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CHAPTER 10 Analytic Geometry 743

Chapter Overview

Conic sections are the curves we get when we make a straight cut in a cone, as shown
in the figure. For example, if a cone is cut horizontally, the cross section is a circle.
So a circle is a conic section. Other ways of cutting a cone produce parabolas,
ellipses, and hyperbolas.

Our goal in this chapter is to find equations whose graphs are the conic sections.
We already know from Section 1.8 that the graph of the equation x 2 � y 2 � r 2 is a
circle. We will find equations for each of the other conic sections by analyzing their
geometric properties.

Conic sections are important because their shapes are hidden in the structure of
many things. For example, the path of a planet moving around the sun is an ellipse.

The trajectory of a
basketball is a parabola.

The orbit of a planet
is an ellipse.

The shape of a cooling
tower is a hyperbola.

Ellipse Parabola HyperbolaCircle

743

10.1 Parabolas

10.2 Ellipses

10.3 Hyperbolas

10.4 Shifted Conics

10.5 Rotation of Axes

10.6 Polar Equations of Conics

10.7 Plane Curves and Parametric Equations
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744 CHAPTER 10 Analytic Geometry

SUGGESTED TIME

AND EMPHASIS

class. 

Recommended material.

POINTS TO STRESS

1. The definition and geometry
of parabolas.

2. Using the equation of a
parabola to find relevant
constants.

3. Graphing a parabola given its
equation.

1
2

IN-CLASS MATERIALS

Have students sketch a parabola “from scratch.” Hand out a sheet of paper with focus and directrix, and
hand out rulers. Get the students to just plot points where the distance from the point to the directrix is
equal to the distance from the point to the focus. Have them keep plotting points until a parabolic shape
emerges.

The path of a projectile (such as a rocket, a basketball, or water spouting from a foun-
tain) is a parabola—which makes the study of parabolas indispensable in rocket sci-
ence. The conic sections also occur in many unexpected places. For example, the
graph of crop yield as a function of amount of rainfall is a parabola (see page 321).
We will examine some uses of the conics in medicine, engineering, navigation, and
astronomy.

In Section 10.7 we study parametric equations, which we can use to describe the
curve that a moving body traces out over time. In Focus on Modeling, page 816, we
derive parametric equations for the path of a projectile.

10.1 Parabolas

We saw in Section 2.5 that the graph of the equation y � ax 2 � bx � c is a U-shaped
curve called a parabola that opens either upward or downward, depending on
whether the sign of a is positive or negative.

In this section we study parabolas from a geometric rather than an algebraic point
of view. We begin with the geometric definition of a parabola and show how this leads
to the algebraic formula that we are already familiar with.

744 CHAPTER 10 Analytic Geometry

Geometric Definition of a Parabola

A parabola is the set of points in the plane equidistant from a fixed point F
(called the focus) and a fixed line l (called the directrix).

This definition is illustrated in Figure 1. The vertex V of the parabola lies halfway
between the focus and the directrix, and the axis of symmetry is the line that runs
through the focus perpendicular to the directrix.

In this section we restrict our attention to parabolas that are situated with the ver-
tex at the origin and that have a vertical or horizontal axis of symmetry. (Parabolas in
more general positions will be considered in Sections 10.4 and 10.5.) If the focus of
such a parabola is the point , then the axis of symmetry must be vertical and
the directrix has the equation y � �p. Figure 2 illustrates the case p � 0.

Figure 2

y=_p

F(0, p)

P(x, y)

y

x

y

0 p

p

F10, p 2

parabola

l

axis

focus

vertex directrix

F

V

Figure 1
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CHAPTER 10 Analytic Geometry 745

If is any point on the parabola, then the distance from P to the focus F (us-
ing the Distance Formula) is

The distance from P to the directrix is

By the definition of a parabola, these two distances must be equal:

Square both sides

Expand

Simplify

If p � 0, then the parabola opens upward, but if p � 0, it opens downward. When x
is replaced by �x, the equation remains unchanged, so the graph is symmetric about
the y-axis.

Equations and Graphs of Parabolas

The following box summarizes what we have just proved about the equation and fea-
tures of a parabola with a vertical axis.

 x2 � 4py

 x2 � 2py � 2py

 x2 � y2 � 2py � p2 � y2 � 2py � p2

 x2 � 1y � p 2 2 � 0 y � p 0 2 � 1y � p 2 2 2x2 � 1y � p 2 2 � 0 y � p 0
0 y � 1�p 2 0 � 0 y � p 0
2x2 � 1y � p 2 2

P1x, y 2
SECTION 10.1 Parabolas 745

Parabola with Vertical Axis

The graph of the equation

is a parabola with the following properties.

VERTEX

FOCUS

DIRECTRIX

The parabola opens upward if p � 0 or downward if p � 0.

y=_p

F(0, p)

x

y

0

≈=4py with p>0 ≈=4py with p<0

y=_p

F(0, p)

x

y

0

y � �p

F10, p 2V10, 0 2
x2 � 4py
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746 CHAPTER 10 Analytic Geometry

ALTERNATE EXAMPLE 1
Find the equation of the parabola
with vertex V(0, 0) and focus
F(0, -8). 

