratio of the longer part
to the whole segment.

Thus, the segment shown is di-
vided into the golden ratio if

This leads to a quadratic equation
whose positive solution is

This ratio occurs naturally in many
places. For instance, psychological
experiments show that the most
pleasing shape of rectangle is one
whose sides are in golden ratio. The
ancient Greeks agreed with this and
built their temples in this ratio.

The golden ratio is related to
the Fibonacci sequence. In fact, it
can be shown using calculus* that
the ratio of two successive Fi-
bonacci numbers

gets closer to the golden ratio the
larger the value of n. Try finding
this ratio for n � 10.

*James Stewart, Calculus, 5th ed. (Pa-
cific Grove, CA: Brooks/Cole, 2003) 
p. 748.

1

1.618

Fn�1

Fn

x �
1 � 15

2
� 1.618

1
x

�
x

1 � x

1 x

Co
rb

is
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1–10 ■ Find the first four terms and the 100th term of the 
sequence.

1. an � n � 1 2. an � 2n � 3

3. 4. an � n2 � 1

5. 6.

7. 8.

9. an � nn 10. an � 3

an � 1�1 2 n�1
 

n

n � 1
an � 1 � 1�1 2 n

an �
1

n2an �
1�1 2 n

n2

an �
1

n � 1

11–16 ■ Find the first five terms of the given recursively
defined sequence.

11.

12.

13. an � 2an�1 � 1 and a1 � 1

14.

15. an � an�1 � an�2 and a1 � 1, a2 � 2

16. an � an�1 � an�2 � an�3 and a1 � a2 � a3 � 1

an �
1

1 � an�1
 and a1 � 1

an �
an�1

2
 and a1 � �8

an � 21an�1 � 2 2 and a1 � 3

■ Proof To prove Property 1, we write out the left side of the equation to get

Because addition is commutative and associative, we can rearrange the terms on the
right side to read

Rewriting the right side using sigma notation gives Property 1. Property 2 is proved
in a similar manner. To prove Property 3, we use the Distributive Property:

■

11.1 Exercises

 � c1a1 � a2 � a3 � . . . � an 2 � c a a
n

k�1
ak b

 a
n

k�1
cak � ca1 � ca2 � ca3 � . . . � can

a
n

k�1
1ak � bk 2 � 1a1 � a2 � a3 � . . . � an 2 � 1b1 � b2 � b3 � . . . � bn 2

a
n

k�1
1ak � bk 2 � 1a1 � b1 2 � 1a2 � b2 2 � 1a3 � b3 2 � . . . � 1an � bn 2

The following properties of sums are natural consequences of properties of the
real numbers.

Properties of Sums

Let a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . be sequences. Then for every posi-
tive integer n and any real number c, the following properties hold.

1.

2.

3. a
n

k�1
cak � c a a

n

k�1
ak b

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk
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SECTION 11.1 Sequences and Summation Notation 831

17–22 ■ Use a graphing calculator to do the following.

(a) Find the first 10 terms of the sequence.

(b) Graph the first 10 terms of the sequence.

17. an � 4n � 3 18. an � n2 � n

19. 20.

21.

22. an � an�1 � an�2 and a1 � 1, a2 � 3

23–30 ■ Find the nth term of a sequence whose first several
terms are given.

23. 2, 4, 8, 16, . . . 24.

25. 1, 4, 7, 10, . . . 26. 5, �25, 125, �625, . . .

27. 28.

29. 0, 2, 0, 2, 0, 2, . . . 30.

31–34 ■ Find the first six partial sums S1, S2, S3, S4, S5, S6 of the
sequence.

31. 1, 3, 5, 7, . . . 32. 12, 22, 32, 42, . . .

33. 34. �1, 1, �1, 1, . . .

35–38 ■ Find the first four partial sums and the nth partial sum
of the sequence an.

35. 36.

37.

38. [Hint: Use a property of logarithms to

write the nth term as a difference.]

39–46 ■ Find the sum.

39. 40.

41. 42.

43. 44.

45. 46. a
3

i�1
i2i

a
5

k�1
2k�1

a
12

i�4
10a

8

i�1
31 � 1�1 2 i 4

a
100

j�1
1�1 2 ja

3

k�1

1

k

a
4

k�1
k2

a
4

k�1
k

an � log a n

n � 1
b

an � 1n � 1n � 1

an �
1

n � 1
�

1

n � 2
an �

2

3n

1

3
, 

1

32, 
1

33, 
1

34, . . .

1, 12, 3, 14, 5, 16, . . .

3
4, 

4
5, 

5
6, 

6
7, . . .1, 34, 

5
9, 

7
16, 

9
25, . . .

� 
1
3, 

1
9, � 

1
27, 

1
81, . . .

an �
1

an�1
 and a1 � 2

an � 4 � 21�1 2 nan �
12
n

47–52 ■ Use a graphing calculator to evaluate the sum.

47. 48.

49. 50.

51. 52.

53–58 ■ Write the sum without using sigma notation.

53. 54.

55. 56.

57. 58.

59–66 ■ Write the sum using sigma notation.

59. 1 � 2 � 3 � 4 � . . . � 100

60. 2 � 4 � 6 � . . . � 20 61. 12 � 22 � 32 � . . . � 102

62.

63.

64.

65. 1 � x � x2 � x3 � . . . � x100

66. 1 � 2x � 3x2 � 4x3 � 5x4 � . . . � 100x99

67. Find a formula for the nth term of the sequence

[Hint: Write each term as a power of 2.]

68. Define the sequence

Use the command on a graphing calculator to 
find the first 10 terms of this sequence. Compare to the 
Fibonacci sequence Fn.

Applications

69. Compound Interest Julio deposits $2000 in a savings
account that pays 2.4% interest per year compounded

TABLE

Gn �
1

15
a 11 � 15 2 n � 11 � 15 2 n

2n b

12, 2212, 322212, 42322212, . . .

11

12 �
12

22 �
13

32 � . . . �
1n

n2

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

999 # 1000

1

2 ln 2
�

1

3 ln 3
�

1

4 ln 4
�

1

5 ln 5
� . . . �

1

100 ln 100

a
n

j�1
1�1 2  j�1xj

a
100

k�3
xk

a
9

k�6
k1k � 3 2a

6

k�0
1k � 4

a
4

i�0

2i � 1

2i � 1a
5

k�1
1k

a
100

n�1

1�1 2 n
na

22

n�0
1�1 2 n2n

a
15

j�5

1

j2 � 1a
20

j�7
 
j211 � j 2

a
100

k�1
13k � 4 2a

10

k�1
k2
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monthly. The amount in the account after n months is given
by the sequence

(a) Find the first six terms of the sequence.

(b) Find the amount in the account after 3 years.

70. Compound Interest Helen deposits $100 at the end of
each month into an account that pays 6% interest per year
compounded monthly. The amount of interest she has accu-
mulated after n months is given by the sequence

(a) Find the first six terms of the sequence.

(b) Find the interest she has accumulated after 5 years.

71. Population of a City A city was incorporated in 2004
with a population of 35,000. It is expected that the popula-
tion will increase at a rate of 2% per year. The population 
n years after 2004 is given by the sequence

(a) Find the first five terms of the sequence.

(b) Find the population in 2014.

72. Paying off a Debt Margarita borrows $10,000 from her
uncle and agrees to repay it in monthly installments of $200.
Her uncle charges 0.5% interest per month on the balance.

(a) Show that her balance An in the nth month is given 
recursively by A0 � 10,000 and

(b) Find her balance after six months.

73. Fish Farming A fish farmer has 5000 catfish in his pond.
The number of catfish increases by 8% per month, and the
farmer harvests 300 catfish per month.

(a) Show that the catfish population Pn after n months is
given recursively by P0 � 5000 and

(b) How many fish are in the pond after 12 months?

74. Price of a House The median price of a house in Orange
County increases by about 6% per year. In 2002 the median
price was $240,000. Let Pn be the median price n years after
2002.

(a) Find a formula for the sequence Pn.

(b) Find the expected median price in 2010.

75. Salary Increases A newly hired salesman is promised a
beginning salary of $30,000 a year with a $2000 raise every
year. Let Sn be his salary in his nth year of employment.

(a) Find a recursive definition of Sn.

(b) Find his salary in his fifth year of employment.

Pn � 1.08Pn�1 � 300

An � 1.005An�1 � 200

Pn � 35,00011.02 2 n

In � 100 a 1.005n � 1

0.005
� n b

An � 2000 a1 �
0.024

12
b n

76. Concentration of a Solution A biologist is trying to
find the optimal salt concentration for the growth of a cer-
tain species of mollusk. She begins with a brine solution
that has 4 g/L of salt and increases the concentration by
10% every day. Let C0 denote the initial concentration and
Cn the concentration after n days.

(a) Find a recursive definition of Cn.

(b) Find the salt concentration after 8 days.

77. Fibonacci’s Rabbits Fibonacci posed the following prob-
lem: Suppose that rabbits live forever and that every month
each pair produces a new pair that becomes productive at
age 2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the nth month? Show that
the answer is Fn, where Fn is the nth term of the Fibonacci
sequence.

Discovery • Discussion

78. Different Sequences That Start the Same

(a) Show that the first four terms of the sequence an � n2

are

(b) Show that the first four terms of the sequence
are also

(c) Find a sequence whose first six terms are the same as
those of an � n2 but whose succeeding terms differ
from this sequence.

(d) Find two different sequences that begin

79. A Recursively Defined Sequence Find the first 
40 terms of the sequence defined by

and a1 � 11. Do the same if a1 � 25. Make a conjecture
about this type of sequence. Try several other values for a1,
to test your conjecture.

80. A Different Type of Recursion Find the first 10 terms of
the sequence defined by

with

How is this recursive sequence different from the others in
this section?

a1 � 1    and    a2 � 1

an � an�an�1
� an�an�2

an�1 � can

2
if an is an even number

3an � 1 if an is an odd number

2, 4, 8, 16, . . .

1, 4, 9, 16, . . .

an � n2 � 1n � 1 2 1n � 2 2 1n � 3 2 1n � 4 2
1, 4, 9, 16, . . .
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SUGGESTED TIME

AND EMPHASIS

–1 class.
Optional material.

POINTS TO STRESS

1. Recognizing arithmetic
sequences by their formulas and
by their graphs.

2. Finding the first term a and the
common difference d of a given
arithmetic sequence, and using
this information to compute
partial sums.

ALTERNATE EXAMPLE 1
Find the nth term of the arithmetic
sequence 9, 4, -1, -6, -11, . . . .

ANSWER
an = 9 - 5(n - 1)

1
2

IN-CLASS MATERIALS

Have the students try to define an arithmetic sequence recursively. It can be done relatively simply as 
an = an - 1 + d, but obtaining this formula requires an understanding of arithmetic sequences and 
recursively defined sequences.

11.2 Arithmetic Sequences

In this section we study a special type of sequence, called an arithmetic sequence.

Arithmetic Sequences

Perhaps the simplest way to generate a sequence is to start with a number a and add
to it a fixed constant d, over and over again.

SECTION 11.2 Arithmetic Sequences 833

Definition of an Arithmetic Sequence

An arithmetic sequence is a sequence of the form

The number a is the first term, and d is the common difference of the 
sequence. The nth term of an arithmetic sequence is given by

an � a � 1n � 1 2d

a, a � d, a � 2d, a � 3d, a � 4d, . . .

The number d is called the common difference because any two consecutive terms
of an arithmetic sequence differ by d.

Example 1 Arithmetic Sequences

(a) If a � 2 and d � 3, then we have the arithmetic sequence

or

Any two consecutive terms of this sequence differ by d � 3. The nth term is
.

(b) Consider the arithmetic sequence

Here the common difference is d � �5. The terms of an arithmetic 
sequence decrease if the common difference is negative. The nth term is

.

(c) The graph of the arithmetic sequence is shown in Figure 1.
Notice that the points in the graph lie on a straight line with slope d � 2.

■

20

0 10Figure 1

an � 1 � 21n � 1 2
an � 9 � 51n � 1 2

9, 4, �1, �6, �11, . . .

an � 2 � 31n � 1 2
2, 5, 8, 11, . . .

2, 2 � 3, 2 � 6, 2 � 9, . . .
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ALTERNATE EXAMPLE 2
Find the 200th term of the
arithmetic sequence 14, 8, . . . .

ANSWER

DRILL QUESTION

Consider the sequence 3, 8, 13,
18, 23, 28, 33, 38, . . . . Find the
100th partial sum.

Answer

25,050

ALTERNATE EXAMPLE 3 
The 11th term of an arithmetic
sequence is 63, and the 15th term
is 87. Find the 800th term.

ANSWER

SAMPLE QUESTION

Text Question

What distinguishes an “arithmetic
sequence” from an arbitrary
“sequence”?

Answer

Successive terms in an arithmetic
sequence have a common
difference.

IN-CLASS MATERIALS

Show the students that a constant
sequence such as 5, 5, 5, 5, . . . is
trivially an arithmetic sequence.
Notice that the formula for the
partial sum is consistent with what
we know about basic arithmetic.

a800 = 4797

a200 = -1180

EXAMPLES

Finding details of an arithmetic sequence given two terms: If an arithmetic sequence has a3 = 39 and a10 = 25,

then we can calculate a = 43, d = -2. an = 43 - 2(n - 1), so a100 = -155 and .

Make sure to point out that this trick only works if we know ahead of time that this is an arithmetic 
sequence.

a
100

n = 1
43 - 2(n - 1) = -5600

An arithmetic sequence is determined completely by the first term a and the com-
mon difference d. Thus, if we know the first two terms of an arithmetic sequence, then
we can find a formula for the nth term, as the next example shows.

Example 2 Finding Terms of an Arithmetic Sequence

Find the first six terms and the 300th term of the arithmetic sequence

Solution Since the first term is 13, we have a � 13. The common difference is 
d � 7 � 13 � �6. Thus, the nth term of this sequence is

From this we find the first six terms:

The 300th term is . ■

The next example shows that an arithmetic sequence is determined completely by
any two of its terms.

Example 3 Finding Terms of an Arithmetic Sequence

The 11th term of an arithmetic sequence is 52, and the 19th term is 92. Find the
1000th term.

Solution To find the nth term of this sequence, we need to find a and d in the
formula

From this formula we get

Since a11 � 52 and a19 � 92, we get the two equations:

Solving this system for a and d, we get a � 2 and d � 5. (Verify this.) Thus, the nth
term of this sequence is

The 1000th term is . ■

Partial Sums of Arithmetic Sequences

Suppose we want to find the sum of the numbers 1, 2, 3, 4, . . . , 100, that is,

When the famous mathematician C. F. Gauss was a schoolboy, his teacher posed this
problem to the class and expected that it would keep the students busy for a long time.
But Gauss answered the question almost immediately. His idea was this: Since we are

a
100

k�1
k

a1000 � 2 � 51999 2 � 4997

an � 2 � 51n � 1 2

e 52 � a � 10d

92 � a � 18d

 a19 � a � 119 � 1 2d � a � 18d

 a11 � a � 111 � 1 2d � a � 10d

an � a � 1n � 1 2d

a300 � 13 � 61299 2 � �1781

13, 7, 1, �5, �11, �17, . . .

an � 13 � 61n � 1 2

13, 7, . . .

834 CHAPTER 11 Sequences and Series

Mathematics in 

the Modern World

Fair Division of Assets

Dividing an asset fairly among a
number of people is of great inter-
est to mathematicians. Problems of
this nature include dividing the 
national budget, disputed land, or
assets in divorce cases. In 1994
Brams and Taylor found a mathe-
matical way of dividing things
fairly. Their solution has been ap-
plied to division problems in polit-
ical science, legal proceedings,
and other areas. To understand the
problem, consider the following
example. Suppose persons A and B
want to divide a property fairly 
between them. To divide it fairly
means that both A and B must be
satisfied with the outcome of the
division. Solution: A gets to divide
the property into two pieces, then
B gets to choose the piece he wants.
Since both A and B had a part in the
division process, each should be
satisfied. The situation becomes
much more complicated if three or
more people are involved (and
that’s where mathematics comes
in). Dividing things fairly involves
much more than simply cutting
things in half; it must take into ac-
count the relative worth each per-
son attaches to the thing being
divided. A story from the Bible il-
lustrates this clearly. Two women
appear before King Solomon, each
claiming to be the mother of the
same newborn baby. King Solo-
mon’s solution is to divide the baby
in half! The real mother, who at-
taches far more worth to the baby
than anyone, immediately gives up
her claim to the baby in order to
save its life.

Mathematical solutions to fair-
division problems have recently
been applied in an international
treaty, the Convention on the Law
of the Sea. If a country wants to de-
velop a portion of the sea floor, it is 

(continued )
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IN-CLASS MATERIALS

The perfect squares 1, 4, 9, 16, . . .
can be represented as a square
array of dots.

• • • •
• • • •
• • • •
• • • •

16

IN-CLASS MATERIALS

The triangular numbers are those
that can be represented by a
triangular array of dots: 
1, 3, 6, 10, 15, . . . .

•
• •

• • •
• • • •

• • • • •
15

Note that the triangular numbers
are precisely the partial sums of
the sequence 1, 2, 3, 4, . . . .

IN-CLASS MATERIALS

Examine this broad triangular
array:

•
• • •

• • • • •
• • • • • • •

16

Notice we run into perfect
squares! This can be demonstrated
by looking at the partial sums
of the arithmetic sequence  
1 + 2(n - 1), or by rearranging
the dots of the broader triangle to
make a square.