ANSWER

ALTERNATE EXAMPLE 2
Find the focus and directrix of the
parabola y = -5x2. 

ANSWER

a0, 
1

20
b , y =

1

20

x2 = -32y

IN-CLASS MATERIALS

As of this writing, it is possible to purchase a parabolic listening device for about $50 on eBay, or about
$80 new. If this is feasible, many experiments and demonstrations can be done. For example, students can
whisper from a long distance away and be heard using the device.

Example 1 Finding the Equation of a Parabola

Find the equation of the parabola with vertex and focus , and sketch
its graph.

Solution Since the focus is , we conclude that p � 2 (and so the directrix
is ). Thus, the equation of the parabola is

x2 � 4py with p � 2

Since p � 2 � 0, the parabola opens upward. See Figure 3.

■

Example 2 Finding the Focus and Directrix 

of a Parabola from Its Equation

Find the focus and directrix of the parabola y � �x 2, and sketch the graph.

Solution To find the focus and directrix, we put the given equation in the 
standard form x 2 � �y. Comparing this to the general equation x 2 � 4py, we see
that 4p � �1, so . Thus, the focus is and the directrix is .
The graph of the parabola, together with the focus and the directrix, is shown in
Figure 4(a). We can also draw the graph using a graphing calculator as shown 
in Figure 4(b).

■

x

y

2_2

1

_2
y=_≈

F!0, _   @1
4

1
4y=

(a) (b)

1

2_2

_4

Figure 4

y � 1
4F A0, � 

1
4Bp � � 

1
4

y=_2

F(0, 2)

≈=8y

x

y

3_3

_3

3

0

Figure 3

 x2 � 8y

 x2 � 412 2yy � �2
F10, 2 2

F10, 2 2V10, 0 2
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Mathematics in 

the Modern World

Looking Inside Your Head

How would you like to look inside
your head? The idea isn’t particu-
larly appealing to most of us, but
doctors often need to do just that. If
they can look without invasive
surgery, all the better. An X-ray
doesn’t really give a look inside, it
simply gives a “graph” of the den-
sity of tissue the X-rays must pass
through. So an X-ray is a “flat-
tened” view in one direction. Sup-
pose you get an X-ray view from
many different directions—can
these “graphs” be used to recon-
struct the three-dimensional inside
view? This is a purely mathematical
problem and was solved by mathe-
maticians a long time ago. How-
ever, reconstructing the inside view
requires thousands of tedious com-
putations. Today, mathematics and
high-speed computers make it pos-
sible to “look inside” by a process
called Computer Aided Tomogra-
phy (or CAT scan). Mathematicians
continue to search for better ways
of using mathematics to reconstruct
images. One of the latest tech-
niques, called magnetic resonance
imaging (MRI), combines molecu-
lar biology and mathematics for a
clear “look inside.”
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CHAPTER 10 Analytic Geometry 747

SAMPLE QUESTION

Text Question

How can you tell if the axis of a
parabola is vertical or horizontal?

Answer

If there is a y2 term it is horizontal;
if there is an x2 term it is vertical.

ALTERNATE EXAMPLE 3 
Find the focus and directrix of the
parabola. 
2x + y 2 = 0 

ANSWER

a0, -
1

2
b , x =

1

2

Reflecting the graph in Figure 2 about the diagonal line y � x has the effect of 
interchanging the roles of x and y. This results in a parabola with horizontal axis. 
By the same method as before, we can prove the following properties.

SECTION 10.1 Parabolas 747

Parabola with Horizontal Axis

The graph of the equation

is a parabola with the following properties.

VERTEX

FOCUS

DIRECTRIX

The parabola opens to the right if p � 0 or to the left if p � 0.

x=_p

F( p, 0)
x

y

0

x=_p

F( p, 0)
x

y

0

¥=4px with p>0 ¥=4px with p<0

x � �p

F1p, 0 2V10, 0 2
y2 � 4px

Example 3 A Parabola with Horizontal Axis

A parabola has the equation 6x � y 2 � 0.

(a) Find the focus and directrix of the parabola, and sketch the graph.

(b) Use a graphing calculator to draw the graph.

Solution

(a) To find the focus and directrix, we put the given equation in the standard form
y 2 � �6x. Comparing this to the general equation y 2 � 4px, we see that 
4p � �6, so . Thus, the focus is and the directrix is .
Since p � 0, the parabola opens to the left. The graph of the parabola, together
with the focus and the directrix, is shown in Figure 5(a) on the next page.

(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract 6x

Take square roots y � ;1�6x

 y2 � �6x

 6x � y2 � 0

x � 3
2F A� 

3
2, 0Bp � �3

2
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748 CHAPTER 10 Analytic Geometry

IN-CLASS MATERIALS

Make the connection between quadratic functions and parabolas explicit. Point out that any equation of the
form y = ax2 + bx + c can be written as y = n(x - h)2 + k by completing the square, yielding a (possibly
shifted) parabola. The constant n, of course, can be written as 4p. Note that if a = 0 we have a line. So we
can call a line a “degenerate parabola.”

To obtain the graph of the parabola, we graph both functions

as shown in Figure 5(b).

Figure 5
■

The equation y 2 � 4px does not define y as a function of x (see page 164). So,
to use a graphing calculator to graph a parabola with horizontal axis, we must first
solve for y. This leads to two functions, and . We need to
graph both functions to get the complete graph of the parabola. For example, in Fig-
ure 5(b) we had to graph both and to graph the parabola 
y 2 � �6x.

We can use the coordinates of the focus to estimate the “width” of a parabola when
sketching its graph. The line segment that runs through the focus perpendicular to the
axis, with endpoints on the parabola, is called the latus rectum, and its length is the
focal diameter of the parabola. From Figure 6 we can see that the distance from an
endpoint Q of the latus rectum to the directrix is . Thus, the distance from Q to
the focus must be as well (by the definition of a parabola), and so the focal di-
ameter is . In the next example we use the focal diameter to determine the
“width” of a parabola when graphing it.

latus
rectum

x=_p

F( p, 0)

2p

pp
Q

x

y

0

Figure 6

0 4p 0 0 2p 0 0 2p 0

y � �1�6xy � 1�6x

y � �14pxy � 14px

(a)

3
2x=

3
2_F !      , 0@ 1

1

6x+¥=0

x

y

0 2_6

_6

6

y = – –6x

(b)

y = –6x

y � 1�6x  and  y � �1�6x

748 CHAPTER 10 Analytic Geometry

Archimedes (287–212 B.C.) was
the greatest mathematician of the
ancient world. He was born in
Syracuse, a Greek colony on Sicily,
a generation after Euclid (see page
532). One of his many discoveries
is the Law of the Lever (see page
69). He famously said, “Give me a
place to stand and a fulcrum for my
lever, and I can lift the earth.”

Renowned as a mechanical ge-
nius for his many engineering in-
ventions, he designed pulleys for
lifting heavy ships and the spiral
screw for transporting water to
higher levels. He is said to have
used parabolic mirrors to concen-
trate the rays of the sun to set fire to
Roman ships attacking Syracuse.

King Hieron II of Syracuse once
suspected a goldsmith of keeping
part of the gold intended for the
king’s crown and replacing it with
an equal amount of silver. The king
asked Archimedes for advice.
While in deep thought at a public
bath, Archimedes discovered the
solution to the king’s problem
when he noticed that his body’s
volume was the same as the volume
of water it displaced from the tub.
As the story is told, he ran home
naked, shouting “Eureka, eureka!”
(“I have found it, I have found it!”)
This incident attests to his enor-
mous powers of concentration.

In spite of his engineering
prowess, Archimedes was most
proud of his mathematical discov-

(continued)
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CHAPTER 10 Analytic Geometry 749

ALTERNATE EXAMPLE 4
Find the focus, directrix, and focal
diameter of the parabola. 

ANSWER

ALTERNATE EXAMPLE 5a
Find equations for the parabolas
with vertex at the origin and foci: 

ANSWER

DRILL QUESTION

Find the focus and directrix of

and sketch its graph.

Answer

Focus (0, 4), directrix y = -4

4

focus

directrix

1

x

y

_4

y =
1

16
 x2

y = 0.0625x2

y = 2x2, y = x2, y = 0.25x2,

F4(0, 4)

F3(0, 1),F1a0, 
1

8
b , F2a0, 

1

4
b ,

a0, 
9

16
b , y = -

9

16
, 

9

4

y =  
4

9
x2

IN-CLASS MATERIALS

Using dental floss and modeling compound (such as clay or Play-Doh®), it is easy for the students to make
half a cone and slice it. Have the class attempt to do so to get a parabola. Most of them will wind up creat-
ing half of a hyperbola. Refer these students to the chapter overview. Make sure they note that a parabola is
not as easy to create this way as hyperbolas or ellipses. If the cut is made at the wrong angle, even slightly,
one of these two shapes will be formed instead of a parabola.

Example 4 The Focal Diameter of a Parabola

Find the focus, directrix, and focal diameter of the parabola , and sketch 
its graph.

Solution We first put the equation in the form x 2 � 4py.

Multiply each side by 2

From this equation we see that 4p � 2, so the focal diameter is 2. Solving for p
gives , so the focus is and the directrix is . Since the focal 
diameter is 2, the latus rectum extends 1 unit to the left and 1 unit to the right of 
the focus. The graph is sketched in Figure 7. ■

In the next example we graph a family of parabolas, to show how changing the
distance between the focus and the vertex affects the “width” of a parabola.

Example 5 A Family of Parabolas

(a) Find equations for the parabolas with vertex at the origin and foci
, and .

(b) Draw the graphs of the parabolas in part (a). What do you conclude?

Solution

(a) Since the foci are on the positive y-axis, the parabolas open upward and have
equations of the form x 2 � 4py. This leads to the following equations.

Equation Form of the equation 
Focus p x 2 � 4py for graphing calculator

y � 2x 2

x 2 � 2y y � 0.5x 2

p � 1 x 2 � 4y y � 0.25x 2

p � 4 x 2 � 16y y � 0.0625x 2

(b) The graphs are drawn in Figure 8. We see that the closer the focus to the vertex,
the narrower the parabola.