IN-CLASS MATERIALS

Many phenomena are either linear or locally linear (they look linear when viewing them over a narrow
range). For example, assume that a company earns about $120,000 in 2011, $140,000 in 2012, $160,000 in
2013, etc. If it is linear growth over ten years, the total ten-year earning can be found from adding up the
terms of an arithmetic sequence.

adding numbers produced according to a fixed pattern, there must also be a pattern
(or formula) for finding the sum. He started by writing the numbers from 1 to 100 and
below them the same numbers in reverse order. Writing S for the sum and adding 
corresponding terms gives

It follows that and so S � 5050.
Of course, the sequence of natural numbers 1, 2, 3, . . . is an arithmetic sequence

(with a � 1 and d � 1), and the method for summing the first 100 terms of this se-
quence can be used to find a formula for the nth partial sum of any arithmetic se-
quence. We want to find the sum of the first n terms of the arithmetic sequence whose
terms are ; that is, we want to find

Using Gauss’s method, we write

Sn � a � Óa � dÔ � . . . � 3a � Ón � 2Ôd 4 � 3a � Ón � 1Ôd 4
Sn � 3a � Ón � 1Ôd 4 � 3a � Ón � 2Ôd 4 � . . . � Óa � d Ô � a

2Sn � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4 � . . . � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4
There are n identical terms on the right side of this equation, so

Notice that is the nth term of this sequence. So, we can write

This last formula says that the sum of the first n terms of an arithmetic sequence is
the average of the first and nth terms multiplied by n, the number of terms in the sum.
We now summarize this result.

Sn �
n

2
 3a � a � 1n � 1 2d 4 � n a a � an

2
b

an � a � 1n � 1 2d
 Sn �

n

2
 32a � 1n � 1 2d 4

 2Sn � n 32a � 1n � 1 2d 4

 � a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4
 Sn � a

n

k�1
3a � 1k � 1 2d 4

ak � a � 1k � 1 2d

2S � 1001101 2 � 10,100

S � 1 � 2 � 3 � . . . � 98 � 99 � 100

S � 100 � 99 � 98 � . . . � 3 � 2 � 1

2S � 101 � 101 � 101 � . . . � 101 � 101 � 101

SECTION 11.2 Arithmetic Sequences 835

Partial Sums of an Arithmetic Sequence

For the arithmetic sequence , the nth partial sum

is given by either of the following formulas.

1.

2. Sn � n a a � an

2
b

Sn �
n

2
 32a � 1n � 1 2d 4

Sn � a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4
an � a � 1n � 1 2d

required to divide the portion into
two parts, one part to be used by 
itself, the other by a consortium
that will preserve it for later use by
a less developed country. The con-
sortium gets first pick.
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ALTERNATE EXAMPLE 4
Find the sum of the first 40 terms
of the arithmetic sequence 
3, 10, 17, 24, . . . .

ANSWER
5580 

ALTERNATE EXAMPLE 5
Find the sum of the first 40 odd
numbers. 

ANSWER
1600 

ALTERNATE EXAMPLE 6
An amphitheater has 40 rows of
seats with 30 seats in the first row,
32 in the second, 34 in the third,
and so on. Find the total number
of seats. 

ANSWER
2760 

ALTERNATE EXAMPLE 7
How many terms of the arithmetic
sequences 3, 5, 7, . . . must be
added to get 624? 

ANSWER
24 

IN-CLASS MATERIALS

Consider the handshaking problem. If n people are in a room, and shake hands, we can ask the question:
How many handshakes took place? If, for example, four people (Alfred, Brendel, Claude, and Debussy) all
shake hands, a total of 6 shakes take place:

A & B            B & C           C & D
A & C            B & D           A & D

Allow the students to try to figure out how many handshakes take place if 12, or if n people shake hands. It
turns out that the answer is 1 + 2 + · · · + (n - 1) (as illustrated above), the partial sum of an arithmetic
sequence.

Example 4 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 40 terms of the arithmetic sequence

Solution For this arithmetic sequence, a � 3 and d � 4. Using Formula 1 for 
the partial sum of an arithmetic sequence, we get

■

Example 5 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 50 odd numbers.

Solution The odd numbers form an arithmetic sequence with a � 1 and 
d � 2. The nth term is , so the 50th odd number 
is . Substituting in Formula 2 for the partial sum of an 
arithmetic sequence, we get

■

Example 6 Finding the Seating Capacity 

of an Amphitheater

An amphitheater has 50 rows of seats with 30 seats in the first row, 32 in the 
second, 34 in the third, and so on. Find the total number of seats.

Solution The numbers of seats in the rows form an arithmetic sequence with 
a � 30 and d � 2. Since there are 50 rows, the total number of seats is the sum

Thus, the amphitheater has 3950 seats. ■

Example 7 Finding the Number of Terms in a Partial Sum

How many terms of the arithmetic sequences 5, 7, 9, . . . must be added to get 572?

Solution We are asked to find n when Sn � 572. Substituting a � 5, d � 2, and
Sn � 572 in Formula 1 for the partial sum of an arithmetic sequence, we get

This gives n � 22 or n � �26. But since n is the number of terms in this partial
sum, we must have n � 22. ■

 0 � 1n � 22 2 1n � 26 2
 0 � n2 � 4n � 572

 572 � 5n � n1n � 1 2
Sn �

n
2

 32a � 1n � 1 2d 4 572 �
n

2
 32 # 5 � 1n � 1 22 4

 � 3950

Sn �
n
2

 32a � 1n � 1 2d 4 S50 � 50
2  
32130 2 � 4912 2 4

S50 � 50 a a � a50

2
b � 50 a 1 � 99

2
b � 50 # 50 � 2500

a50 � 2150 2 � 1 � 99
an � 1 � 21n � 1 2 � 2n � 1

S40 � 40
2  
3213 2 � 140 � 1 24 4 � 2016 � 156 2 � 3240

3, 7, 11, 15, . . .

836 CHAPTER 11 Sequences and Series
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CHAPTER 11 Sequences and Series 837

1–4 ■ A sequence is given.

(a) Find the first five terms of the sequence.

(b) What is the common difference d?

(c) Graph the terms you found in (a).

1. 2.

3. 4.

5–8 ■ Find the nth term of the arithmetic sequence with given
first term a and common difference d. What is the 10th term?

5. a � 3, d � 5 6. a � �6, d � 3

7. 8.

9–16 ■ Determine whether the sequence is arithmetic. If it is
arithmetic, find the common difference.

9. 5, 8, 11, 14, . . . 10. 3, 6, 9, 13, . . .

11. 2, 4, 8, 16, . . . 12. 2, 4, 6, 8, . . .

13. 14. ln 2, ln 4, ln 8, ln 16, . . .

15. 2.6, 4.3, 6.0, 7.7, . . . 16.

17–22 ■ Find the first five terms of the sequence and determine
if it is arithmetic. If it is arithmetic, find the common difference
and express the nth term of the sequence in the standard form

.

17. an � 4 � 7n 18. an � 4 � 2n

19. 20.

21. an � 6n � 10 22.

23–32 ■ Determine the common difference, the fifth term, the
nth term, and the 100th term of the arithmetic sequence.

23. 2, 5, 8, 11, . . . 24. 1, 5, 9, 13, . . .

25. 4, 9, 14, 19, . . . 26. 11, 8, 5, 2, . . .

27. �12, �8, �4, 0, . . . 28.

29. 25, 26.5, 28, 29.5, . . . 30. 15, 12.3, 9.6, 6.9, . . .

31. 2, 2 � s, 2 � 2s, 2 � 3s, . . .

32. �t, �t � 3, �t � 6, �t � 9, . . .

33. The tenth term of an arithmetic sequence is , and the sec-
ond term is . Find the first term.

34. The 12th term of an arithmetic sequence is 32, and the fifth
term is 18. Find the 20th term.

7
2

55
2

7
6, 

5
3, 

13
6 , 83, . . .

an � 3 � 1�1 2 nn
an � 1 �

n

2
an �

1

1 � 2n

an � a � 1n � 1 2d

1
2, 

1
3, 

1
4, 

1
5, . . .

3, 32, 0, � 
3
2, . . .

a � 13, d � 13a � 5
2, d � �1

2

an � 1
2  
1n � 1 2an � 5

2 � 1n � 1 2
an � 3 � 41n � 1 2an � 5 � 21n � 1 2

35. The 100th term of an arithmetic sequence is 98, and the
common difference is 2. Find the first three terms.

36. The 20th term of an arithmetic sequence is 101, and the
common difference is 3. Find a formula for the nth term.

37. Which term of the arithmetic sequence 1, 4, 7, . . . is 88?

38. The first term of an arithmetic sequence is 1, and the com-
mon difference is 4. Is 11,937 a term of this sequence? If so,
which term is it?

39–44 ■ Find the partial sum Sn of the arithmetic sequence that
satisfies the given conditions.

39. a � 1, d � 2, n � 10 40. a � 3, d � 2, n � 12

41. a � 4, d � 2, n � 20 42. a � 100, d � �5, n � 8

43. a1 � 55, d � 12, n � 10 44. a2 � 8, a5 � 9.5, n � 15

45–50 ■ A partial sum of an arithmetic sequence is given. Find
the sum.

45. 1 � 5 � 9 � . . . � 401

46.

47. 0.7 � 2.7 � 4.7 � . . . � 56.7

48. �10 � 9.9 � 9.8 � . . . � 0.1

49. 50.

51. Show that a right triangle whose sides are in arithmetic 
progression is similar to a 3–4–5 triangle.

52. Find the product of the numbers

53. A sequence is harmonic if the reciprocals of the terms of
the sequence form an arithmetic sequence. Determine
whether the following sequence is harmonic:

54. The harmonic mean of two numbers is the reciprocal of the
average of the reciprocals of the two numbers. Find the har-
monic mean of 3 and 5.

55. An arithmetic sequence has first term a � 5 and common
difference d � 2. How many terms of this sequence must be
added to get 2700?

56. An arithmetic sequence has first term a1 � 1 and fourth
term a4 � 16. How many terms of this sequence must be
added to get 2356?

1, 35, 
3
7, 

1
3, . . .

101/10, 102/10, 103/10, 104/10, . . . , 1019/10

a
20

n�0
11 � 2n 2a

10

k�0
13 � 0.25k 2

�3 � A� 
3
2B � 0 � 3

2 � 3 � . . . � 30

11.2 Exercises

SECTION 11.2 Arithmetic Sequences 837
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838 CHAPTER 11 Sequences and Series

SUGGESTED TIME

AND EMPHASIS

–1 class.
Optional material.

1
2

POINTS TO STRESS

1. Definition of geometric series.
2. Definition of infinite series.
3. Formulas for sums of finite and infinite geometric series.

838 CHAPTER 11 Sequences and Series

Applications

57. Depreciation The purchase value of an office computer is
$12,500. Its annual depreciation is $1875. Find the value of
the computer after 6 years.

58. Poles in a Pile Telephone poles are stored in a pile with
25 poles in the first layer, 24 in the second, and so on. If
there are 12 layers, how many telephone poles does the pile
contain?

59. Salary Increases A man gets a job with a salary of
$30,000 a year. He is promised a $2300 raise each subse-
quent year. Find his total earnings for a 10-year period.

60. Drive-In Theater A drive-in theater has spaces for 20
cars in the first parking row, 22 in the second, 24 in the
third, and so on. If there are 21 rows in the theater, find the
number of cars that can be parked.

61. Theater Seating An architect designs a theater with 15
seats in the first row, 18 in the second, 21 in the third, and so
on. If the theater is to have a seating capacity of 870, how
many rows must the architect use in his design?

62. Falling Ball When an object is allowed to fall freely near
the surface of the earth, the gravitational pull is such that the
object falls 16 ft in the first second, 48 ft in the next second,
80 ft in the next second, and so on.

(a) Find the total distance a ball falls in 6 s.

(b) Find a formula for the total distance a ball falls in 
n seconds.

63. The Twelve Days of Christmas In the well-known 
song “The Twelve Days of Christmas,” a person gives his
sweetheart k gifts on the kth day for each of the 12 days of
Christmas. The person also repeats each gift identically on
each subsequent day. Thus, on the 12th day the sweetheart
receives a gift for the first day, 2 gifts for the second, 3 gifts
for the third, and so on. Show that the number of gifts re-
ceived on the 12th day is a partial sum of an arithmetic 
sequence. Find this sum.

Discovery • Discussion

64. Arithmetic Means The arithmetic mean (or average) of
two numbers a and b is

Note that m is the same distance from a as from b, so a, m, b
is an arithmetic sequence. In general, if m1, m2, . . . , mk are
equally spaced between a and b so that

is an arithmetic sequence, then m1, m2, . . . , mk are called k
arithmetic means between a and b.

(a) Insert two arithmetic means between 10 and 18.

(b) Insert three arithmetic means between 10 and 18.

(c) Suppose a doctor needs to increase a patient’s dosage of
a certain medicine from 100 mg to 300 mg per day in
five equal steps. How many arithmetic means must be
inserted between 100 and 300 to give the progression of
daily doses, and what are these means?

a, m1, m2, . . . , mk, b

m �
a � b

2

11.3 Geometric Sequences

In this section we study geometric sequences. This type of sequence occurs fre-
quently in applications to finance, population growth, and other fields.

Geometric Sequences

Recall that an arithmetic sequence is generated when we repeatedly add a number d
to an initial term a. A geometric sequence is generated when we start with a number
a and repeatedly multiply by a fixed nonzero constant r.
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CHAPTER 11 Sequences and Series 839

DRILL QUESTION

Find the 100th partial sum of the
sequence 2, 6, 18, 54, 162, . . . .

Answer

ALTERNATE EXAMPLE 1a
Find the first four terms and the
nth term of the geometric
sequence with a = 2 and r = 3.

ANSWER
2, 6, 18, 54, an = 2(3)n-1

ALTERNATE EXAMPLE 1c
Find the nth term of the geometric
sequence 2, 8, 32, 128, . . . .

ANSWER
an = 2(4)n-1

SAMPLE QUESTION

Text Question

What distinguishes a “geometric
sequence” from an arbitrary
“sequence”?

Answer

Successive terms in a geometric
sequence have a common ratio.

2(1 - 3100)

1 - 3
L 5.154 * 1047

IN-CLASS MATERIALS

Represent a geometric series visually. For example, a geometric view of the equation is given
below.

1

1_2

0 3_4
7_8

15_16

1_32
1_16

1_8
1_4

1_2

a

q

n = 1
1>2n = 1

The number r is called the common ratio because the ratio of any two consecutive
terms of the sequence is r.

Example 1 Geometric Sequences

(a) If a � 3 and r � 2, then we have the geometric sequence

or

Notice that the ratio of any two consecutive terms is r � 2. The nth term is
.

(b) The sequence

is a geometric sequence with a � 2 and r � �5. When r is negative, the terms
of the sequence alternate in sign. The nth term is .

(c) The sequence

is a geometric sequence with a � 1 and . The nth term is .

(d) The graph of the geometric sequence is shown in Figure 1. Notice
that the points in the graph lie on the graph of the exponential function

.

If 0 � r � 1, then the terms of the geometric sequence arn�1 decrease, but if r � 1,
then the terms increase. (What happens if r � 1?) ■

Geometric sequences occur naturally. Here is a simple example. Suppose a ball
has elasticity such that when it is dropped it bounces up one-third of the distance it
has fallen. If this ball is dropped from a height of 2 m, then it bounces up to a height
of . On its second bounce, it returns to a height of , and so on
(see Figure 2). Thus, the height hn that the ball reaches on its nth bounce is given by
the geometric sequence

We can find the nth term of a geometric sequence if we know any two terms, as
the following examples show.

hn � 2
3A13Bn�1

� 2A13Bn

A23B A13B � 2
9  m2A13B � 2

3  m

y � 1
5
# 2x�1

an � 1
5
# 2n�1

an � 1A13Bn�1
r � 1

3

1, 
1

3
, 

1

9
, 

1

27
, 

1

81
, . . .

an � 21�5 2 n�1

2, �10, 50, �250, 1250, . . .

an � 312 2 n�1

3, 6, 12, 24, 48, . . .

3,  3 # 2,  3 # 22,  3 # 23,  3 # 24,  . . .

SECTION 11.3 Geometric Sequences 839

Definition of a Geometric Sequence

A geometric sequence is a sequence of the form

The number a is the first term, and r is the common ratio of the sequence.
The nth term of a geometric sequence is given by

an � ar n�1

a, ar, ar 2, ar 3, ar 4, . . .

20

0 8

1 2 3

2 m

m2
3

m2
9

0 t

h

Figure 1

Figure 2
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840 CHAPTER 11 Sequences and Series

ALTERNATE EXAMPLE 2
Find the eighth term of the
geometric sequence 7, 42, 252, . . . .

ANSWER
1,959,552 

ALTERNATE EXAMPLE 3 
The third term of a geometric 

series is , and the sixth term

is . Find the fifth term. 

ANSWER
1875

256

9375

1024

75

16

IN-CLASS MATERIALS

One of the consequences of parenthood is that it often causes otherwise rational adults to say things like,
“If I told you once, I’ve told you one hundred times!” Assume that this was true, and a child was told
something on a Friday. The parental rule means that the child was previously told a fact 100 times, say on
Thursday. Thus, on Wednesday, the child must have been told the information 100 times for every time on
Thursday, or 10,000 times. Use the methods of this section to determine how many times the child has
been told since Monday.

Example 2 Finding Terms of a Geometric Sequence

Find the eighth term of the geometric sequence 5, 15, 45, . . . .

Solution To find a formula for the nth term of this sequence, we need to find a
and r. Clearly, a � 5. To find r, we find the ratio of any two consecutive terms. For
instance, . Thus

The eighth term is . ■

Example 3 Finding Terms of a Geometric Sequence

The third term of a geometric sequence is , and the sixth term is . Find the 
fifth term.

Solution Since this sequence is geometric, its nth term is given by the formula
. Thus

From the values we are given for these two terms, we get the following system of
equations:

u
We solve this system by dividing.