Figure 8

A family of parabolas ■

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

y=2≈ y=0.5≈ y=0.25≈ y=0.0625≈

F410, 4 2F310, 1 2 p � 1
2F2A0, 12B x2 � 1

2 yp � 1
8F1A0, 18B

F410, 4 2F1A0, 18B, F2A0, 12B, F3A0, 1B

y � � 
1
2A0, 12Bp � 1

2

 x2 � 2y

 y � 1
2 x2

y � 1
2 x2

SECTION 10.1 Parabolas 749

eries. These include the formulas
for the volume of a sphere,

; the surface area of a
sphere, ; and a careful
analysis of the properties of
parabolas and other conics.

S � 4pr 2
V � 4

3 pr 3

x

y

2

1 1

1
2y=_

1
2y= x™

1
2F !0,   @

1
2!_1,   @ 1

2!1,   @

Figure 7
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750 CHAPTER 10 Analytic Geometry

EXAMPLE
A shifted parabola:
y = 2x2 - 8x + 2

= 2(x2 - 4x) + 2
= 2(x2 - 4x + 4) - 6
= 2(x - 2)2 - 6

.

ALTERNATE EXAMPLE 6
A searchlight has a parabolic
reflector that forms a “bowl,”
which is 18 in. wide from rim to
rim and 10 in. deep, as shown in
the figure below. If the filament
of the light bulb is located at the
focus, how far from the vertex of
the reflector is it? 

ANSWER

81

40

18 in. 

10 in.

321
0

2

_2

_4

_6

x

y
-1

2 - 6 = -13
2

directrix y ==  A2, -11
2 B ,

p = 1
2, focus A0 + 2, 12 - 6 B

IN-CLASS MATERIALS

Discuss the reflection properties of parabolas: A beam of light originating at the origin will emerge parallel
to the parabola’s axis of symmetry, and a beam of light that is parallel to the parabola’s axis of symmetry
will reflect off of the parabola in a direction that goes through its focus. One nice project is to construct a
parabolic pool table or miniature golf hole. The students accurately graph a parabola, and glue erasers or
wood along its border, placing the “hole” at the focus. A golf ball or pool ball that is rolled in a direction
parallel to the axis will always bounce into the hole.

Applications

Parabolas have an important property that makes them useful as reflectors for lamps
and telescopes. Light from a source placed at the focus of a surface with parabolic
cross section will be reflected in such a way that it travels parallel to the axis of the
parabola (see Figure 9). Thus, a parabolic mirror reflects the light into a beam of par-
allel rays. Conversely, light approaching the reflector in rays parallel to its axis of
symmetry is concentrated to the focus. This reflection property, which can be proved
using calculus, is used in the construction of reflecting telescopes.

Example 6 Finding the Focal Point of 

a Searchlight Reflector

A searchlight has a parabolic reflector that forms a “bowl,” which is 12 in. wide
from rim to rim and 8 in. deep, as shown in Figure 10. If the filament of the light
bulb is located at the focus, how far from the vertex of the reflector is it?

Solution We introduce a coordinate system and place a parabolic cross 
section of the reflector so that its vertex is at the origin and its axis is vertical 
(see Figure 11). Then the equation of this parabola has the form x 2 � 4py. From
Figure 11 we see that the point lies on the parabola. We use this to find p.

The point  satisfies the equation x2 � 4py

The focus is , so the distance between the vertex and the focus is .
Because the filament is positioned at the focus, it is located . from the vertex 
of the reflector. ■

1 
1
8 in

9
8 � 1 

1
8 inF A0, 98B p � 9

8

 36 � 32p

16, 8 2 62 � 4p18 2 16, 8 2

8 in.

12 in.

Figure 10

A parabolic reflector

F

Figure 9

Parabolic reflector

750 CHAPTER 10 Analytic Geometry

(6, 8)

8

12

1 1
8

x

y

0_6 6

Figure 11
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CHAPTER 10 Analytic Geometry 751

SECTION 10.1 Parabolas 751

1–6 ■ Match the equation with the graphs labeled I–VI. Give
reasons for your answers.

1. y 2 � 2x 2. 3. x 2 � �6y

4. 2x 2 � y 5. y 2 � 8x � 0 6. 12y � x 2 � 0

7–18 ■ Find the focus, directrix, and focal diameter of the
parabola, and sketch its graph.

7. y 2 � 4x 8. x 2 � y

9. x 2 � 9y 10. y 2 � 3x

11. y � 5x 2 12. y � �2x 2

13. x � �8y 2 14.

15. x 2 � 6y � 0 16. x � 7y 2 � 0

17. 5x � 3y 2 � 0 18. 8x 2 � 12y � 0

19–24 ■ Use a graphing device to graph the parabola.

19. x 2 � 16y 20. x 2 � �8y

21. 22. 8y 2 � x

23. 4x � y 2 � 0 24. x � 2y 2 � 0

25–36 ■ Find an equation for the parabola that has its vertex at
the origin and satisfies the given condition(s).