Simplify

Take cube root of each side

Substituting for r in the first equation, , gives

Solve for a

It follows that the nth term of this sequence is

Thus, the fifth term is

■

Partial Sums of Geometric Sequences

For the geometric sequence a, ar, ar 2, ar 3, ar 4, . . . , arn�1, . . . , the nth partial sum is

Sn � a
n

k�1
ar k�1 � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1

a5 � 7A32B5�1
� 7A32B4 � 567

16

an � 7A32Bn�1

 a � 7

 63
4 � aA32B2

63
4 � ar 2

 r � 3
2

 r 3 � 27
8

 
ar 5

ar 2 �
1701
32
63
4

63
4 � ar 2

1701
32 � ar 5

 a6 �  ar 6�1 � ar 5

 a3 �  ar 3�1 � ar 2

an � ar n�1

1701
32

63
4

a8 � 513 2 8�1 � 513 2 7 � 10,935

an � 513 2 n�1

r � 45
15 � 3

840 CHAPTER 11 Sequences and Series

Srinivasa Ramanujan (1887–
1920) was born into a poor family
in the small town of Kumbakonam
in India. Self-taught in mathemat-
ics, he worked in virtual isolation
from other mathematicians. At the
age of 25 he wrote a letter to 
G. H. Hardy, the leading British
mathematician at the time, listing
some of his discoveries. Hardy 
immediately recognized Ramanu-
jan’s genius and for the next six
years the two worked together in
London until Ramanujan fell ill
and returned to his hometown in
India, where he died a year later.
Ramanujan was a genius with phe-
nomenal ability to see hidden pat-
terns in the properties of numbers.
Most of his discoveries were writ-
ten as complicated infinite series,
the importance of which was not
recognized until many years after
his death. In the last year of his life
he wrote 130 pages of mysterious
formulas, many of which still defy
proof. Hardy tells the story that
when he visited Ramanujan in a
hospital and arrived in a taxi, he 
remarked to Ramanujan that the
cab’s number, 1729, was uninter-
esting. Ramanujan replied “No, it
is a very interesting number. It is
the smallest number expressible as
the sum of two cubes in two differ-
ent ways.” (See Problem 23 on
page 144.)

M
ic

ha
el

 N
g
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CHAPTER 11 Sequences and Series 841

ALTERNATE EXAMPLE 4
Find the sum of the first 6 terms
of the geometric sequence 
1, 0.6, 0.36, 0.216, . . . .

ANSWER
2.38336

ALTERNATE EXAMPLE 5
Find the sum

.

ANSWER

-
182

81

a
4

k = 1
7a -

2

3
b k

IN-CLASS MATERIALS

Introduce the idea that for any two real numbers A and B, the statement A = B is the same as saying 
that for any integer N, | A - B | � 1�N. Now use this idea to show that 0.9999 . . . = 0.9

– = 1, since
. Then use the usual approach 

to define as and show directly that Generalize this result by pointing out that any

repeating decimal can be written as a geometric series, and can thus be written as a

fraction using the formula for a geometric series. Demonstrate with .a 1

1 - 1>1000
b =  

412

999
0.412 =

(0.3, 0.412, 0.24621)

0.9 = 1.a

q

n = 1
9>10n0.9

ƒ1 - 0.9 ƒ 6 ƒ1 - 0.99999 . . . 99
N nines

ƒ = 0.00000 . . . 0001
N - 1 zero

= 10-N =
1

10N

U

To find a formula for Sn, we multiply Sn by r and subtract from Sn:

So,

We summarize this result.

 Sn �
a11 � r n 2

1 � r
  1r � 1 2

 Sn11 � r 2 � a11 � r n 2
Sn � rSn � a � ar n

rSn � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � ar n

Sn � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1

SECTION 11.3 Geometric Sequences 841

Partial Sums of a Geometric Sequence

For the geometric sequence an � arn�1, the nth partial sum

is given by

Sn � a 

1 � r n

1 � r

Sn � a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1  1r � 1 2

Example 4 Finding a Partial Sum of a Geometric Sequence

Find the sum of the first five terms of the geometric sequence

Solution The required sum is the sum of the first five terms of a geometric 
sequence with a � 1 and r � 0.7. Using the formula for Sn with n � 5, we get

Thus, the sum of the first five terms of this sequence is 2.7731. ■

Example 5 Finding a Partial Sum 

of a Geometric Sequence

Find the sum .

Solution The given sum is the fifth partial sum of a geometric sequence with
first term and common ratio . Thus, by the formula for
Sn, we have

■

What Is an Infinite Series?

An expression of the form

a1 � a2 � a3 � a4 � . . .

S5 � � 

14

3
# 1 � A� 

2
3B5

1 � A� 
2
3B � � 

14

3
# 1 � 32

243
5
3

� � 

770

243

r � � 
2
3a � 7A� 

2
3B � � 

14
3

a
5

k�1
 7A� 

2
3Bk

S5 � 1 # 1 � 10.7 2 5
1 � 0.7

� 2.7731

1, 0.7, 0.49, 0.343, . . .

∂
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842 CHAPTER 11 Sequences and Series

is called an infinite series. The dots mean that we are to continue the addition
indefinitely. What meaning can we attach to the sum of infinitely many numbers? It
seems at first that it is not possible to add infinitely many numbers and arrive at a
finite number. But consider the following problem. You have a cake and you want to
eat it by first eating half the cake, then eating half of what remains, then again eating
half of what remains. This process can continue indefinitely because at each stage
some of the cake remains. (See Figure 3.)

Does this mean that it’s impossible to eat all of the cake? Of course not. Let’s write
down what you have eaten from this cake:

This is an infinite series, and we note two things about it: First, from Figure 3 it’s clear
that no matter how many terms of this series we add, the total will never exceed 1.
Second, the more terms of this series we add, the closer the sum is to 1 (see Figure 3).
This suggests that the number 1 can be written as the sum of infinitely many smaller
numbers:

To make this more precise, let’s look at the partial sums of this series:

and, in general (see Example 5 of Section 11.1),

As n gets larger and larger, we are adding more and more of the terms of this series.
Intuitively, as n gets larger, Sn gets closer to the sum of the series. Now notice that as
n gets large, 1/2n gets closer and closer to 0. Thus, Sn gets close to 1 � 0 � 1. Using
the notation of Section 3.6, we can write

Sn � 1  as  n �q

Sn � 1 �
1

2n

 S4 �
1

2
�

1

4
�

1

8
�  

1

16
�

15

16

 S3 �
1

2
�

1

4
�

1

8
 � 

7

8

 S2 �
1

2
�

1

4
 � 

3

4

 S1 �
1

2
 � 

1

2

1 �
1

2
�

1

4
�

1

8
�

1

16
� . . . �

1

2n � . . .

1

2
�

1

4
�

1

8
�

1

16
� . . . �

1

2n � . . .

1
2

1
4

1
8

1
16

1
32

1
2

1
4

1
8

1
16

1
2

1
4

1
8

1
2

1
4

1
2

842 CHAPTER 11 Sequences and Series

Figure 3
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EXAMPLE
Zeno’s Paradox: In order to walk
to a wall across the room, you
have to first walk halfway to the
wall, and in order to do that you
have to walk halfway to the
halfway point, etc. This process
can be viewed as finding the sum 

of The 

sum of this infinite series is 1.

ALTERNATE EXAMPLE 6
Find the sum, S, of the infinite
geometric series 

ANSWER

ALTERNATE EXAMPLE 7
Find the fraction that represents
the rational number 

ANSWER
371

198

1.873.

S =
45

8

+
5

9n
 Á + Á

5 +
5

9
+

5

81
+

5

729
+ Á

1

2
+

1

4
+

1

8
+ . . . = 1.

IN-CLASS MATERIALS

Explore the “middle third” Cantor set with the class: This set is defined as the set of points obtained by 

taking the interval [0, 1], throwing out the middle third to obtain , throwing out the middle

third of each remaining interval to obtain , and repeating this process ad 

infinitum. Point out that there are infinitely many points left after this process. (If a point winds up as the 
endpoint of an interval, it never gets removed, and new intervals are created with every step.) Now calcu-

late the total length of the sections that were thrown away: 

Notice the apparent paradox: We’ve thrown away a total interval of length 1, but still infinitely many points
remain. (See also Exercise 77.)

a

q

k = 0

2k

3k + 1
= 1.

1

3
+ 2 # 1

9
+ 4 # 1

27
+ . . . =

c0, 
1

9
d ´ c2

9
, 

1

3
d ´ c2

3
, 

7

9
d ´ c8

9
, 1d

c0, 
1

3
d ´ c2

3
, 1 d

In general, if Sn gets close to a finite number S as n gets large, we say that S is the sum
of the infinite series.

Infinite Geometric Series

An infinite geometric series is a series of the form

We can apply the reasoning used earlier to find the sum of an infinite geometric 
series. The nth partial sum of such a series is given by the formula

It can be shown that if , then rn gets close to 0 as n gets large (you can eas-
ily convince yourself of this using a calculator). It follows that Sn gets close to

as n gets large, or

Thus, the sum of this infinite geometric series is .a/ 11 � r 2
Sn �

a

1 � r
  as  n �q

a/ 11 � r 2
0 r 0 � 1

Sn � a  

1 � r n

1 � r
  1r � 1 2

a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � . . .

SECTION 11.3 Geometric Sequences 843

Sum of an Infinite Geometric Series

If , then the infinite geometric series

has the sum

S �
a

1 � r

a � ar � ar 2 � ar 3 � ar 4 � . . . � ar n�1 � . . .

0 r 0 � 1

Example 6 Finding the Sum of an Infinite

Geometric Series

Find the sum of the infinite geometric series

Solution We use the formula for the sum of an infinite geometric series. In this
case, a � 2 and . Thus, the sum of this infinite series is

■

Example 7 Writing a Repeated Decimal as a Fraction

Find the fraction that represents the rational number .

Solution This repeating decimal can be written as a series:

23

10
�

51

1000
�

51

100,000
�

51

10,000,000
�

51

1,000,000,000
� . . .

2.351

S �
2

1 � 1
5

�
5

2

r � 1
5

2 �
2

5
�

2

25
�

2

125
� . . . �

2

5n � . . .

Here is another way to arrive at the 
formula for the sum of an infinite 
geometric series:

Solve the equation S � a � rS for S
to get

 S �
a

1 � r

 11 � r 2S � a

 S � rS � a

 � a � rS

 � a � r 1a � ar � ar 2 � . . . 2
 S � a � ar � ar 2 � ar 3 � . . .
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IN-CLASS MATERIALS

Do Exercise 71 (the “St. Ives” problem) with the students. After obtaining the partial sum solution, point
out that traditionally people give the answer 1. The problem says “As I was going to St. Ives. . . .” So pre-
sumably all the other people were going the other way, away from St. Ives!

844 CHAPTER 11 Sequences and Series

1–4 ■ The nth term of a sequence is given.

(a) Find the first five terms of the sequence.

(b) What is the common ratio r?

(c) Graph the terms you found in (a).

1. 2.

3. 4.

5–8 ■ Find the nth term of the geometric sequence with given
first term a and common ratio r. What is the fourth term?

5. a �3, r � 5 6. a � �6, r � 3

7. 8.

9–16 ■ Determine whether the sequence is geometric. If it is
geometric, find the common ratio.

9. 2, 4, 8, 16, . . . 10. 2, 6, 18, 36, . . .

11. 12. 27, �9, 3, �1, . . .

13. 14. e 2, e 4, e 6, e 8, . . .

15. 1.0, 1.1, 1.21, 1.331, . . . 16.

17–22 ■ Find the first five terms of the sequence and determine
if it is geometric. If it is geometric, find the common ratio and
express the nth term of the sequence in the standard form 
an � arn�1.

17. 18.

19. 20.

21. 22. an � nn

23–32 ■ Determine the common ratio, the fifth term, and the
nth term of the geometric sequence.

23. 2, 6, 18, 54, . . . 24.

25. 0.3, �0.09, 0.027, �0.0081, . . .

26. 1, 12, 2, 212, . . .

7, 14
3 , 28

9 , 56
27, . . .

an � ln15n�1 2
an � 1�1 2 n2nan �

1

4n

an � 4 � 3nan � 213 2 n

1
2, 

1
4, 

1
6, 

1
8, . . .

1
2, 

1
3, 

1
4, 

1
5, . . .

3, 32, 
3
4, 

3
8, . . .

a � 13, r � 13a � 5
2, r � � 

1
2

an � 3n�1an � 5
2  
A� 

1
2Bn�1

an � 31�4 2 n�1an � 512 2 n�1

27. 144, �12, 1, , . . . 28.

29. 3, 35/3, 37/3, 27, . . . 30.

31. 1, s 2/7, s 4/ 7, s 6/7, . . . 32. 5, 5c�1, 52c�1, 53c�1, . . .

33. The first term of a geometric sequence is 8, and the second
term is 4. Find the fifth term.

34. The first term of a geometric sequence is 3, and the third
term is . Find the fifth term.

35. The common ratio in a geometric sequence is , and the
fourth term is . Find the third term.

36. The common ratio in a geometric sequence is , and the fifth
term is 1. Find the first three terms.

37. Which term of the geometric sequence 2, 6, 18, . . . is
118,098?

38. The second and the fifth terms of a geometric sequence are
10 and 1250, respectively. Is 31,250 a term of this sequence?
If so, which term is it?

39–42 ■ Find the partial sum Sn of the geometric sequence that
satisfies the given conditions.

39. a � 5, r � 2, n � 6 40.

41. a3 � 28, a6 � 224, n � 6

42. a2 � 0.12, a5 � 0.00096, n � 4

43–46 ■ Find the sum.

43. 1 � 3 � 9 � . . . � 2187

44.

45. 46.

47–54 ■ Find the sum of the infinite geometric series.

47. 48. 1 �
1

2
�

1

4
�

1

8
� . . .1 �

1

3
�

1

9
�

1

27
� . . .

a
5

j�0
7A32B  

j
a
10

k�0
3A12B k

1 � 1
2 � 1

4 � 1
8 � . . . � 1

512

a � 2
3,  r � 1

3,  n � 4

3
2

5
2

2
5

4
3

t, 
t2

2
, 

t3

4
, 

t4

8
, . . .

�8, �2, � 
1
2, � 

1
8, . . .� 

1
12

After the first term, the terms of this series form an infinite geometric series with

Thus, the sum of this part of the series is

So, ■

11.3 Exercises

2.351 �
23

10
�

51

990
�

2328

990
�

388

165

S �
51

1000

1 � 1
100

�
51

1000
99
100

�
51

1000
# 100

99
�

51

990

a �
51

1000
  and  r �

1

100
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SECTION 11.3 Geometric Sequences 845

49. 50.

51.

52.

53.

54.

55–60 ■ Express the repeating decimal as a fraction.

55. 0.777 . . . 56.

57. 0.030303 . . . 58.

59. 60. 0.123123123 . . .

61. If the numbers a1, a2, . . . , an form a geometric sequence,
then a2, a3, . . . , an�1 are geometric means between a1 and
an. Insert three geometric means between 5 and 80.

62. Find the sum of the first ten terms of the sequence

Applications

63. Depreciation A construction company purchases a 
bulldozer for $160,000. Each year the value of the bulldozer
depreciates by 20% of its value in the preceding year. Let Vn

be the value of the bulldozer in the nth year. (Let n � 1 be
the year the bulldozer is purchased.)

(a) Find a formula for Vn.

(b) In what year will the value of the bulldozer be less than
$100,000?

64. Family Tree A person has two parents, four grandparents,
eight great-grandparents, and so on. How many ancestors
does a person have 15 generations back?

65. Bouncing Ball A ball is dropped from a height of 80 ft.
The elasticity of this ball is such that it rebounds three-
fourths of the distance it has fallen. How high does the ball
rebound on the fifth bounce? Find a formula for how high
the ball rebounds on the nth bounce.

66. Bacteria Culture A culture initially has 5000 bacteria,
and its size increases by 8% every hour. How many bacteria

Father

Mother

Grandfather

Grandmother

Grandfather

Grandmother

a � b, a2 � 2b, a3 � 3b, a4 � 4b, . . .

0.112

2.1125

0.253

1

12
�

1

2
�

1

212
�

1

4
� . . .

� 

100

9
�

10

3
� 1 �

3

10
� . . .

3 �
3

2
�

3

4
�

3

8
� . . .

1

36 �
1

38 �
1

310 �
1

312 � . . .

2

5
�

4

25
�

8

125
� . . .1 �

1

3
�

1

9
�

1

27
� . . . are present at the end of 5 hours? Find a formula for the

number of bacteria present after n hours.

67. Mixing Coolant A truck radiator holds 5 gal and is 
filled with water. A gallon of water is removed from the 
radiator and replaced with a gallon of antifreeze; then, a 
gallon of the mixture is removed from the radiator and 
again replaced by a gallon of antifreeze. This process is 
repeated indefinitely. How much water remains in the tank
after this process is repeated 3 times? 5 times? n times?

68. Musical Frequencies The frequencies of musical notes
(measured in cycles per second) form a geometric sequence.
Middle C has a frequency of 256, and the C that is an octave
higher has a frequency of 512. Find the frequency of C two
octaves below middle C.

69. Bouncing Ball A ball is dropped from a height of 9 ft.
The elasticity of the ball is such that it always bounces up
one-third the distance it has fallen.

(a) Find the total distance the ball has traveled at the instant
it hits the ground the fifth time.

(b) Find a formula for the total distance the ball has 
traveled at the instant it hits the ground the nth time.

70. Geometric Savings Plan A very patient woman wishes
to become a billionaire. She decides to follow a simple
scheme: She puts aside 1 cent the first day, 2 cents the 
second day, 4 cents the third day, and so on, doubling the
number of cents each day. How much money will she have
at the end of 30 days? How many days will it take this
woman to realize her wish?

71. St. Ives The following is a well-known children’s rhyme:

As I was going to St. Ives
I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;
Every cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?

Assuming that the entire group is actually going to St. Ives,
show that the answer to the question in the rhyme is a partial
sum of a geometric sequence, and find the sum.

72. Drug Concentration A certain drug is administered once
a day. The concentration of the drug in the patient’s blood-
stream increases rapidly at first, but each successive dose has
less effect than the preceding one. The total amount of the
drug (in mg) in the bloodstream after the nth dose is given by

a
n

k�1
50A12B k�1
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(a) Find the amount of the drug in the bloodstream after 
n � 10 days.

(b) If the drug is taken on a long-term basis, the amount in 
the bloodstream is approximated by the infinite series 

. Find the sum of this series.

73. Bouncing Ball A certain ball rebounds to half the height
from which it is dropped. Use an infinite geometric series to
approximate the total distance the ball travels, after being
dropped from 1 m above the ground, until it comes to rest.

74. Bouncing Ball If the ball in Exercise 73 is dropped from
a height of 8 ft, then 1 s is required for its first complete
bounce—from the instant it first touches the ground until it
next touches the ground. Each subsequent complete bounce
requires as long as the preceding complete bounce.
Use an infinite geometric series to estimate the time interval
from the instant the ball first touches the ground until it
stops bouncing.

75. Geometry The midpoints of the sides of a square of side
1 are joined to form a new square. This procedure is 
repeated for each new square. (See the figure.)

(a) Find the sum of the areas of all the squares.

(b) Find the sum of the perimeters of all the squares.

76. Geometry A circular disk of radius R is cut out of paper,
as shown in figure (a). Two disks of radius are cut out of
paper and placed on top of the first disk, as in figure (b), and
then four disks of radius are placed on these two disks
(figure (c)). Assuming that this process can be repeated
indefinitely, find the total area of all the disks.

(a) (b) (c)

1
4 R

1
2 R

1/12

a
q

k�1
50A12Bk�1

77. Geometry A yellow square of side 1 is divided into nine
smaller squares, and the middle square is colored blue as
shown in the figure. Each of the smaller yellow squares is in
turn divided into nine squares, and each middle square is
colored blue. If this process is continued indefinitely, what
is the total area colored blue?

Discovery • Discussion

78. Arithmetic or Geometric? The first four terms of a 
sequence are given. Determine whether these terms can be
the terms of an arithmetic sequence, a geometric sequence,
or neither. Find the next term if the sequence is arithmetic or
geometric.

(a) 5, �3, 5, �3, . . . (b) , 1, , , . . .

(c) , 3, 3 , 9, . . . (d) 1, �1, 1, �1, . . .

(e) 2, �1, , 2, . . . (f) x � 1, x, x � 1, x � 2, . . .

(g) �3, , 0, , . . . (h) , , , 1, . . .

79. Reciprocals of a Geometric Sequence If a1, a2, a3, . . .
is a geometric sequence with common ratio r, show that the
sequence

is also a geometric sequence, and find the common ratio.

80. Logarithms of a Geometric Sequence If a1, a2, a3, . . .
is a geometric sequence with a common ratio r � 0 and 
a1 � 0, show that the sequence

is an arithmetic sequence, and find the common difference.

81. Exponentials of an Arithmetic Sequence If a1, a2,
a3, . . . is an arithmetic sequence with common difference d,
show that the sequence

is a geometric sequence, and find the common ratio.

10a1, 10a2, 10a3, . . .

log a1, log a2, log a3, . . .

1
a1

, 
1
a2

, 
1
a3

, . . .

16 513 5153
2� 

3
2

1
2

1313

7
3

5
3

1
3

57050_11_ch11_p820-879.qxd  08/04/2008  11:59 AM  Page 846



CHAPTER 11 Sequences and Series 847

SECTION 11.3 Geometric Sequences 847

Finding Patterns

The ancient Greeks studied triangular numbers, square numbers, pentagonal 
numbers, and other polygonal numbers, like those shown in the figure.

To find a pattern for such numbers, we construct a first difference sequence
by taking differences of successive terms; we repeat the process to get a second 
difference sequence, third difference sequence, and so on. For the sequence of
triangular numbers Tn we get the following difference table:

We stop at the second difference sequence because it’s a constant sequence. 
Assuming that this sequence will continue to have constant value 1, we can 
work backward from the bottom row to find more terms of the first difference 
sequence, and from these, more triangular numbers.

If a sequence is given by a polynomial function and if we calculate the first
differences, the second differences, the third differences, and so on, then eventu-
ally we get a constant sequence. For example, the triangular numbers are given
by the polynomial Tn � n2 � n (see the margin note on the next page); the sec-
ond difference sequence is the constant sequence 1, 1, 1, . . . .

1
2

1
2

61

2

3

1

3

1

4

10

1

5

15

1

6

21Triangular numbers

First differences

Second differences

1 5 12 22 35

2516941

1 21151063

D I S C O V E R Y
P R O J E C T

Triangular numbers

Square numbers

Pentagonal numbers
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SUGGESTED TIME

AND EMPHASIS

–1 class.
Optional material.

POINTS TO STRESS

1. The future and present values of
an annuity.

2. Calculating the interest rate of
an annuity from the size of
monthly payments.

ALTERNATE EXAMPLE 1
An investor deposits $300 every
December 15 and June 15 for
11 years in an account that earns
interest at the rate of 10% per
year, compounded semiannually.
How much will be in the account
immediately after the last payment?
Please round the answer
(expressed in dollars) to the
nearest cent. 

ANSWER
$11,551.56

1
2

IN-CLASS MATERIALS

The key idea here is that there are many practical examples available to use as illustrations.

SAMPLE QUESTION

Text Question

What is an annuity?

Answer

An annuity is a sum of money paid in regular equal payments.

848 CHAPTER 11 Sequences and Series

1. Construct a difference table for the square numbers and the pentagonal 
numbers. Use your table to find the tenth pentagonal number.

2. From the patterns you’ve observed so far, what do you think the second 
difference would be for the hexagonal numbers? Use this, together with the
fact that the first two hexagonal numbers are 1 and 6, to find the first eight
hexagonal numbers.

3. Construct difference tables for Cn � n3. Which difference sequence is 
constant? Do the same for Fn � n4.

4. Make up a polynomial of degree 5 and construct a difference table. Which
difference sequence is constant?

5. The first few terms of a polynomial sequence are 1, 2, 4, 8, 16, 31, 57, . . . .
Construct a difference table and use it to find four more terms of this 
sequence.

The formula for the nth triangular
number can be found using the for-
mula for the sum of the first n whole
numbers (Example 2, Section 11.5).
From the definition of Tn we have

 � 12   
n2 � 1

2   
n

 � 
n1n � 1 2

2

 Tn � 1 � 2 � . . . � n

11.4 Mathematics of Finance

Many financial transactions involve payments that are made at regular intervals. For
example, if you deposit $100 each month in an interest-bearing account, what will the
value of your account be at the end of 5 years? If you borrow $100,000 to buy a house,
how much must your monthly payments be in order to pay off the loan in 30 years?
Each of these questions involves the sum of a sequence of numbers; we use the 
results of the preceding section to answer them here.

The Amount of an Annuity

An annuity is a sum of money that is paid in regular equal payments. Although the
word annuity suggests annual (or yearly) payments, they can be made semiannually,
quarterly, monthly, or at some other regular interval. Payments are usually made at
the end of the payment interval. The amount of an annuity is the sum of all the in-
dividual payments from the time of the first payment until the last payment is made,
together with all the interest. We denote this sum by Af (the subscript f here is used
to denote final amount).

Example 1 Calculating the Amount of an Annuity

An investor deposits $400 every December 15 and June 15 for 10 years in an account
that earns interest at the rate of 8% per year, compounded semiannually. How much
will be in the account immediately after the last payment?

Solution We need to find the amount of an annuity consisting of 20 semiannual
payments of $400 each. Since the interest rate is 8% per year, compounded semi-
annually, the interest rate per time period is i � 0.08/2 � 0.04. The first payment 
is in the account for 19 time periods, the second for 18 time periods, and so on.

When using interest rates in 
calculators, remember to convert 
percentages to decimals. For example,
8% is 0.08.

57050_11_ch11_p820-879.qxd  08/04/2008  11:59 AM  Page 848



CHAPTER 11 Sequences and Series 849

DRILL QUESTION

Every year, an investor deposits
$2000 in an IRA which earns
an interest rate of 6% per year.
How much is in the IRA after
ten years?

Answer

= 26,361.59

IN-CLASS MATERIALS

Many states and companies hold
lotteries and sweepstakes. The
very large ones have options
where the winner can chose a
large lump sum award, or a larger
award paid out over a period of
years. Find the data for a local
lottery or sweepstakes, and decide
which option is the better option
from a financial standpoint. For
example, in the Midwestern
United States Powerball, five

2000 
(1 + 0.06)10 - 1

0.06

Numbers Matched
All five numbers + Powerball
All five numbers, without Powerball
Four numbers + Powerball
Four numbers, without Powerball
Three numbers + Powerball
Three numbers, without Powerball
Two numbers + Powerball
One number + Powerball
Powerball only 

Payout
Jackpot (use $10 million as an example)
$100,000
$5,000
$100
$100
$7
$7
$4
$3

If the grand prize is $10 million, it will be paid over 30 years, or the winner can choose to receive a lump sum payment of $5.8 million.

The last payment receives no interest. The situation can be illustrated by the time
line in Figure 1.

The amount Af of the annuity is the sum of these 20 amounts. Thus

But this is a geometric series with a � 400, r � 1.04, and n � 20, so

Thus, the amount in the account after the last payment is $11,911.23. ■

In general, the regular annuity payment is called the periodic rent and is denoted
by R. We also let i denote the interest rate per time period and n the number of pay-
ments. We always assume that the time period in which interest is compounded is
equal to the time between payments. By the same reasoning as in Example 1, we see
that the amount Af of an annuity is

Since this is the nth partial sum of a geometric sequence with a � R and r � 1 � i,
the formula for the partial sum gives

Af � R  
1 � 11 � i 2 n
1 � 11 � i 2 � R  

1 � 11 � i 2 n
�i

� R  
11 � i 2 n � 1

i

Af � R � R11 � i 2 � R11 � i 2 2 � . . . � R11 � i 2 n�1

Af � 400  

1 � 11.04 2 20

1 � 1.04
� 11,911.23

Af � 400 � 40011.04 2 � 40011.04 2 2 � . . . � 40011.04 2 19

1 2 3

400 400 400 400 400 400

9 10

400400 400 400
400(1.04)
400(1.04)2

400(1.04)3

400(1.04)14

400(1.04)15

400(1.04)16

400(1.04)17

400(1.04)18

400(1.04)19

Time
(years)

NOW

Payment
(dollars)

…

…

SECTION 11.4 Mathematics of Finance 849

Figure 1

Amount of an Annuity

The amount Af of an annuity consisting of n regular equal payments of size R
with interest rate i per time period is given by

Af � R  
11 � i 2 n � 1

i

white balls are drawn from a set of 53, and one red Powerball is drawn from a set of 42. The payouts are as follows:
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ALTERNATE EXAMPLE 2
How much money should be
invested every month at 6% per
year, compounded monthly, in
order to have $2000 in 19 months?
Please round the answer (expressed
in dollars) to the nearest cent.

ANSWER
$100.61 

Example 2 Calculating the Amount of an Annuity

How much money should be invested every month at 12% per year,
compounded monthly, in order to have $4000 in 18 months?

Solution In this problem i � 0.12/12 � 0.01, Af � 4000, and n � 18. We need
to find the amount R of each payment. By the formula for the amount of an annuity,

Solving for R, we get

Thus, the monthly investment should be $203.93. ■

The Present Value of an Annuity

If you were to receive $10,000 five years from now, it would be worth much less than
getting $10,000 right now. This is because of the interest you could accumulate dur-
ing the next five years if you invested the money now. What smaller amount would
you be willing to accept now instead of receiving $10,000 in five years? This is the
amount of money that, together with interest, would be worth $10,000 in five years.
The amount we are looking for here is called the discounted value or present value. If
the interest rate is 8% per year, compounded quarterly, then the interest per time pe-
riod is i � 0.08/4 � 0.02, and there are 4 � 5 � 20 time periods. If we let PV denote
the present value, then by the formula for compound interest (Section 4.1) we have

so

Thus, in this situation, the present value of $10,000 is $6729.71. This reasoning leads
to a general formula for present value:

Similarly, the present value of an annuity is the amount Ap that must be invested
now at the interest rate i per time period in order to provide n payments, each of
amount R. Clearly, Ap is the sum of the present values of each individual payment (see
Exercise 22). Another way of finding Ap is to note that Ap is the present value of Af:

Ap � Af 11 � i 2�n � R  
11 � i 2 n � 1

i
 11 � i 2�n � R 

1 � 11 � i 2�n

i

PV � A11 � i 2�n

PV � 10,00011 � 0.02 2�20 � 6729.713

10,000 � PV11 � i 2 n � PV11 � 0.02 2 20

R �
400010.01 2

11 � 0.01 2 18 � 1
� 203.928

4000 � R 
11 � 0.01 2 18 � 1

0.01

850 CHAPTER 11 Sequences and Series

The Present Value of an Annuity

The present value Ap of an annuity consisting of n regular equal payments of
size R and interest rate i per time period is given by

Ap � R  

1 � 11 � i 2�n

i

Mathematics in 

the Modern World

Mathematical Economics

The health of the global economy
is determined by such interrelated
factors as supply, demand, produc-
tion, consumption, pricing, distri-
bution, and thousands of other
factors. These factors are in turn
determined by economic decisions
(for example, whether or not you
buy a certain brand of toothpaste)
made by billions of different indi-
viduals each day. How will today’s
creation and distribution of goods
affect tomorrow’s economy? Such
questions are tackled by mathe-
maticians who work on mathemat-
ical models of the economy. In the
1940s Wassily Leontief, a pioneer
in this area, created a model con-
sisting of thousands of equations
that describe how different sectors
of the economy, such as the oil in-
dustry, transportation, and commu-
nication, interact with each other.
A different approach to economic
models, one dealing with individu-
als in the economy as opposed to
large sectors, was pioneered by
John Nash in the 1950s. In his
model, which uses Game Theory,
the economy is a game where indi-
vidual players make decisions that
often lead to mutual gain. Leontief
and Nash were awarded the Nobel
Prize in Economics in 1973 and
1994, respectively. Economic the-
ory continues to be a major area of
mathematical research.
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ALTERNATE EXAMPLE 3 
A person wins $3,000,000 in the
California lottery, and the amount
is paid in yearly installments of
half a million dollars each for
6 years. What is the present value
of his winnings? Assume that he
can earn 5% interest, compounded
annually. Please round your
answer (expressed in dollars) to
the nearest cent. 

ANSWER
$2,537,846.03 

ALTERNATE EXAMPLE 4
A student wishes to buy a car. He
can afford to pay $400 per month
but has no money for a down
payment. If he can make these
payments for five years and the
interest rate is 3%, what purchase
price can he afford? Please round
your answer (expressed in dollars)
to the nearest cent. 

ANSWER
$22,260.94

EXAMPLE
A person borrows $20,000 to buy
a car, and wants to pay it off in
4 years. If the interest rate is 8%
per year, compounded monthly,
what is the amount of each
monthly payment?

ANSWER
$488.26

IN-CLASS MATERIALS

A phone call to a cooperative automobile dealership will get a sample monthly payment on a 4-year car
loan. Students can figure out the interest rate on cars in their community, and see if it varies based on the
cost of the car.

Example 3 Calculating the Present Value of an Annuity

A person wins $10,000,000 in the California lottery, and the amount is paid in
yearly installments of half a million dollars each for 20 years. What is the present
value of his winnings? Assume that he can earn 10% interest, compounded 
annually.

Solution Since the amount won is paid as an annuity, we need to find its present
value. Here i � 0.1, R � $500,000, and n � 20. Thus

This means that the winner really won only $4,256,781.86 if it were paid 
immediately. ■

Installment Buying

When you buy a house or a car by installment, the payments you make are an annu-
ity whose present value is the amount of the loan.

Example 4 The Amount of a Loan

A student wishes to buy a car. He can afford to pay $200 per month but has no
money for a down payment. If he can make these payments for four years and the
interest rate is 12%, what purchase price can he afford?

Solution The payments the student makes constitute an annuity whose present
value is the price of the car (which is also the amount of the loan, in this case). Here
we have i � 0.12/12 � 0.01, R � 200, n � 12 � 4 � 48, so

Thus, the student can buy a car priced at $7594.79. ■

When a bank makes a loan that is to be repaid with regular equal payments R, then
the payments form an annuity whose present value Ap is the amount of the loan. So,
to find the size of the payments, we solve for R in the formula for the amount of an
annuity. This gives the following formula for R.

Ap � R  
1 � 11 � i 2�n

i
� 200  

1 � 11 � 0.01 2�48

0.01
� 7594.792

Ap � 500,000 
1 � 11 � 0.1 2�20

0.1
� 4,256,781.859

SECTION 11.4 Mathematics of Finance 851

Installment Buying

If a loan Ap is to be repaid in n regular equal payments with interest rate i per
time period, then the size R of each payment is given by

R �
iAp

1 � 11 � i 2�n
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ALTERNATE EXAMPLE 5
A couple borrows $100,000 at 
3% interest as a mortgage loan 
on a house. They expect to make
monthly payments for 34 years to
repay the loan. What is the size of
each payment? Please round your
answer (expressed in dollars) to
the nearest cent. 

ANSWER
$391.27 

ALTERNATE EXAMPLE 6
A car dealer sells a new car for
$19,000. He offers the buyer
payments of $367 per month for
5 years. What interest rate is this
car dealer charging? Please round
your answer to the nearest percent. 

ANSWER
6%

IN-CLASS MATERIALS

Students can be assigned to contact mortgage brokers to find the size of payments (and current interest
rate) on an average 30-year mortgage on a house near their home or school. They then can explore the ef-
fects of making a larger or smaller down payment on the house.

Example 5 Calculating Monthly Mortgage Payments

A couple borrows $100,000 at 9% interest as a mortage loan on a house. They 
expect to make monthly payments for 30 years to repay the loan. What is the size 
of each payment?

Solution The mortgage payments form an annuity whose present value is 
Ap � $100,000. Also, i � 0.09/12 � 0.0075, and n � 12 � 30 � 360. We are 
looking for the amount R of each payment. From the formula for installment 
buying, we get

Thus, the monthly payments are $804.62. ■

We now illustrate the use of graphing devices in solving problems related to 
installment buying.

Example 6 Calculating the Interest Rate from the Size 

of Monthly Payments

A car dealer sells a new car for $18,000. He offers the buyer payments of $405 per
month for 5 years. What interest rate is this car dealer charging?