25. Focus 26. Focus F A0, � 
1
2BF10, 2 2

y2 � � 
1
3 x

x � 1
2 y2

I II

x10
1

y

III IV

x
11

y

x10

1

y

x
2

2

y

V VI

x10

1

y

x1

1

y

0

y2 � � 
1
4 x

27. Focus 28. Focus 

29. Directrix x � 2 30. Directrix y � 6

31. Directrix y � �10 32. Directrix 

33. Focus on the positive x-axis, 2 units away from the directrix

34. Directrix has y-intercept 6

35. Opens upward with focus 5 units from the vertex

36. Focal diameter 8 and focus on the negative y-axis

37–46 ■ Find an equation of the parabola whose graph is
shown.

37. 38.

39. 40.

41. 42.

43. 44.

directrix

square has
area 16

y

0 x

(4, _2)

0

y

x

focus

y

0 x5

3
2
3
2

0

y

x

focus

0

y

x
_3

focus

x=4

0

y

x

directrix

x=_2

0

y

x

directrix

0

y

x

2

focus

x � � 
1
8

F15, 0 2F1�8, 0 210.1 Exercises
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752 CHAPTER 10 Analytic Geometry

45. 46.

47. (a) Find equations for the family of parabolas with vertex 
at the origin and with directrixes , y � 1, y � 4,
and y � 8.

(b) Draw the graphs. What do you conclude?

48. (a) Find equations for the family of parabolas with vertex at
the origin, focus on the positive y-axis, and with focal
diameters 1, 2, 4, and 8.

(b) Draw the graphs. What do you conclude?

Applications

49. Parabolic Reflector A lamp with a parabolic reflector is
shown in the figure. The bulb is placed at the focus and the
focal diameter is 12 cm.

(a) Find an equation of the parabola.

(b) Find the diameter of the opening, 20 cm from
the vertex.

50. Satellite Dish A reflec-
tor for a satellite dish is
parabolic in cross section,
with the receiver at the 
focus F. The reflector 
is 1 ft deep and 20 ft wide
from rim to rim (see the
figure). How far is the re-
ceiver from the vertex of
the parabolic reflector?

51. Suspension Bridge In a suspension bridge the shape 
of the suspension cables is parabolic. The bridge shown in
the figure has towers that are 600 m apart, and the lowest

A

B

6 cm

6 cm

20 cmO

D

C

F

d1C, D 2

y � 1
2

focus

y

0 x2

1
2slope=

focus shaded
region
has area 8

0

y

x

point of the suspension cables is 150 m below the top of 
the towers. Find the equation of the parabolic part of the 
cables, placing the origin of the coordinate system at the
vertex.

NOTE This equation is used to find the length of cable
needed in the construction of the bridge.

52. Reflecting Telescope The Hale
telescope at the Mount Palomar
Observatory has a 200-in. mirror,
as shown. The mirror is con-
structed in a parabolic shape that
collects light from the stars and 
focuses it at the prime focus, that
is, the focus of the parabola. The
mirror is 3.79 in. deep at its center.
Find the focal length of this para-
bolic mirror, that is, the distance
from the vertex to the focus.

Discovery • Discussion

53. Parabolas in the Real World Several examples of the
uses of parabolas are given in the text. Find other situations
in real life where parabolas occur. Consult a scientific ency-
clopedia in the reference section of your library, or search
the Internet.

54. Light Cone from a Flashlight A flashlight is held to
form a lighted area on the ground, as shown in the figure. 
Is it possible to angle the flashlight in such a way that the
boundary of the lighted area is a parabola? Explain your 
answer.

600 m

150 m

F

1 ft
20 ft

?

Prime
focus

200 in.

3.79 in.
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SUGGESTED TIME

AND EMPHASIS 

class.

Optional material.

POINTS TO STRESS

1. The definition and geometry
of ellipses.

2. Using the equation of an ellipse
to find relevant constants and to
graph the ellipse.

3. Eccentricity.

1
2 -1

IN-CLASS MATERIALS

Many representational artists never draw circles, noting
that it is rare in nature to see a circle, since we are usually
looking at an angle, thus seeing an ellipse. Perhaps have
the students bring in photographs of manhole covers and
other “circular” objects, noting that if the camera angle is
not straight on, the resultant image is elliptical. (Because
of the optical illusion of perspective, it makes things
easier to draw the outline of the “circle” with a marker
to see that it is an ellipse.)

10.2 Ellipses

An ellipse is an oval curve that looks like an elongated circle. More precisely, we have
the following definition.

The geometric definition suggests a simple method for drawing an ellipse. Place a
sheet of paper on a drawing board and insert thumbtacks at the two points that are to be
the foci of the ellipse. Attach the ends of a string to the tacks, as shown in Figure 2(a).
With the point of a pencil, hold the string taut. Then carefully move the pencil around
the foci, keeping the string taut at all times. The pencil will trace out an ellipse, because
the sum of the distances from the point of the pencil to the foci will always equal the
length of the string, which is constant.

If the string is only slightly longer than the distance between the foci, then the 
ellipse traced out will be elongated in shape as in Figure 2(a), but if the foci are close
together relative to the length of the string, the ellipse will be almost circular, as
shown in Figure 2(b).

To obtain the simplest equation for an ellipse, we place the foci on the x-axis at
and , so that the origin is halfway between them (see Figure 3).