Solution The payments form an annuity with present value Ap � $18,000,
R � 405, and n � 12 � 5 � 60. To find the interest rate, we must solve for i in the
equation

A little experimentation will convince you that it’s not possible to solve this 
equation for i algebraically. So, to find i we use a graphing device to graph R as a
function of the interest rate x, and we then use the graph to find the interest rate cor-
responding to the value of R we want ($405 in this case). Since i � x/12, we graph
the function

in the viewing rectangle 30.06, 0.164 � 3350, 4504, as shown in Figure 2. We 
also graph the horizontal line in the same viewing rectangle. Then,
by moving the cursor to the point of intersection of the two graphs, we find that 
the corresponding x-value is approximately 0.125. Thus, the interest rate is 
about %. ■12 

1
2

R1x 2 � 405

R1x 2 �

x

12
 118,000 2

1 � a1 �
x

12
b�60

R �
iAp

1 � 11 � i 2�n

 � 
10.0075 2 1100,000 2

1 � 11 � 0.0075 2�360 � 804.623

 R �
iAp

1 � 11 � i 2�n

852 CHAPTER 11 Sequences and Series

450

350
0.06 0.160.125

405

Figure 2
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SECTION 11.4 Mathematics of Finance 853

1. Annuity Find the amount of an annuity that consists of 
10 annual payments of $1000 each into an account that pays
6% interest per year.

2. Annuity Find the amount of an annuity that consists of 
24 monthly payments of $500 each into an account that
pays 8% interest per year, compounded monthly.

3. Annuity Find the amount of an annuity that consists of 
20 annual payments of $5000 each into an account that pays
interest of 12% per year.

4. Annuity Find the amount of an annuity that consists of 
20 semiannual payments of $500 each into an account that
pays 6% interest per year, compounded semiannually.

5. Annuity Find the amount of an annuity that consists of 
16 quarterly payments of $300 each into an account that
pays 8% interest per year, compounded quarterly.

6. Saving How much money should be invested every quar-
ter at 10% per year, compounded quarterly, in order to have
$5000 in 2 years?

7. Saving How much money should be invested monthly at
6% per year, compounded monthly, in order to have $2000
in 8 months?

8. Annuity What is the present value of an annuity that con-
sists of 20 semiannual payments of $1000 at the interest rate
of 9% per year, compounded semiannually?

9. Funding an Annuity How much money must be invested
now at 9% per year, compounded semiannually, to fund an
annuity of 20 payments of $200 each, paid every 6 months,
the first payment being 6 months from now?

10. Funding an Annuity A 55-year-old man deposits
$50,000 to fund an annuity with an insurance company. The
money will be invested at 8% per year, compounded semi-
annually. He is to draw semiannual payments until he
reaches age 65. What is the amount of each payment?

11. Financing a Car A woman wants to borrow $12,000 in
order to buy a car. She wants to repay the loan by monthly
installments for 4 years. If the interest rate on this loan is

% per year, compounded monthly, what is the amount of
each payment?

12. Mortgage What is the monthly payment on a 30-year
mortgage of $80,000 at 9% interest? What is the monthly
payment on this same mortgage if it is to be repaid over a
15-year period?

13. Mortgage What is the monthly payment on a 30-year
mortgage of $100,000 at 8% interest per year, compounded
monthly? What is the total amount paid on this loan over the
30-year period?

14. Mortgage A couple can afford to make a monthly mort-
gage payment of $650. If the mortgage rate is 9% and the

10 
1
2

couple intends to secure a 30-year mortgage, how much can
they borrow?

15. Mortgage A couple secures a 30-year loan of $100,000
at % per year, compounded monthly, to buy a house.

(a) What is the amount of their monthly payment?

(b) What total amount will they pay over the 30-year period?

(c) If, instead of taking the loan, the couple deposits the
monthly payments in an account that pays % interest
per year, compounded monthly, how much will be in
the account at the end of the 30-year period?

16. Financing a Car Jane agrees to buy a car for a down pay-
ment of $2000 and payments of $220 per month for 3 years.
If the interest rate is 8% per year, compounded monthly,
what is the actual purchase price of her car?

17. Financing a Ring Mike buys a ring for his fiancee by
paying $30 a month for one year. If the interest rate is 10%
per year, compounded monthly, what is the price of the ring?

18. Interest Rate Janet’s payments on her $12,500 car are
$420 a month for 3 years. Assuming that interest is com-
pounded monthly, what interest rate is she paying on the 
car loan?

19. Interest Rate John buys a stereo system for $640. He
agrees to pay $32 a month for 2 years. Assuming that inter-
est is compounded monthly, what interest rate is he paying?

20. Interest Rate A man purchases a $2000 diamond ring for
a down payment of $200 and monthly installments of $88
for 2 years. Assuming that interest is compounded monthly,
what interest rate is he paying?

21. Interest Rate An item at a department store is priced at
$189.99 and can be bought by making 20 payments of
$10.50. Find the interest rate, assuming that interest is com-
pounded monthly.

Discovery • Discussion

22. Present Value of an Annuity (a) Draw a time line as in
Example 1 to show that the present value of an annuity is
the sum of the present values of each payment, that is,

(b) Use part (a) to derive the formula for Ap given in the text.

23. An Annuity That Lasts Forever An annuity in 
perpetuity is one that continues forever. Such annuities 
are useful in setting up scholarship funds to ensure that 
the award continues.

Ap �
R

1 � i
�

R

11 � i 2 2 �
R

11 � i 2 3 � . . . �
R

11 � i 2 n

9 
3
4

9 
3
4

11.4 Exercises
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SUGGESTED TIME

AND EMPHASIS

1–1 classes.
Optional material.

1
2

POINT TO STRESS

The concept and execution of a proof by mathematical induction.

854 CHAPTER 11 Sequences and Series

(a) Draw a time line (as in Example 1) to show that to set
up an annuity in perpetuity of amount R per time pe-
riod, the amount that must be invested now is

where i is the interest rate per time period.

(b) Find the sum of the infinite series in part (a) to show that

(c) How much money must be invested now at 10% per
year, compounded annually, to provide an annuity in
perpetuity of $5000 per year? The first payment is due
in one year.

(d) How much money must be invested now at 8% per 
year, compounded quarterly, to provide an annuity in 
perpetuity of $3000 per year? The first payment is 
due in one year.

24. Amortizing a Mortgage When they bought their house,
John and Mary took out a $90,000 mortgage at 9% interest,
repayable monthly over 30 years. Their payment is $724.17
per month (check this using the formula in the text). The

Ap �
R

i

Ap �
R

1 � i
�

R

11 � i 2 2 �
R

11 � i 2 3 � . . . �
R

11 � i 2 n � . . .

bank gave them an amortization schedule, which is a table
showing how much of each payment is interest, how much
goes toward the principal, and the remaining principal after
each payment. The table below shows the first few entries in
the amortization schedule.

11.5 Mathematical Induction

There are two aspects to mathematics—discovery and proof—and both are of equal
importance. We must discover something before we can attempt to prove it, and we
can only be certain of its truth once it has been proved. In this section we examine the
relationship between these two key components of mathematics more closely.

Conjecture and Proof

Let’s try a simple experiment. We add more and more of the odd numbers as follows:

What do you notice about the numbers on the right side of these equations? They are
in fact all perfect squares. These equations say the following:

.

.

.

.

.The sum of the first 5 odd numbers is 52

The sum of the first 4 odd numbers is 42

The sum of the first 3 odd numbers is 32

The sum of the first 2 odd numbers is 22

The sum of the first 1 odd number is 12

 1 � 3 � 5 � 7 � 9 � 25

 1 � 3 � 5 � 7 � 16

 1 � 3 � 5 � 9

 1 � 3 � 4

 1 � 1

Payment Total Interest Principal Remaining 
number payment payment payment principal

1 724.17 675.00 49.17 89,950.83
2 724.17 674.63 49.54 89,901.29
3 724.17 674.26 49.91 89,851.38
4 724.17 673.89 50.28 89,801.10

After 10 years they have made 120 payments and are won-
dering how much they still owe, but they have lost the amor-
tization schedule.

(a) How much do John and Mary still owe on their mort-
gage? [Hint: The remaining balance is the present value
of the 240 remaining payments.]

(b) How much of their next payment is interest and how
much goes toward the principal? [Hint: Since 9% 	
12 � 0.75%, they must pay 0.75% of the remaining
principal in interest each month.]
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This leads naturally to the following question: Is it true that for every natural number
n, the sum of the first n odd numbers is n2? Could this remarkable property be true?
We could try a few more numbers and find that the pattern persists for the first 6, 7,
8, 9, and 10 odd numbers. At this point, we feel quite sure that this is always true, so
we make a conjecture:

.

Since we know that the nth odd number is 2n � 1, we can write this statement more
precisely as

It’s important to realize that this is still a conjecture. We cannot conclude by check-
ing a finite number of cases that a property is true for all numbers (there are infinitely
many). To see this more clearly, suppose someone tells us he has added up the first
trillion odd numbers and found that they do not add up to 1 trillion squared. What
would you tell this person? It would be silly to say that you’re sure it’s true because
you’ve already checked the first five cases. You could, however, take out paper and
pencil and start checking it yourself, but this task would probably take the rest of your
life. The tragedy would be that after completing this task you would still not be sure
of the truth of the conjecture! Do you see why?

Herein lies the power of mathematical proof. A proof is a clear argument that
demonstrates the truth of a statement beyond doubt.

Mathematical Induction

Let’s consider a special kind of proof called mathematical induction. Here is how it
works: Suppose we have a statement that says something about all natural numbers
n. Let’s call this statement P. For example, we could consider the statement

.

Since this statement is about all natural numbers, it contains infinitely many state-
ments; we will call them P(1), P(2), . . . .

.

.

.
. .
. .
. .

How can we prove all of these statements at once? Mathematical induction is a clever
way of doing just that.

The crux of the idea is this: Suppose we can prove that whenever one of these
statements is true, then the one following it in the list is also true. In other words,

.

This is called the induction step because it leads us from the truth of one statement
to the next. Now, suppose that we can also prove that

.P11 2  is true

For every k, if P1k 2  is true, then P1k � 1 2  is true

P13 2 : The sum of the first 3 odd numbers is 32

P12 2 : The sum of the first 2 odd numbers is 22

P11 2 : The sum of the first 1 odd number is 12

P: For every natural number n, the sum of the first n odd numbers is n2

1 � 3 � 5 � . . . � 12n � 1 2 � n2

The sum of the first n odd numbers is n2

SECTION 11.5 Mathematical Induction 855

Consider the polynomial

Here are some values of :

All the values so far are prime num-
bers. In fact, if you keep going, you
will find is prime for all natural
numbers up to n � 40. It may seem 
reasonable at this point to conjecture
that is prime for every natural
number n. But out conjecture would be
too hasty, because it is easily seen that

is not prime. This illustrates that
we cannot be certain of the truth of a
statement no matter how many special
cases we check. We need a convincing
argument—a proof—to determine the
truth of a statement.

p141 2

p1n 2

p1n 2

p17 2 � 83 p18 2 � 97

p15 2 � 61 p16 2 � 71

p13 2 � 47 p14 2 � 53

p11 2 � 41 p12 2 � 43

p1n 2
p1n 2 � n2 � n � 41
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IN-CLASS MATERIALS

The main thing for induction is to
give the students plenty of exam-
ples to work from, and plenty of
practice.

1. We can use induction to show

that is an integer for all
(2n)!

2nn!
positive n. The base case is trivial. The key step in the inductive case: 

and now cancellation occurs.
2. We can use induction to show that the sum of the cubes of three consecutive integers is divisible by 9.  The base case is trivial. The key 

inductive step: 
(n + 1)3 + (n + 2)3 + (n + 3)3 = n3 + (n + 1)3 + (n + 2)3 + 9n2 + 27n + 27

3. We can use induction to show that 

The base step should be n = 2, and the inductive step uses the fact that 

(n + 1)3 - (n + 1)

3
=

n3 - n

3
 
3n2 + 3n

3

n3 - n

3
= (1 # 2) + (2 # 3) + Á + (n - 1) n

 
(2n + 1)(2n + 2)

2(n + 1)

(2n + 2)!

2n + 1(n + 1)!
=

(2n)!

2nn!
 #  

The induction step now leads us through the following chain of statements:

.

.

.
. .
. .
. .

So we see that if both the induction step and are proved, then statement P is
proved for all n. Here is a summary of this important method of proof.

P11 2

P13 2  is true, so P14 2  is true

P12 2  is true, so P13 2  is true

P11 2  is true, so P12 2  is true

856 CHAPTER 11 Sequences and Series

Principle of Mathematical Induction

For each natural number n, let be a statement depending on n. Suppose
that the following two conditions are satisfied.

1. is true.

2. For every natural number k, if is true then is true.

Then is true for all natural numbers n.P1n 2
P1k � 1 2P1k 2

P11 2
P1n 2

To apply this principle, there are two steps:

Step 1 Prove that is true.

Step 2 Assume that is true and use this assumption to prove that 
is true.

Notice that in Step 2 we do not prove that is true. We only show that if
is true, then is also true. The assumption that is true is called the 
induction hypothesis.

P1k 2P1k � 1 2 P1k 2P1k 2
P1k � 1 2P1k 2

P11 2
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We now use mathematical induction to prove that the conjecture we made at the
beginning of this section is true.

57050_11_ch11_p820-879.qxd  08/04/2008  11:59 AM  Page 856



CHAPTER 11 Sequences and Series 857

ALTERNATE EXAMPLE 1
Use mathematical induction to
determine whether it is true that
for all natural numbers n,
2 + 6 + 10 + + (4n - 2) = 2n2.

ANSWER Yes

SAMPLE QUESTION

Text Question

There are two main steps to a
proof by mathematical induction.
What is the first one?

Answer

Any answer getting at the idea of a
base case or a “proof for n = 1”
should be accepted, even if the
latter isn’t technically true.

DRILL QUESTION

Prove, using mathematical
induction, that 1 + 2 + · · · + n

= .

Answer

This is Example 2 from the text.

ALTERNATE EXAMPLE 2
Use mathematical induction to
determine whether it is true that
for all natural numbers n,
3 + 6 + 9 + + 3n

=

ANSWER Yes

IN-CLASS MATERIALS

The students can do these, or you
can write it on the blackboard.

1. Let F(n) be the number of ways
to climb n steps. We want to
prove F(n) = F(n - 1) +
F(n - 2). 
Base Case: n = 3. It is true
that F(3) = F(2) + F(1).

3n(n + 1)

2
.

Á

n (n +  1)

2

Á

Inductive Step: Assume that this is true for 1 through n. Consider F(n + 1). The first step is either a one-step or a two-step. If the first step is
a one-step, there are n steps left to climb, and the number of ways to do that is F(n). If the first step is a two-step then there are n - 2 steps left
to climb, and the number of ways to do that is F(n - 1). So we have F(n) = F(n - 1) + F(n - 2).

2. Let F(n) be the number of successor-free n-element sequences. We want to prove F(n) = F(n - 1) + F(n - 2).
Base Case: n = 3. It is true that F(3) = F(2) + F(1).
Inductive Step: Assume that this is true for 1 through n. Consider F(n + 1). The first number in an n + 1 sequence will be either 0 or 1. If the first
number is 0, we have n left to go. So the number of ways to finish the sequence is F(n). If the first number is 1, the second must be 0, or we wouldn’t
be successor free. Then we have n - 2 numbers to go, so the number of ways to finish the sequence is F(n - 1). So F(n) = F(n - 1) + F(n - 2).

3. Let F(n) be the number of ancestors of a female bee at stage n. In other words, n = 1 means the number of parents, n = 2 means the number of
grandparents, etc. We want to prove F(n) = F(n - 1) + F(n - 2). 
Base Case: n = 3. It is true that F(3) = F(2) + F(1).
Inductive Step: Assume that this is true for 1 through n. Consider F(n + 1). The worker bee has a mommy, who has F(n - 1) ancestors. She
also has a daddy who has a mommy who has F(n - 2) ancestors. So, again, F(n) = F(n - 1) + F(n - 2).

Example 1 A Proof by Mathematical Induction

Prove that for all natural numbers n,

Solution Let denote the statement .

Step 1 We need to show that is true. But is simply the statement that 
1 � 12, which is of course true.

Step 2 We assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

[Note that we get by substituting k � 1 for each n in the state-
ment .] We start with the left side and use the induction hypothesis to
obtain the right side of the equation:

Group the first
k terms

Induction 
hypothesis

Distributive
Property

Simplify

Factor

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n. ■

Example 2 A Proof by Mathematical Induction

Prove that for every natural number n,

Solution Let be the statement . We
want to show that is true for all natural numbers n.

Step 1 We need to show that is true. But says that

and this statement is clearly true.

1 �
111 � 1 2

2

P11 2P11 2
P1n 2 1 � 2 � 3 � . . . � n � n1n � 1 2 /2P1n 2

1 � 2 � 3 � . . . � n �
n1n � 1 2

2

P1n 2

P1k 2P1k � 1 2
 � 1k � 1 2 2
 � k2 � 2k � 1

 � k2 � 32k � 2 � 1 4
 � k2 � 321k � 1 2 � 1 4

 � 31 � 3 � 5 � . . . � 12k � 1 2 4 � 321k � 1 2 � 1 4
1 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4

P1n 2 P1k � 1 2
1 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4 � 1k � 1 2 2

P1k � 1 2
1 � 3 � 5 � . . . � 12k � 1 2 � k2

P1k 2
P11 2P11 2

1 � 3 � 5 � . . . � 12n � 1 2 � n2P1n 2
1 � 3 � 5 � . . . � 12n � 1 2 � n2

SECTION 11.5 Mathematical Induction 857

This equals k 2 by the induction
hypothesis.
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Step 2 Assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

So, we start with the left side and use the induction hypothesis to obtain
the right side:

Group the first k terms

Induction hypothesis

Factor k � 1

Common denominator

Write k � 2 as k � 1 � 1

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n. ■

Formulas for the sums of powers of the first n natural numbers are important in
calculus. Formula 1 in the following box is proved in Example 2. The other formulas
are also proved using mathematical induction (see Exercises 4 and 7).

P1n 2
P1k 2P1k � 1 2

 � 
1k � 1 2 3 1k � 1 2 � 1 4

2

 � 1k � 1 2 a k � 2

2
b

 � 1k � 1 2 a k

2
� 1 b

 � 
k1k � 1 2

2
� 1k � 1 2

 � 31 � 2 � 3 � . . . � k 4 � 1k � 1 2
1 � 2 � 3 � . . . � k � 1k � 1 2

1 � 2 � 3 � . . . � k � 1k � 1 2 �
1k � 1 2 3 1k � 1 2 � 1 4

2

P1k � 1 2
1 � 2 � 3 � . . . � k �

k1k � 1 2
2

P1k 2
858 CHAPTER 11 Sequences and Series

Sums of Powers

0. 1.