For later convenience we let the sum of the distances from a point on the ellipse to
the foci be 2a. Then if is any point on the ellipse, we have

So, from the Distance Formula

or

Squaring each side and expanding, we get

which simplifies to

4a21x � c 2 2 � y2 � 4a2 � 4cx

x2 � 2cx � c2 � y2 � 4a2 � 4a21x � c 2 2 � y2 � 1x2 � 2cx � c2 � y2 2
21x � c 2 2 � y2 � 2a � 21x � c 2 2 � y2

21x � c 2 2 � y2 � 21x � c 2 2 � y2 � 2a

d1P, F1 2 � d1P, F2 2 � 2a

P1x, y 2F21c, 0 2F11�c, 0 2
(b)(a)Figure 2

SECTION 10.2 Ellipses 753

P(x, y)

F¤(c, 0)F⁄(_c, 0) 0

y

x

Figure 3

F⁄

P

F¤

Figure 1

Geometric Definition of an Ellipse

An ellipse is the set of all points in the plane the sum of whose distances
from two fixed points F1 and F2 is a constant. (See Figure 1.) These two fixed
points are the foci (plural of focus) of the ellipse.

Do
ug

 S
ha

w
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DRILL QUESTION

Find the vertices and foci of the
ellipse 4x2 + y2 = 1 and sketch
its graph.

Answer 

Vertices: (0, 1), (0, -1), ,

Foci: a0, 
13

2
b a0, -

13

2
b

a- 1

2
, 0b

a1

2
, 0b

y

x_1 10 2_2

_1

1

IN-CLASS MATERIALS

Note that if a = b then we have only one focus, at (0, 0). In this case, the geometric definition breaks
down, but it is clear from the equation that we have a circle. This is why a circle can be thought of as a
“degenerate ellipse.”

(0, b)

(a, 0)

(_a, 0)

(0, _b)

(_c, 0) (c, 0)

b

c

a

0

y

x

Dividing each side by 4 and squaring again, we get

Since the sum of the distances from P to the foci must be larger than the distance be-
tween the foci, we have that 2a � 2c, or a � c. Thus, a 2 � c 2 � 0, and we can divide
each side of the preceding equation by to get

For convenience let b 2 � a 2 � c 2 1with b � 02. Since b 2 � a 2, it follows that b � a.
The preceding equation then becomes

This is the equation of the ellipse. To graph it, we need to know the x- and y-intercepts.
Setting y � 0, we get

so x 2 � a 2, or x � �a. Thus, the ellipse crosses the x-axis at and , as
in Figure 4. These points are called the vertices of the ellipse, and the segment that
joins them is called the major axis. Its length is 2a.

1�a, 0 21a, 0 2
x2

a2 � 1

x2

a2 �
y2

b2 � 1  with a � b

x2

a2 �
y2

a2 � c2 � 1

a21a2 � c2 2
 1a2 � c2 2x2 � a2y2 � a21a2 � c2 2 a2x2 � 2a2cx � a2c2 � a2y2 � a4 � 2a2cx � c2x2

 a2 3 1x � c 2 2 � y2 4 � 1a2 � cx 2 2
754 CHAPTER 10 Analytic Geometry

Figure 4

x2

a2 �
y2

b2 � 1 with a � b

Similarly, if we set x � 0, we get y � �b, so the ellipse crosses the y-axis at 
and . The segment that joins these points is called the minor axis, and it has
length 2b. Note that 2a � 2b, so the major axis is longer than the minor axis. The ori-
gin is the center of the ellipse.

If the foci of the ellipse are placed on the y-axis at rather than on the 
x-axis, then the roles of x and y are reversed in the preceding discussion, and we get
a vertical ellipse.

Equations and Graphs of Ellipses

The following box summarizes what we have just proved about the equation and fea-
tures of an ellipse centered at the origin.

10, �c 2
10, �b 2 10, b 2

The orbits of the planets are ellipses,
with the sun at one focus.

57050_10_ch10_p742-819.qxd  08/04/2008  11:47 AM  Page 754



CHAPTER 10 Analytic Geometry 755

SAMPLE QUESTION

Text Question

Does describe a 

horizontal or a vertical ellipse?
How do you know?

Answer

It is vertical because the denomi-
nator of the y2 term is larger than
that of the x2 term.

ALTERNATE EXAMPLE 1
Find the foci, vertices, and the
lengths of the major and minor
axes for the following ellipse.

ANSWER

EXAMPLE

A vertical ellipse: 

EXAMPLE 
A horizontal ellipse:

x

y

40_4

1

_1

x2

9
+ 4y2 = 1

50_5

5

_5

x

y

x2

16
+

y2

25
= 1

(6, 0), (-6, 0), 12, 10

A111, 0 B , A-111, 0 B ,

x2

36
+

y2

25
= 1

x2

52 +
y2

62 = 1

IN-CLASS MATERIALS

Have students sketch an ellipse with thumbtacks and string, as suggested in the text. Have some use foci
that are close together, and some that are farther apart. Make sure they see the connection between this
activity and the idea that the summed distance from the foci is a constant.

Example 1 Sketching an Ellipse

An ellipse has the equation

(a) Find the foci, vertices, and the lengths of the major and minor axes, and sketch
the graph.

(b) Draw the graph using a graphing calculator.

Solution

(a) Since the denominator of x 2 is larger, the ellipse has horizontal major axis. This
gives a 2 � 9 and b 2 � 4, so c 2 � a 2 � b 2 � 9 � 4 � 5. Thus, a � 3, b � 2,
and .

FOCI

VERTICES

LENGTH OF MAJOR AXIS 6

LENGTH OF MINOR AXIS 4

The graph is shown in Figure 5(a) on the next page.

1�3, 0 21�15, 0 2c � 15

x2

9
�

y2

4
� 1

SECTION 10.2 Ellipses 755

Ellipse with Center at the Origin

The graph of each of the following equations is an ellipse with center at the
origin and having the given properties.

EQUATION

a � b � 0 a � b � 0

VERTICES

MAJOR AXIS Horizontal, length 2a Vertical, length 2a

MINOR AXIS Vertical, length 2b Horizontal, length 2b

FOCI , c 2 � a 2 � b 2 , c 2 � a 2 � b 2

GRAPH

b

a

_a

_b

F⁄(0, _c)

F¤(0, c)
y

x0

b

a_a

_b

F⁄(_c, 0) F¤(c, 0)

y

x0

10, �c 21�c, 0 2
10, �a 21�a, 0 2
x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1

In the standard equation for an ellipse,
a 2 is the larger denominator and b 2 is
the smaller. To find c 2, we subtract:
larger denominator minus smaller 
denominator.
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ALTERNATE EXAMPLE 2
The vertices of an ellipse are 

and the foci are .
Find its equation. 

ANSWER
x2

36
+

y2

20
= 1

(; 4, 0)(;6, 0)

(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract x2/9

Multiply by 4

Take square roots

To obtain the graph of the ellipse, we graph both functions

as shown in Figure 5(b).

■

Example 2 Finding the Foci of an Ellipse

Find the foci of the ellipse 16x 2 � 9y 2 � 144, and sketch its graph.

Solution First we put the equation in standard form. Dividing by 144, we get

Since 16 � 9, this is an ellipse with its foci on the y-axis, and with a � 4 and 
b � 3. We have

Thus, the foci are . The graph is shown in Figure 6(a).10, �17 2 c � 17

 c2 � a2 � b2 � 16 � 9 � 7

x2

9
�

y2

16
� 1

(b)(a)

3

40 x

y

F⁄!_œ∑5, 0@

F¤!œ∑5, 0@

4.7_4.7

_3.1

3.1

y = –2 œ∑∑∑∑∑1 – x2/9

y = 2 œ∑∑∑∑∑1 – x2/9

y � 221 � x2/9  and  y � �2 21 � x2/9

 y � �2 B1 �
x2

9

 y2 � 4 a1 �
x2

9
b

 
y2

4
� 1 �

x2

9

 
x2

9
�

y2

4
� 1

756 CHAPTER 10 Analytic Geometry

Figure 5

x2

9
�

y2

4
� 1

Note that the equation of an ellipse
does not define y as a function of x (see
page 164). That’s why we need to
graph two functions to graph an ellipse.
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ALTERNATE EXAMPLE 3 
Find the foci of the ellipse 
9x2 + 4y2 = 36. 

ANSWER 

(0, 15), (0, -15)

We can also draw the graph using a graphing calculator as shown in Figure 6(b).

■

Example 3 Finding the Equation of an Ellipse

The vertices of an ellipse are and the foci are . Find its equation 
and sketch the graph.

Solution Since the vertices are , we have a � 4. The foci are ,
so c � 2. To write the equation, we need to find b. Since c 2 � a 2 � b 2, we have

Thus, the equation of the ellipse is

The graph is shown in Figure 7. ■

Eccentricity of an Ellipse

We saw earlier in this section (Figure 2) that if 2a is only slightly greater than 2c, the
ellipse is long and thin, whereas if 2a is much greater than 2c, the ellipse is almost
circular. We measure the deviation of an ellipse from being circular by the ratio of a
and c.

x2

16
�

y2

12
� 1

 b2 � 16 � 4 � 12

 22 � 42 � b2

1�2, 0 21�4, 0 2
1�2, 0 21�4, 0 2

0 x

y

4

F¤ !0, œ∑7@5

F⁄!0, _œ∑7@

9_9

_5

5

5
y = –4œ∑∑∑∑∑1 – x2/9

y = 4 œ∑∑∑∑∑1 – x2/9

(a) (b)

SECTION 10.2 Ellipses 757

Figure 6

16x 2 � 9y 2 � 144

4

0 x

y

5

F⁄(_2, 0)

F¤(2, 0)

Figure 7

x2

16
�

y2

12
� 1

Definition of Eccentricity

For the ellipse or 1with a � b � 02, the 

eccentricity e is the number

where . The eccentricity of every ellipse satisfies 0 � e � 1.c � 2a2 � b2

e �
c
a

x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1
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ALTERNATE EXAMPLE 4
Find the equation of the ellipse
with foci and eccentricity

ANSWER 

x2

225
+

y2

625
= 1

e = 4
5. 