2. 3. a
n

k�1
k3 �

n21n � 1 2 2
4a

n

k�1
k2 �

n1n � 1 2 12n � 1 2
6

a
n

k�1
k �

n1n � 1 2
2a

n

k�1
1 � n

It might happen that a statement is false for the first few natural numbers, but
true from some number on. For example, we may want to prove that is true for
n 
 5. Notice that if we prove that is true, then this fact, together with the 
induction step, would imply the truth of , , , . . . . The next example 
illustrates this point.

Example 3 Proving an Inequality

by Mathematical Induction

Prove that 4n � 2n for all n 
 5.

P17 2P16 2P15 2P15 2 P1n 2P1n 2

Blaise Pascal (1623–1662) is con-
sidered one of the most versatile
minds in modern history. He was a
writer and philosopher as well as a
gifted mathematician and physi-
cist. Among his contributions that
appear in this book are Pascal’s tri-
angle and the Principle of Mathe-
matical Induction.

Pascal’s father, himself a math-
ematician, believed that his son
should not study mathematics until
he was 15 or 16. But at age 12,
Blaise insisted on learning geome-
try, and proved most of its elemen-
tary theorems himself. At 19, he
invented the first mechanical
adding machine. In 1647, after
writing a major treatise on the
conic sections, he abruptly aban-
doned mathematics because he felt
his intense studies were contribut-
ing to his ill health. He devoted
himself instead to frivolous recre-
ations such as gambling, but this
only served to pique his interest in
probability. In 1654 he miracu-
lously survived a carriage accident
in which his horses ran off a
bridge. Taking this to be a sign
from God, he entered a monastery,
where he pursued theology and
philosophy, writing his famous
Pensées. He also continued his
mathematical research. He valued
faith and intuition more than rea-
son as the source of truth, declaring
that “the heart has its own reasons,
which reason cannot know.”

Ar
ch

iv
o 

In
co

no
gr

ap
ic

o,
 S

.A
./

Co
rb

is

ALTERNATE EXAMPLE 3 
Use mathematical induction to
answer the question: 
Is for all ? 

ANSWER
Yes

n Ú 32n 6 2n
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SECTION 11.5 Mathematical Induction 859

1–12 ■ Use mathematical induction to prove that the formula 
is true for all natural numbers n.

1.

2.

3.

4.

5.

6.

7.

8.

9. 23 � 43 � 63 � . . . � 12n 2 3 � 2n21n � 1 2 2
13 � 33 � 53 � . . . � 12n � 1 2 3 � n212n2 � 1 2
13 � 23 � 33 � . . . � n3 �

n21n � 1 2 2
4

� 
n1n � 1 2 12n � 7 2

6

1 # 3 � 2 # 4 � 3 # 5 � . . . � n1n � 2 2
� 

n1n � 1 2 1n � 2 2
3

1 # 2 � 2 # 3 � 3 # 4 � . . . � n1n � 1 2
12 � 22 � 32 � . . . � n2 �

n1n � 1 2 12n � 1 2
6

5 � 8 � 11 � . . . � 13n � 2 2 �
n13n � 7 2

2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

2 � 4 � 6 � . . . � 2n � n1n � 1 2
10.

11.

12. 1 � 2 � 22 � . . . � 2n�1 � 2n � 1

13. Show that n2 � n is divisible by 2 for all natural numbers n.

14. Show that 5n � 1 is divisible by 4 for all natural numbers n.

15. Show that n2 � n � 41 is odd for all natural numbers n.

16. Show that n3 � n � 3 is divisible by 3 for all natural 
numbers n.

17. Show that 8n � 3n is divisible by 5 for all natural numbers n.

18. Show that 32n � 1 is divisible by 8 for all natural numbers n.

19. Prove that n � 2n for all natural numbers n.

20. Prove that for all natural numbers n 
 3.

21. Prove that if x � �1, then for all natural
numbers n.

22. Show that 100n � n2 for all n 
 100.

23. Let an�1 � 3an and a1 � 5. Show that an � 5 � 3n�1 for all
natural numbers n.

11 � x 2 n 
 1 � nx

1n � 1 2 2 � 2n2

� 2 31 � 1n � 1 22n 4
1 # 2 � 2 # 22 � 3 # 23 � 4 # 24 � . . . � n # 2n

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

n1n � 1 2 �
n

1n � 1 2

Solution Let denote the statement 4n � 2n.

Step 1 is the statement that � 25, or 20 � 32, which is true.

Step 2 Assume that is true. Thus, our induction hypothesis is

We want to use this to show that is true, that is,

So, we start with the left side of the inequality and use the induction 
hypothesis to show that it is less than the right side. For k 
 5, we have

Induction hypothesis

Because 4 � 4k

Induction hypothesis

Property of exponents

Thus, follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that is true for all natural numbers n 
 5. ■

11.5 Exercises

P1n 2
P1k 2P1k � 1 2

 � 2k�1

 � 2 # 2k

 � 2k � 2k

 � 2k � 4k

 � 2k � 4

 41k � 1 2 � 4k � 4

41k � 1 2 � 2k�1

P1k � 1 2
4k � 2k

P1k 2
4 # 5P15 2

P1n 2

We get P(k � 1) by replacing k by 
k � 1 in the statement P(k).
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SUGGESTED TIME

AND EMPHASIS

class. 
Optional material.

1
2

POINTS TO STRESS

1. The expansion of (a + b)n where a and b are expressions, and n is a positive integer.

2. The computation of using factorials and using Pascal’s triangle.an

r
b

860 CHAPTER 11 Sequences and Series

24. A sequence is defined recursively by an�1 � 3an � 8 and 
a1 � 4. Find an explicit formula for an and then use mathe-
matical induction to prove that the formula you found is true.

25. Show that x � y is a factor of xn � yn for all natural 
numbers n.

26. Show that x � y is a factor of x 2n�1 � y2n�1 for all natural
numbers n.

27–31 ■ Fn denotes the nth term of the Fibonacci sequence 
discussed in Section 11.1. Use mathematical induction to prove
the statement.

27. F3n is even for all natural numbers n.

28. F1 � F2 � F3 � . . . � Fn � Fn�2 � 1

29. F 2
1 � F 2

2 � F 2
3 � . . . � F 2

n � FnFn�1

30. F1 � F3 � . . . � F2n�1 � F2n

31. For all n 
 2,

32. Let an be the nth term of the sequence defined recursively by

and a1 � 1. Find a formula for an in terms of the Fibonacci
numbers Fn. Prove that the formula you found is valid for all
natural numbers n.

33. Let Fn be the nth term of the Fibonacci sequence. Find and
prove an inequality relating n and Fn for natural numbers n.

34. Find and prove an inequality relating 100n and n3.

Discovery • Discussion

35. True or False? Determine whether each statement is true
or false. If you think the statement is true, prove it. If you
think it is false, give an example where it fails.

(a) is prime for all n.p1n 2 � n2 � n � 11

an�1 �
1

1 � an

c1 1

1 0
d n � cFn�1 Fn

Fn Fn�1
d

3Hint: xk�1 � yk�1 � xk1x � y 2 � 1xk � yk 2y 4

(b) n2 � n for all n 
 2.

(c) 22n�1 � 1 is divisible by 3 for all n 
 1.

(d) for all n 
 2.

(e) n3 � n is divisible by 3 for all n 
 2.

(f) n3 � 6n2 � 11n is divisible by 6 for all n 
 1.

36. All Cats Are Black? What is wrong with the following
“proof” by mathematical induction that all cats are black?
Let denote the statement: In any group of n cats, if one
is black, then they are all black.

Step 1 The statement is clearly true for n � 1.

Step 2 Suppose that is true. We show that 
is true.

Suppose we have a group of k � 1 cats, one of
whom is black; call this cat “Midnight.” Remove
some other cat (call it “Sparky”) from the group.
We are left with k cats, one of whom (Midnight) is
black, so by the induction hypothesis, all k of these
are black. Now put Sparky back in the group and
take out Midnight. We again have a group of k cats,
all of whom—except possibly Sparky—are black.
Then by the induction hypothesis, Sparky must be
black, too. So all k � 1 cats in the original group
are black.

Thus, by induction is true for all n. Since everyone has
seen at least one black cat, it follows that all cats are black.

Midnight Sparky

P1n 2

P1k � 1 2P1k 2

P1n 2

n3 
 1n � 1 2 2

11.6 The Binomial Theorem

An expression of the form a � b is called a binomial. Although in principle it’s easy
to raise a � b to any power, raising it to a very high power would be tedious. In this
section we find a formula that gives the expansion of for any natural num-
ber n and then prove it using mathematical induction.

1a � b 2 n
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Expanding (a � b)n

To find a pattern in the expansion of , we first look at some special cases:

.

.

.

The following simple patterns emerge for the expansion of :

1. There are n � 1 terms, the first being an and the last bn.

2. The exponents of a decrease by 1 from term to term while the exponents of b
increase by 1.

3. The sum of the exponents of a and b in each term is n.

For instance, notice how the exponents of a and b behave in the expansion of
.

The exponents of a decrease:

The exponents of b increase:

With these observations we can write the form of the expansion of for any
natural number n. For example, writing a question mark for the missing coefficients,
we have

Óa � bÔ8 � a8 � a7b � a6b2 � a5b3 � a4b4 � a3b5 � a2b6 � ab7 � b8

To complete the expansion, we need to determine these coefficients. To find a pattern,
let’s write the coefficients in the expansion of for the first few values of n in
a triangular array as shown in the following array, which is called Pascal’s triangle.

1a � b 2 5
1a � b 2 4
1a � b 2 3
1a � b 2 2
1a � b 2 1

1 5 10 110 5

1

1

1

1

1

1

1

1

1

4

3

2

4

3

6

1a � b 2 0
1a � b 2 n

???????

1a � b 2 n
1a � b 2 5 � a5 � 5a4b  �  10a3b  �  10a2b � 5a1b  �  b

1a � b 2 5 � a �  5a  b1 �   10a b2 �  10a b3 � 5a  b4 � b5

1a � b 2 5

1a � b 2 n

 1a � b 2 5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

 1a � b 2 4 � a4 � 4a3b � 6a2b2 � 4ab3 � b4

 1a � b 2 3 � a3 � 3a2b � 3ab2 � b3

 1a � b 2 2 � a2 � 2ab � b2

 1a � b 2 1 � a � b

1a � b 2 n

5 4 3 2 1

1 2 3 4 5

SECTION 11.6 The Binomial Theorem 861
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ALTERNATE EXAMPLE 1
Find the expansion of (a + b)6

using Pascal’s triangle. 

ANSWER
a6 + 6a5b + 15a4b2 + 20a3b3

+ 15a2b4 + 6ab5 + b6

ALTERNATE EXAMPLE 2
Use Pascal’s triangle to expand 
(3 - x)5.

ANSWER
243 - 405x + 270x2 - 90x3

+ 15x4 - x5

IN-CLASS MATERIALS

Pascal’s triangle is actually full of patterns. Have the students see how many they can find. They can
look along the diagonals, look down “columns,” find the sum of each row, etc. There are some instructors
who spend an entire class on patterns visible in Pascal’s triangle. As of this writing, the website
http://ptri1.tripod.com has a good discussion of patterns to be found in Pascal’s triangle.

The row corresponding to is called the zeroth row and is included to show
the symmetry of the array. The key observation about Pascal’s triangle is the follow-
ing property.

1a � b 2 0
862 CHAPTER 11 Sequences and Series

Key Property of Pascal’s Triangle

Every entry (other than a 1) is the sum of the two entries diagonally above it.

From this property it’s easy to find any row of Pascal’s triangle from the row above
it. For instance, we find the sixth and seventh rows, starting with the fifth row:

To see why this property holds, let’s consider the following expansions:

We arrive at the expansion of by multiplying by . Notice,
for instance, that the circled term in the expansion of is obtained via this
multiplication from the two circled terms above it. We get this term when the two
terms above it are multiplied by b and a, respectively. Thus, its coefficient is the sum
of the coefficients of these two terms. We will use this observation at the end of this
section when we prove the Binomial Theorem.

Having found these patterns, we can now easily obtain the expansion of any bino-
mial, at least to relatively small powers.

Example 1 Expanding a Binomial Using Pascal’s Triangle

Find the expansion of using Pascal’s triangle.

Solution The first term in the expansion is a7, and the last term is b7. Using the
fact that the exponent of a decreases by 1 from term to term and that of b increases
by 1 from term to term, we have

1a � b2 7 � a7 � a6b � a5b2 � a4b3 � a3b4 � a2b5 � ab6 � b7

The appropriate coefficients appear in the seventh row of Pascal’s triangle. Thus

■

Example 2 Expanding a Binomial Using 

Pascal’s Triangle

Use Pascal’s triangle to expand .

Solution We find the expansion of and then substitute 2 for a and �3x
for b. Using Pascal’s triangle for the coefficients, we get

1a � b 2 5 � a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

1a � b 2 5
12 � 3x 2 5

1a � b 2 7 � a7 � 7a6b � 21a5b2 � 35a4b3 � 35a3b4 � 21a2b5 � 7ab6 � b7

??????

1a � b 2 7

1a � b 2 6 1a � b 21a � b 2 51a � b 2 6
1a � b 2 6 � a6 � 6a5b � 15a4b2 � 20a3b3 �  15a2b4 � 6ab5 � b6

1a � b 2 5 � a5 � 5a4b � 10a3b2 �  10a2b3 �  5ab4 � b5

1a � b 2 7
1a � b 2 6

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1a � b 2 5

�––

�

Pascal’s triangle appears in this
Chinese document by Chu Shikie,
dated 1303. The title reads “The
Old Method Chart of the Seven
Multiplying Squares.” The triangle
was rediscovered by Pascal (see
page 858).

� � �

� � � � � �

� � �

� � � � � �

� � � �
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ALTERNATE EXAMPLE 3 
Calculate the binomial coefficient

.

ANSWER
2,555,190 

a90

4
b

Substituting a � 2 and b � �3x gives

■

The Binomial Coefficients

Although Pascal’s triangle is useful in finding the binomial expansion for reasonably
small values of n, it isn’t practical for finding for large values of n. The rea-
son is that the method we use for finding the successive rows of Pascal’s triangle is
recursive. Thus, to find the 100th row of this triangle, we must first find the preced-
ing 99 rows.

We need to examine the pattern in the coefficients more carefully to develop a for-
mula that allows us to calculate directly any coefficient in the binomial expansion.
Such a formula exists, and the rest of this section is devoted to finding and proving it.
However, to state this formula we need some notation.

The product of the first n natural numbers is denoted by n! and is called 
n factorial:

We also define 0! as follows:

This definition of 0! makes many formulas involving factorials shorter and easier to
write.

1a � b 2 n

 � 32 � 240x � 720x2 � 1080x3 � 810x4 � 243x5

 12 � 3x 2 5 � 12 2 5 � 512 2 41�3x 2 � 1012 2 31�3x 2 2 � 1012 2 21�3x 2 3 � 512 2 1�3x 2 4 � 1�3x 2 5

SECTION 11.6 The Binomial Theorem 863

The Binomial Coefficient

Let n and r be nonnegative integers with r � n. The binomial coefficient is
denoted by ( ) and is defined by

an

r
b �

n!

r!1n � r 2 !

n
r

Example 3 Calculating Binomial Coefficients

(a)

(b)

 � 
98 # 99 # 100

1 # 2 # 3 � 161,700

 a100

3
b �

100!

3!1100 � 3 2! �
1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 2 11 # 2 # 3 # p # 97 2

 � 
6 # 7 # 8 # 9
1 # 2 # 3 # 4 � 126

 a9

4
b �

9!

4!19 � 4 2! �
9!

4!5!
�

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9
11 # 2 # 3 # 4 2 11 # 2 # 3 # 4 # 5 2

 � 3,628,800

 10! � 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

 7! � 1 # 2 # 3 # 4 # 5 # 6 # 7 � 5040

 4! � 1 # 2 # 3 # 4 � 24

n! � 1 # 2 # 3 # . . . # 1n � 1 2 # n

0! � 1

57050_11_ch11_p820-879.qxd  08/04/2008  12:00 PM  Page 863



864 CHAPTER 11 Sequences and Series

SAMPLE QUESTION

Text Question

Compute .

Answer

5

IN-CLASS MATERIALS

If every odd number in Pascal’s
triangle is colored black, and
every even number colored white,
a figure like Sierpinski’s triangle
is revealed. Students need only do
a few rows before the recursive
structure is revealed.

a5

4
b

(c)

■

Although the binomial coefficient ( ) is defined in terms of a fraction, all the re-
sults of Example 3 are natural numbers. In fact, ( ) is always a natural number (see
Exercise 50). Notice that the binomial coefficients in parts (b) and (c) of Example 3
are equal. This is a special case of the following relation, which you are asked to
prove in Exercise 48.

To see the connection between the binomial coefficients and the binomial expan-
sion of , let’s calculate the following binomial coefficients:

These are precisely the entries in the fifth row of Pascal’s triangle. In fact, we can
write Pascal’s triangle as follows.

To demonstrate that this pattern holds, we need to show that any entry in this version
of Pascal’s triangle is the sum of the two entries diagonally above it. In other words,
we must show that each entry satisfies the key property of Pascal’s triangle. We now
state this property in terms of the binomial coefficients.

an

0
b  an

1
b  an

2
b  #   #   #   a n

n � 1
b  an

n
b

#    #    #    #    #    #    #
a5

0
b  a5

1
b  a5

2
b  a5

3
b  a5

4
b  a5

5
b

a4

0
b  a4

1
b  a4

2
b  a4

3
b  a4

4
b

a3

0
b  a3

1
b  a3

2
b  a3

3
b

a2

0
b  a2

1
b  a2

2
b

a1

0
b  a1

1
b

a0

0
b

a5

0
b � 1  a5

1
b � 5  a5

2
b � 10  a5

3
b � 10  a5

4
b � 5  a5

5
b � 1

1a � b 2 n

n
r

n
r

 � 
98 # 99 # 100

1 # 2 # 3 � 161,700

 a100

97
b �

100!

97!1100 � 97 2! �
1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 # p # 97 2 11 # 2 # 3 2

864 CHAPTER 11 Sequences and Series

a5

2
b �

5!

2!15 � 2 2 ! � 10

an

r
b � a n

n � r
b
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EXAMPLE

(4 = 1024 - 1280 

+ 640x - 160 ( + 20x2

- (

EXAMPLE

= x8 + 8x6 + 28x4

+ 56x2 + 70 +

ALTERNATE EXAMPLE 4
Use the Binomial Theorem
to expand (x + y)5. 

ANSWER
x5 + 5x4y + 10x3y2 + 10x2y3

+ 5xy4 + y5

IN-CLASS MATERIALS

The binomial theorem can be
extended to the real numbers, and
then some very interesting things
happen. First we generalize the 

definition of :

Notice that this is equivalent to
our former definition if n and r
are positive integers, even if 
r > n (in that case the numerator
will be zero). But this new defini-
tion works even if n is an arbitrary
real number. Now we can say

(a + b)n = a
q

r = 0
an

r
barbn - r

n (n - 1)(n - 2) Á (n - r + 1)

r!

an

r
b =

an

r
b

+  
8

x6 +
1

x8

56

x2 +
28

x4

ax +
1
x
b8

2x)5

2x)3

2x- 2x)5

Notice again that if n is a positive integer, then we are back to the standard binomial theorem, since is 0 for r > n. But now we can let
n = -1 to obtain 

Similarly, we can let to obtain

with the general term being (-1)n-1 .
1 #  3 #  5 #  7 # Á #  (2n - 3)

2nn!
 xn

x5 + 5x4 #  y + 10x 2x + 1 = 1 +
1

2
 x -

1

8
 x2 +

1

16
 x3 -

5

128
 x4 + Á

n =
1

2

1

x + 1
= 1 - x + x2 - x3 + x4 - x5 + Á

an

r
b

SECTION 11.6 The Binomial Theorem 865

Key Property of the Binomial Coefficients

For any nonnegative integers r and k with r � k,

a k

r � 1
b � a k

r
b � a k � 1

r
b

Notice that the two terms on the left side of this equation are adjacent entries in the
kth row of Pascal’s triangle and the term on the right side is the entry diagonally be-
low them, in the st row. Thus, this equation is a restatement of the key prop-
erty of Pascal’s triangle in terms of the binomial coefficients. A proof of this formula
is outlined in Exercise 49.

The Binomial Theorem

We are now ready to state the Binomial Theorem.

1k � 1 2

The Binomial Theorem

1a � b 2n � an

0
ban � an

1
ban�1b � an

2
ban�2b2 � . . . � a n

n � 1
babn�1 � an

n
bbn

We prove this theorem at the end of this section. First, let’s look at some of its 
applications.

Example 4 Expanding a Binomial Using 

the Binomial Theorem

Use the Binomial Theorem to expand .

Solution By the Binomial Theorem,

Verify that

It follows that

■1x � y 2 4 � x4 � 4x3y � 6x2y2 � 4xy3 � y4

a4

0
b � 1  a4

1
b � 4  a4

2
b � 6  a4

3
b � 4  a4

4
b � 1

1x � y 2 4 � a4

0
b x4 � a4

1
b x3y � a4

2
b x2y2 � a4

3
b xy3 � a4

4
b y4

1x � y 2 4

57050_11_ch11_p820-879.qxd  08/04/2008  12:00 PM  Page 865



866 CHAPTER 11 Sequences and Series

ALTERNATE EXAMPLE 5
Use the Binomial Theorem 

to expand .

ANSWER

DRILL QUESTION

Expand (x + 2y)6.

Answer

(x + 2y)6 = x6 + 12x5y + 60x4y2

+ 160x3y3 + 240x2y4 + 192xy5

+ 64y6

+  240x - 192x1>2 + 64

x3 -12x5>2 + 60x2 - 160x3>2

A2x - 2 B6
Example 5 Expanding a Binomial Using 

the Binomial Theorem

Use the Binomial Theorem to expand .

Solution We first find the expansion of and then substitute for a
and �1 for b. Using the Binomial Theorem, we have

Verify that

So

Performing the substitutions a � x1/2 and b � �1 gives

This simplifies to

■

The Binomial Theorem can be used to find a particular term of a binomial expan-
sion without having to find the entire expansion.

11x � 1 2 8 � x4 � 8x7/2 � 28x3 � 56x5/2 � 70x2 � 56x3/2 � 28x � 8x1/2 � 1

 � 81x1/2 2 1�1 2 7 � 1�1 2 8
 � 701x1/2 2 41�1 2 4 � 561x1/2 2 31�1 2 5 � 281x1/2 2 21�1 2 6

 A1x � 1B8 � 1x1/2 2 8 � 81x1/2 2 71�1 2 � 281x1/2 2 61�1 2 2 � 561x1/2 2 51�1 2 3

� 28a2b6 � 8ab7 � b8

1a � b 2 8 � a8 � 8a7b � 28a6b2 � 56a5b3 � 70a4b4 � 56a3b5

a8

5
b � 56  a8

6
b � 28  a8

7
b � 8  a8

8
b � 1

a8

0
b � 1  a8

1
b � 8  a8

2
b � 28  a8

3
b � 56  a8

4
b � 70

� a8

5
ba3b5 � a8

6
ba2b6 � a8

7
bab7 � a8

8
bb8

1a � b 2 8 � a8

0
ba8 � a8

1
ba7b � a8

2
ba6b2 � a8

3
ba5b3 � a8

4
ba4b4

1x1a � b 2 8
A1x � 1B8

866 CHAPTER 11 Sequences and Series

General Term of the Binomial Expansion

The term that contains ar in the expansion of is

a n

n � r
barbn�r

1a � b 2 n
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ALTERNATE EXAMPLE 6
Find the term that contains x4 in
the expansion of (3x + y)15.

ANSWER
110565x4y11

ALTERNATE EXAMPLE 7
Find the coefficient of x 6 in the 

expansion of .

ANSWER
126 

ax2 +
1
x
b9

IN-CLASS MATERIALS

Point out that some of the formulas previously covered are just special cases of the Binomial Theorem, for
example the formulas for (x + y)2, (x - y)2, (x + y)3, and (x - y)3.

Example 6 Finding a Particular Term in a Binomial Expansion

Find the term that contains x5 in the expansion of .

Solution The term that contains x5 is given by the formula for the general term
with a � 2x, b � y, n � 20, and r � 5. So, this term is

■

Example 7 Finding a Particular Term in a Binomial Expansion

Find the coefficient of x8 in the expansion of .

Solution Both x2 and 1/x are powers of x, so the power of x in each term of 
the expansion is determined by both terms of the binomial. To find the required
coefficient, we first find the general term in the expansion. By the formula we 
have a � x2, b � 1/x, and n � 10, so the general term is

Thus, the term that contains x8 is the term in which

So the required coefficient is

■

Proof of the Binomial Theorem

We now give a proof of the Binomial Theorem using mathematical induction.

■ Proof Let denote the statement

Step 1 We show that is true. But is just the statement

which is certainly true.

Step 2 We assume that is true. Thus, our induction hypothesis is

1a � b 2 k � a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk

P1k 2

1a � b 2 1 � a1

0
ba1 � a1

1
bb1 � 1a � 1b � a � b

P11 2P11 2
1a � b 2 n � an

0
ban � an

1
ban�1b � an

2
ban�2b2 � . . . � a n

n � 1
babn�1 � an

n
bbn

P1n 2

a 10

10 � 6
b � a10

4
b � 210

 r � 6

 3r � 10 � 8

a 10

10 � r
b 1x2 2 r a 1

x
b 10�r

� a 10

10 � r
b x2r1x�1 2 10�r � a 10

10 � r
b x3r�10

a x2 �
1
x
b 10

a20

15
ba5b15 �

20!

15!120 � 15 2!  12x 2 5y15 �
20!

15!5!
 32x5y15 � 496,128x5y15

12x � y 2 20

SECTION 11.6 The Binomial Theorem 867
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868 CHAPTER 11 Sequences and Series

1–12 ■ Use Pascal’s triangle to expand the expression.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12. a2 �
x

2
b 5a 1

x
� 1x b 511 � x3 2 3

12x � 3y 2 3A1 � 12B61x2y � 1 2 5
A1a � 1bB61x � 1 2 51x � y 2 5
a x �

1
x
b 412x � 1 2 41x � y 2 6

13–20 ■ Evaluate the expression.

13. 14. 15.

16. 17. 18.

19. a5

0
b � a5

1
b � a5

2
b � a5

3
b � a5

4
b � a5

5
b

a5

2
b a5

3
ba3

1
b a4

2
ba10

5
b

a100

98
ba8

3
ba6

4
b

We use this to show that is true.

Group like terms

Using the key property of the binomial coefficients, we can write each of the 
expressions in square brackets as a single binomial coefficient. Also, writing
the first and last coefficients as ( ) and ( ) (these are equal to 1 by Exer-
cise 46) gives

But this last equation is precisely , and this completes the induc-
tion step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that the theorem is true for all natural numbers n. ■

11.6 Exercises

P1k � 1 2
1a � b 2 k�1 � a k � 1

0
bak�1 � a k � 1

1
bakb � a k � 1

2
bak�1b2 � . . . � a k � 1

k
babk � a k � 1

k � 1
bbk�1

k�1
k�1

k�1
0

� . . . � c a k

k � 1
b � a k

k
b dabk � a k

k
bbk�1

 � a k

0
bak�1 � c a k

0
b � a k

1
b dakb � c a k

1
b � a k

2
b dak�1b2

Distributive
Property � a k

0
bakb � a k

1
bak�1b2 � a k

2
bak�2b3 � . . . � a k

k � 1
babk � a k

k
bbk�1

 � a k

0
bak�1 � a k

1
bakb � a k

2
bak�1b2 � . . . � a k

k � 1
ba2bk�1 � a k

k
babk

Distributive
Property � b c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d

 � a c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d

Induction
hypothesis � 1a � b 2 c a k

0
bak � a k

1
bak�1b � a k

2
bak�2b2 � . . . � a k

k � 1
babk�1 � a k

k
bbk d

 1a � b 2 k�1 � 1a � b 2 3 1a � b 2 k 4
P1k � 1 2
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SECTION 11.6 The Binomial Theorem 869

20.

21–24 ■ Use the Binomial Theorem to expand the expression.

21. 22.

23. 24.

25. Find the first three terms in the expansion of .

26. Find the first four terms in the expansion of .

27. Find the last two terms in the expansion of .

28. Find the first three terms in the expansion of

29. Find the middle term in the expansion of .

30. Find the fifth term in the expansion of .

31. Find the 24th term in the expansion of .

32. Find the 28th term in the expansion of .

33. Find the 100th term in the expansion of .

34. Find the second term in the expansion of

35. Find the term containing x4 in the expansion of .

36. Find the term containing y3 in the expansion of .

37. Find the term containing b8 in the expansion of .

38. Find the term that does not contain x in the expansion of

39–42 ■ Factor using the Binomial Theorem.

39.

40.

41.

42. x8 � 4x6y � 6x4y2 � 4x2y3 � y4

8a3 � 12a2b � 6ab2 � b3

101x � 1 2 2 � 51x � 1 2 � 1
1x � 1 2 5 � 51x � 1 2 4 � 101x � 1 2 3 �

x4 � 4x3y � 6x2y2 � 4xy3 � y4

a8x �
1

2x
b 8

1a � b2 2 12

A12 � yB12

1x � 2y 2 10

a x2 �
1
x
b 25

11 � y 2 100

1A � B 2 30

1a � b 2 25

1ab � 1 2 20

1x2 � 1 2 18

a x �
1
x
b 40

1a2/3 � a1/3 2 25

1x1/2 � 1 2 30

1x � 2y 2 20

12A � B2 2 4a1 �
1
x
b 6

11 � x 2 51x � 2y 2 4

a5

0
b � a5

1
b � a5

2
b � a5

3
b � a5

4
b � a 5

5
b 43–44 ■ Simplify using the Binomial Theorem.

43. 44.

45. Show that .

[Hint: Note that and use the Bino-
mial Theorem to show that the sum of the first two terms of
the expansion is greater than 2.]

46. Show that and .

47. Show that .

48. Show that for 0 � r � n.

49. In this exercise we prove the identity

(a) Write the left side of this equation as the sum of two
fractions.

(b) Show that a common denominator of the expression
you found in part (a) is .

(c) Add the two fractions using the common denominator
in part (b), simplify the numerator, and note that the 
resulting expression is equal to the right side of the
equation.

50. Prove that 1nr 2 is an integer for all n and for 0 � r � n. 
[Suggestion: Use induction to show that the statement is
true for all n, and use Exercise 49 for the induction step.]

Discovery • Discussion

51. Powers of Factorials Which is larger, or
[Hint: Try factoring the expressions. Do they

have any common factors?]

52. Sums of Binomial Coefficients Add each of the 
first five rows of Pascal’s triangle, as indicated. Do you 
see a pattern?

1 � 5 � 10 � 10 � 5 � 1 �

1 � 4 � 6 � 4 � 1 �

1 � 3 � 3 � 1 �

1 � 2 � 1 �

1 � 1 �

1101! 2 100?
1100! 2 101

r!1n � r � 1 2 !

a n

r � 1
b � an

r
b � a n � 1

r
b

an

r
b � a n

n � r
b

an

1
b � a n

n � 1
b � n

a n

n
b � 1an

0
b � 1

11.01 2 100 � 11 � 0.01 2 100

11.01 2 100 � 2

1x � h 2 4 � x4

h

1x � h 2 3 � x3

h

?

?

?

?

?
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1–6 ■ Find the first four terms as well as the tenth term of the
sequence with the given nth term.

1. 2.

3. 4.

5. 6.

7–10 ■ A sequence is defined recursively. Find the first seven
terms of the sequence.

7. an � an�1 � 2n � 1, a1 � 1

an � an � 1

2
ban �

12n 2 !
2nn!

an �
n1n � 1 2

2
an �

1�1 2 n � 1

n3

an � 1�1 2 n 

2n

n
an �

n2

n � 1

8. , a1 � 1

9. an � an�1 � 2an�2, a1 � 1, a2 � 3

10.

11–14 ■ The nth term of a sequence is given.

(a) Find the first five terms of the sequence.

(b) Graph the terms you found in part (a).

(c) Determine if the series is arithmetic or geometric. Find the
common difference or the common ratio.

11. an � 2n � 5 12.

13. 14. an � 4 �
n

2
an �

3n

2n�1

an �
5

2n

an � 23an�1, a1 � 13

an �
an�1

n

1. (a) What is a sequence?

(b) What is an arithmetic sequence? Write an expression
for the nth term of an arithmetic sequence.

(c) What is a geometric sequence? Write an expression for
the nth term of a geometric sequence.

2. (a) What is a recursively defined sequence?

(b) What is the Fibonacci sequence?

3. (a) What is meant by the partial sums of a sequence?

(b) If an arithmetic sequence has first term a and common
difference d, write an expression for the sum of its first
n terms.

(c) If a geometric sequence has first term a and common
ratio r, write an expression for the sum of its first 
n terms.

(d) Write an expression for the sum of an infinite geometric
series with first term a and common ratio r. For what
values of r is your formula valid?

4. (a) Write the sum without using �-notation.

(b) Write using �-notation.

5. Write an expression for the amount Af of an annuity consist-
ing of n regular equal payments of size R with interest rate i
per time period.

6. State the Principle of Mathematical Induction.

7. Write the first five rows of Pascal’s triangle. How are the 
entries related to each other?

8. (a) What does the symbol n! mean?

(b) Write an expression for the binomial coefficient 1nr 2.
(c) State the Binomial Theorem.

(d) Write the term that contains ar in the expansion of
.1a � b 2 n

b1 � b2 � b3 � . . . � bn

a
n

k�1
ak

Based on the pattern you have found, find the sum of the 
nth row:

Prove your result by expanding using the Binomial
Theorem.

11 � 1 2 n
an

0
b � an

1
b � an

2
b � . . . � an

n
b

53. Alternating Sums of Binomial Coefficients Find 
the sum

by finding a pattern as in Exercise 52. Prove your result by
expanding using the Binomial Theorem.11 � 1 2 n

an

0
b � an

1
b � an

2
b � . . . � 1�1 2 n an

n
b

11 Review

Concept Check

Exercises
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15–22 ■ The first four terms of a sequence are given. Deter-
mine whether they can be the terms of an arithmetic sequence, a
geometric sequence, or neither. If the sequence is arithmetic or
geometric, find the fifth term.

15. 5, 5.5, 6, 6.5, . . . 16.

17. 18.

19. t � 3, t � 2, t � 1, t, . . . 20. t 3, t 2, t, 1, . . .

21. 22.

23. Show that 3, 6i, �12, �24i, . . . is a geometric sequence,
and find the common ratio. (Here .)

24. Find the nth term of the geometric sequence 2, 2 � 2i, 4i,
�4 � 4i, �8, . . . (Here .)

25. The sixth term of an arithmetic sequence is 17, and the
fourth term is 11. Find the second term.

26. The 20th term of an arithmetic sequence is 96, and the com-
mon difference is 5. Find the nth term.

27. The third term of a geometric sequence is 9, and the com-
mon ratio is . Find the fifth term.

28. The second term of a geometric sequence is 10, and the fifth
term is . Find the nth term.

29. A teacher makes $32,000 in his first year at Lakeside
School, and gets a 5% raise each year.

(a) Find a formula for his salary An in his nth year at this
school.

(b) List his salaries for his first 8 years at this school.

30. A colleague of the teacher in Exercise 29, hired at the same
time, makes $35,000 in her first year, and gets a $1200 raise
each year.

(a) What is her salary An in her nth year at this school?

(b) Find her salary in her eighth year at this school, and
compare it to the salary of the teacher in Exercise 29 in
his eighth year.

31. A certain type of bacteria divides every 5 s. If three of these
bacteria are put into a petri dish, how many bacteria are in
the dish at the end of 1 min?

32. If a1, a2, a3, . . . and b1, b2, b3, . . . are arithmetic sequences,
show that a1 � b1, a2 � b2, a3 � b3, . . . is also an arithmetic
sequence.

33. If a1, a2, a3, . . . and b1, b2, b3, . . . are geometric sequences,
show that a1b1, a2b2, a3b3, . . . is also a geometric sequence.

34. (a) If a1, a2, a3, . . . is an arithmetic sequence, is the 
sequence a1 � 2, a2 � 2, a3 � 2, . . . arithmetic?

(b) If a1, a2, a3, . . . is a geometric sequence, is the sequence
5a1, 5a2, 5a3, . . . geometric?

1250
27

3
2

i � 1�1

i � 1�1

a, 1, 
1
a

, 
1

a2, . . .
3

4
, 

1

2
, 

1

3
, 

2

9
, . . .

12, 2, 2 12, 4, . . .12, 2 12, 3 12, 4 12, . . .

1, � 
3
2, 2, � 

5
2, . . .

35. Find the values of x for which the sequence 6, x, 12, . . . is

(a) arithmetic (b) geometric

36. Find the values of x and y for which the sequence 2, x, y,
17, . . . is

(a) arithmetic (b) geometric

37–40 ■ Find the sum.

37. 38.

39. 40.

41–44 ■ Write the sum without using sigma notation. Do not
evaluate.

41. 42.

43. 44.

45–48 ■ Write the sum using sigma notation. Do not evaluate.

45. 3 � 6 � 9 � 12 � . . . � 99

46. 12 � 22 � 32 � . . . � 1002

47. 1 23 � 2 24 � 3 25 � 4 26 � . . . � 100 2102

48.

49–54 ■ Determine whether the expression is a partial sum of
an arithmetic or geometric sequence. Then find the sum.

49.

50. 3 � 3.7 � 4.4 � . . . � 10

51.

52.

53. 54.

55. The first term of an arithmetic sequence is a � 7, and the
common difference is d � 3. How many terms of this 
sequence must be added to obtain 325?

56. The sum of the first three terms of a geometric series is 52,
and the common ratio is r � 3. Find the first term.

57. A person has two parents, four grandparents, eight great-
grandparents, and so on. What is the total number of a 
person’s ancestors in 15 generations?

a
8

k�0
715 2 k/2

a
6

n�0
31�4 2 n

1
3 � 2

3 � 1 � 4
3 � . . . � 33

15 � 2 15 � 3 15 � . . . � 100 15

1 � 0.9 � 10.9 2 2 � . . . � 10.9 2 5

1

1 # 2 �
1

2 # 3 �
1

3 # 4 � . . . �
1

999 # 1000

#####

a
10

n�1
n22n

a
50

k�1

3k

2k�1

a
100

j�2

1

j � 1a
10

k�1
1k � 1 2 2

a
5

m�1
3m�2

a
6

k�1
1k � 1 22k�1

a
4

i�1

2i

2i � 1a
6

k�3
1k � 1 2 2
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58. Find the amount of an annuity consisting of 16 annual pay-
ments of $1000 each into an account that pays 8% interest
per year, compounded annually.

59. How much money should be invested every quarter at 12%
per year, compounded quarterly, in order to have $10,000 in
one year?

60. What are the monthly payments on a mortgage of $60,000
at 9% interest if the loan is to be repaid in

(a) 30 years? (b) 15 years?

61–64 ■ Find the sum of the infinite geometric series.

61.

62. 0.1 � 0.01 � 0.001 � 0.0001 � . . .

63.

64. a � ab 2 � ab 4 � ab 6 � . . .

65–67 ■ Use mathematical induction to prove that the formula
is true for all natural numbers n.

65.

66.

 �
n

2n � 1

1

1 # 3 �
1

3 # 5 �
1

5 # 7 � . . . �
1

12n � 1 2 12n � 1 2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

1 �
1

31/2
�

1

3
�

1

33/2
� . . .

1 � 2
5 � 4

25 � 8
125 � . . .

67.

68. Show that 7n � 1 is divisible by 6 for all natural numbers n.

69. Let an�1 � 3an � 4 and a1 � 4. Show that an � 2 3n � 2
for all natural numbers n.

70. Prove that the Fibonacci number F4n is divisible by 3 for all
natural numbers n.

71. Find and prove an inequality that relates 2n and n!.

72–75 ■ Evaluate the expression.

72. 73.

74. 75.

76–77 ■ Expand the expression.

76. 77.

78. Find the 20th term in the expansion of .

79. Find the first three terms in the expansion of 
.

80. Find the term containing A 6 in the expansion of .1A � 3B 2 10

1b�2/3 � b1/3 2 20

1a � b 2 22

12x � y 2 411 � x2 2 6

a
8

k�0
a8

k
b a 8

8 � k
ba

5

k�0
a5

k
b

a10

2
b � a10

6
ba5

2
b a5

3
b

#

a1 �
1

1
b a1 �

1

2
b a1 �

1

3
b  . . . a1 �

1
n
b � n � 1
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11 Test

1. Find the first four terms and the tenth term of the sequence whose nth term is 
an � n 2 � 1.

2. A sequence is defined recursively by , with a1 � 1 and a2 � 1. 
Find a5.

3. An arithmetic sequence begins 2, 5, 8, 11, 14, . . . .

(a) Find the common difference d for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the 35th term of the sequence.

4. A geometric sequence begins 12, 3, 3/4, 3/16, 3/64, . . . .

(a) Find the common ratio r for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the tenth term of the sequence.

5. The first term of a geometric sequence is 25, and the fourth term is .

(a) Find the common ratio r and the fifth term.

(b) Find the partial sum of the first eight terms.

6. The first term of an arithmetic sequence is 10 and the tenth term is 2.

(a) Find the common difference and the 100th term of the sequence.

(b) Find the partial sum of the first ten terms.

7. Let a1, a2, a3, . . . be a geometric sequence with initial term a and common ratio r. 
Show that , . . . is also a geometric sequence by finding its common ratio.

8. Write the expression without using sigma notation, and then find the sum.

(a) (b)

9. Find the sum.

(a)

(b)

10. Use mathematical induction to prove that, for all natural numbers n,

11. Expand .

12. Find the term containing x 3 in the binomial expansion of .

13. A puppy weighs 0.85 lb at birth, and each week he gains 24% in weight. Let an be his
weight in pounds at the end of his nth week of life.

(a) Find a formula for an.

(b) How much does the puppy weigh when he is six weeks old?

(c) Is the sequence a1, a2, a3, . . . arithmetic, geometric, or neither?

13x � 2 2 10

12x � y2 2 5
12 � 22 � 32 � . . . � n2 �

n1n � 1 2 12n � 1 2
6

1 �
1

21/2
�

1

2
�

1

23/2
� . . .

1

3
�

2

32 �
22

33 �
23

34 � . . . �
29

310

a
6

n�3
1�1 2 n2n�2

a
5

n�1
11 � n2 2

a2
1, a

2
2, a

2
3

1
5

an�2 � a2
n � an�1
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874 CHAPTER 11 Sequences and Series

Many real-world processes occur in stages. Population growth can be viewed in
stages—each new generation represents a new stage in population growth. Com-
pound interest is paid in stages—each interest payment creates a new account bal-
ance. Many things that change continuously are more easily measured in discrete
stages. For example, we can measure the temperature of a continuously cooling 
object in one-hour intervals. In this Focus we learn how recursive sequences are used
to model such situations. In some cases, we can get an explicit formula for a sequence
from the recursion relation that defines it by finding a pattern in the terms of the 
sequence.

Recursive Sequences as Models

Suppose you deposit some money in an account that pays 6% interest compounded
monthly. The bank has a definite rule for paying interest: At the end of each month
the bank adds to your account % (or 0.005) of the amount in your account at that
time. Let’s express this rule as follows:

� � 0.005 � 

Using the Distributive Property, we can write this as

� 1.005 � 

To model this statement using algebra, let A0 be the amount of the original deposit,
A1 the amount at the end of the first month, A2 the amount at the end of the second
month, and so on. So An is the amount at the end of the nth month. Thus

We recognize this as a recursively defined sequence—it gives us the amount at each
stage in terms of the amount at the preceding stage.

An−1

0.005An−1

A2A1A0

An � 1.005An�1

amount at the end of
last month

amount at the end of
this month

amount at the end of
last month

amount at the end of
last month

amount at the end of
this month

1
2
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CHAPTER 11 Sequences and Series 875

To find a formula for An, let’s find the first few terms of the sequence and look for
a pattern.

We see that in general, .

Example 1 Population Growth

A certain animal population grows by 2% each year. The initial population is 5000.

(a) Find a recursive sequence that models the population Pn at the end of the nth
year.

(b) Find the first five terms of the sequence Pn.

(c) Find a formula for Pn.

Solution

(a) We can model the population using the following rule:

� 1.02 �

Algebraically we can write this as the recursion relation

(b) Since the initial population is 5000, we have

(c) We see from the pattern exhibited in part (b) that . (Note that
Pn is a geometric sequence, with common ratio r � 1.02.) ■

Example 2 Daily Drug Dose

A patient is to take a 50-mg pill of a certain drug every morning. It is known that
the body eliminates 40% of the drug every 24 hours.

(a) Find a recursive sequence that models the amount An of the drug in the patient’s
body after each pill is taken.

Pn � 11.02 2 n5000

 P4 � 1.02P3 � 11.02 2 45000

 P3 � 1.02P2 � 11.02 2 35000

 P2 � 1.02P1 � 11.02 2 25000

 P1 � 1.02P0 � 11.02 25000

 P0 � 5000

Pn � 1.02Pn�1

population at the end of last yearpopulation at the end of this year

An � 11.005 2 nA0

 A4 � 1.005A3 � 11.005 2 4A0

 A3 � 1.005A2 � 11.005 2 3A0

 A2 � 1.005A1 � 11.005 2 2A0

 A1 � 1.005A0

Modeling with Recursive Sequences 875
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876 CHAPTER 11 Sequences and Series

(b) Find the first four terms of the sequence An.

(c) Find a formula for An.

(d) How much of the drug remains in the patient’s body after 5 days? How much
will accumulate in his system after prolonged use?

Solution

(a) Each morning 60% of the drug remains in his system plus he takes an addi-
tional 50 mg (his daily dose).

� 0.6 � � 50 mg

We can express this as a recursion relation

(b) Since the initial dose is 50 mg, we have

(c) From the pattern in part (b), we see that

Sum of a geometric sequence:

Simplify

(d) To find the amount remaining after 5 days, we substitute n � 5 and get
.

To find the amount remaining after prolonged use, we let n become large. As
n gets large, 0.6n approaches 0. That is, 0.6n 0 as n q (see Section 4.1).
So as n q,

Thus, after prolonged use the amount of drug in the patient’s system approaches
125 mg (see Figure 1, where we have used a graphing calculator to graph the
sequence). ■

An � 12511 � 0.6n�1 2 � 12511 � 0 2 � 125

�
��

A5 � 12511 � 0.65�1 2 � 119 mg

 � 12511 � 0.6n�1 2
Sn � a a 1 � r 

n�1

1 � r
b

 � 50 a 1 � 0.6n�1

1 � 0.6
b

 An � 5011 � 0.6 � 0.62 � . . . � 0.6n 2

 � 5010.63 � 0.62 � 0.6 � 1 2
 � 0.63150 2 � 0.62150 2 � 0.6150 2 � 50

 A3 � 0.6A2 � 50 � 0.6 30.62150 2 � 0.6150 2 � 50 4 � 50

 � 5010.62 � 0.6 � 1 2
 � 0.62150 2 � 0.6150 2 � 50

 A2 � 0.6A1 � 50 � 0.6 30.6150 2 � 50 4 � 50

 A1 � 0.6A0 � 50 � 0.6150 2 � 50

 A0 � 50

An � 0.6An�1 � 50

amount of drug
yesterday morning

amount of drug this
morning

876 Focus on Modeling

Enter sequence

Graph sequence

Plot1 Plot2 Plot3

 Min=0
u( )=125(1-.6^( +1))

150

0 16

Figure 1
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Problems

1. Retirement Accounts Many college professors keep retirement savings with TIAA,
the largest annuity program in the world. Interest on these accounts is compounded and
credited daily. Professor Brown has $275,000 on deposit with TIAA at the start of 2006,
and receives 3.65% interest per year on his account.

(a) Find a recursive sequence that models the amount An in his account at the end of the
nth day of 2006.

(b) Find the first eight terms of the sequence An, rounded to the nearest cent.

(c) Find a formula for An.

2. Fitness Program Sheila decides to embark on a swimming program as the best way
to maintain cardiovascular health. She begins by swimming 5 min on the first day, then
adds min every day after that.

(a) Find a recursive formula for the number of minutes Tn that she swims on the nth day
of her program.

(b) Find the first 6 terms of the sequence Tn.

(c) Find a formula for Tn. What kind of sequence is this?

(d) On what day does Sheila attain her goal of swimming at least 65 min a day?

(e) What is the total amount of time she will have swum after 30 days?

3. Monthly Savings Program Alice opens a savings account paying 3% interest per
year, compounded monthly. She begins by depositing $100 at the start of the first month,
and adds $100 at the end of each month, when the interest is credited.

(a) Find a recursive formula for the amount An in her account at the end of 
the nth month. (Include the interest credited for that month and her monthly 
deposit.)

(b) Find the first 5 terms of the sequence An.

(c) Use the pattern you observed in (b) to find a formula for An. [Hint: To find the pat-
tern most easily, it’s best not to simplify the terms too much.]

(d) How much has she saved after 5 years?

4. Stocking a Fish Pond A pond is stocked with 4000 trout, and through reproduction
the population increases by 20% per year. Find a recursive sequence that models the
trout population Pn at the end of the nth year under each of the following circumstances.
Find the trout population at the end of the fifth year in each case.

(a) The trout population changes only because of reproduction.

(b) Each year 600 trout are harvested.

(c) Each year 250 additional trout are introduced into the pond.

(d) Each year 10% of the trout are harvested and 300 additional trout are introduced
into the pond.

5. Pollution A chemical plant discharges 2400 tons of pollutants every year into an 
adjacent lake. Through natural runoff, 70% of the pollutants contained in the lake at the
beginning of the year are expelled by the end of the year.

(a) Explain why the following sequence models the amount An of the pollutant in the
lake at the end of the nth year that the plant is operating.

An � 0.30An�1 � 2400

1 
1
2

Modeling with Recursive Sequences 877

57050_11_ch11_p820-879.qxd  08/04/2008  12:00 PM  Page 877



878 CHAPTER 11 Sequences and Series

878 Focus on Modeling

(b) Find the first five terms of the sequence An.

(c) Find a formula for An.

(d) How much of the pollutant remains in the lake after 6 years? How much will remain
after the plant has been operating a long time?

(e) Verify your answer to part (d) by graphing An with a graphing calculator, for n � 1
to n � 20.

6. Annual Savings Program Ursula opens a one-year CD that yields 5% interest per
year. She begins with a deposit of $5000. At the end of each year when the CD matures,
she reinvests at the same 5% interest rate, also adding 10% to the value of the CD from
her other savings. (So for example, after the first year her CD has earned 5% of $5000 in
interest, for a value of $5250 at maturity. She then adds 10%, or $525, bringing the total
value of her renewed CD to $5775.)

(a) Find a recursive formula for the amount Un in her CD when she reinvests at the end
of the nth year.

(b) Find the first 5 terms of the sequence Un. Does this appear to be a geometric sequence?

(c) Use the pattern you observed in (b) to find a formula for Un.

(d) How much has she saved after 10 years?

7. Annual Savings Program Victoria opens a one-year CD with a 5% annual interest
yield at the same time as her friend Ursula in Problem 6. She also starts with an initial
deposit of $5000. However, Victoria decides to add $500 to her CD when she reinvests at
the end of the first year, $1000 at the end of the second, $1500 at the end of the third,
and so on.

(a) Explain why the recursive formula displayed below gives the amount Vn in her CD
when she reinvests at the end of the nth year.

(b) Using the Seq (“sequence”) mode on your graphing calculator, enter the 
sequences Un and Vn as shown in the figure to the left. Then use the 
command to compare the two sequences. For the first few years, Victoria seems to
be accumulating more savings than Ursula. Scroll down in the table to verify that
Ursula eventually pulls ahead of Victoria in the savings race. In what year does 
this occur?

8. Newton’s Law of Cooling A tureen of soup at a temperature of 170 �F is placed on
a table in a dining room in which the thermostat is set at 70 �F. The soup cools according
to the following rule, a special case of Newton’s Law of Cooling: Each minute, the tem-
perature of the soup declines by 3% of the difference between the soup temperature and
the room temperature.

(a) Find a recursive sequence that models the soup temperature Tn at the nth 
minute.

(b) Enter the sequence Tn in your graphing calculator, and use the command
to find the temperature at 10-min increments from n � 0 to n � 60. (See
Problem 7(b).)

(c) Graph the sequence Tn. What temperature will the soup be after a long time?

9. Logistic Population Growth Simple exponential models for population growth 
do not take into account the fact that when the population increases, survival becomes
harder for each individual because of greater competition for food and other resources.

TABLE

TABLE

Vn � 1.05Vn�1 � 500n
Entering the sequences

Table of values
of the sequences

   u( )
 0 5000
 1 5750
 2 6612.5
 3 7604.4
 4 8745
 5 10057
 6 11565

5000
5750
7037.5
8889.4
11334
14401
18121

v( )

 =0
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We can get a more accurate model by assuming that the birth rate is proportional to the
size of the population, but the death rate is proportional to the square of the population.
Using this idea, researchers find that the number of raccoons Rn on a certain island is
modeled by the following recursive sequence:

Here n represents the number of years since observations began, R 0 is the initial 
population, 0.08 is the annual birth rate, and 0.0004 is a constant related to the 
death rate.

(a) Use the command on a graphing calculator to find the raccoon population
for each year from n � 1 to n � 7.

(b) Graph the sequence Rn. What happens to the raccoon population as n becomes
large?

TABLE

Rn � Rn�1 � 0.08Rn�1 � 0.00041Rn�1 2 2,  R0 � 100

Modeling with Recursive Sequences 879

Population at end
of year

Number of
births

Population at beginning 
of year

Number of
deaths
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