(0, ;20)

IN-CLASS MATERIALS

As noted in Section 10.1, one can use dental floss and a modeling compound (such as clay or Play-Doh®)
to make half a cone and slice it. Have the class attempt to do so to get a circle. Note that if their angle is
slightly off, they will get an ellipse. Make the analogy that just as a square is a particular kind of rectangle,
a circle is a particular kind of ellipse.

Thus, if e is close to 1, then c is almost equal to a, and the ellipse is elongated in
shape, but if e is close to 0, then the ellipse is close to a circle in shape. The eccen-
tricity is a measure of how “stretched” the ellipse is.

In Figure 8 we show a number of ellipses to demonstrate the effect of varying the
eccentricity e.

Figure 8

Ellipses with various eccentricities

Example 4 Finding the Equation of an Ellipse 

from Its Eccentricity and Foci

Find the equation of the ellipse with foci and eccentricity , and sketch
its graph.

Solution We are given and c � 8. Thus

Eccentricity 

Cross multiply

To find b, we use the fact that c 2 � a 2 � b 2.

Thus, the equation of the ellipse is

Because the foci are on the y-axis, the ellipse is oriented vertically. To sketch the 
ellipse, we find the intercepts: The x-intercepts are �6 and the y-intercepts are
�10. The graph is sketched in Figure 9. ■

Gravitational attraction causes the planets to move in elliptical orbits around the
sun with the sun at one focus. This remarkable property was first observed by 
Johannes Kepler and was later deduced by Isaac Newton from his inverse square law
of gravity, using calculus. The orbits of the planets have different eccentricities,
but most are nearly circular (see the margin note above).

x2

36
�

y2

100
� 1

 b � 6

 b2 � 102 � 82 � 36

 82 � 102 � b2

 a � 10

 4a � 40

e �
c
a

 
4

5
�

8
a

e � 4
5

e � 4
510, �8 2

e=0.86e=0.1 e=0.5 e=0.68

758 CHAPTER 10 Analytic Geometry

0 x

y

6

10

_6

_10

F⁄(0, 8)

F¤(0, _8)

Figure 9

x2

36
�

y2

100
� 1

Eccentricities of the Orbits 

of the Planets

The orbits of the planets are el-
lipses with the sun at one focus.
For most planets these ellipses
have very small eccentricity, so
they are nearly circular. However,
Mercury and Pluto, the innermost
and outermost known planets, have
visibly elliptical orbits.

Planet Eccentricity

Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.056
Uranus 0.046
Neptune 0.010
Pluto 0.248
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IN-CLASS MATERIALS

Discuss the reflection property of an ellipse: A beam of light originating at one focus will reflect off the
ellipse and pass through the other focus. One nice project is to construct an elliptical pool table. The
students accurately graph an ellipse and glue erasers or wood along its border, placing the “hole” at
one focus and marking the second. A golf ball or pool ball that is placed on the mark and struck in any
direction will ricochet into the hole.

SECTION 10.2 Ellipses 759

1–4 ■ Match the equation with the graphs labeled I–IV. Give
reasons for your answers.

1. 2.

3. 4x 2 � y 2 � 4 4. 16x 2 � 25y 2 � 400

5–18 ■ Find the vertices, foci, and eccentricity of the ellipse.
Determine the lengths of the major and minor axes, and sketch
the graph.

5. 6.
x2

16
�

y2

25
� 1

x2

25
�

y2

9
� 1

I II

III IV

y

x0

1

1

y

x0

1

1

x0

1

2

yy

x0
1

1

x2 �
y2

9
� 1

x2

16
�

y2

4
� 1

7. 9x 2 � 4y 2 � 36 8. 4x 2 � 25y 2 � 100

9. x 2 � 4y 2 � 16 10. 4x 2 � y 2 � 16

11. 2x 2 � y 2 � 3 12. 5x 2 � 6y 2 � 30

13. x 2 � 4y 2 � 1 14. 9x 2 � 4y 2 � 1

15. 16. x 2 � 4 � 2y 2

17. y 2 � 1 � 2x 2 18. 20x 2 � 4y 2 � 5

19–24 ■ Find an equation for the ellipse whose graph is shown.

19. 20.

21. 22.

0

4 F(0, 3)
y

x

F(0, 2)

0

y

x2

0

5
y

x2

y

x0

4

5

1
2 x2 � 1

8 y2 � 1
4

Ellipses, like parabolas, have an interesting reflection property that leads to a num-
ber of practical applications. If a light source is placed at one focus of a reflecting sur-
face with elliptical cross sections, then all the light will be reflected off the surface to
the other focus, as shown in Figure 10. This principle, which works for sound waves
as well as for light, is used in lithotripsy, a treatment for kidney stones. The patient is
placed in a tub of water with elliptical cross sections in such a way that the kidney
stone is accurately located at one focus. High-intensity sound waves generated at the
other focus are reflected to the stone and destroy it with minimal damage to sur-
rounding tissue. The patient is spared the trauma of surgery and recovers within days
instead of weeks.

The reflection property of ellipses is also used in the construction of whispering
galleries. Sound coming from one focus bounces off the walls and ceiling of an el-
liptical room and passes through the other focus. In these rooms even quiet whispers
spoken at one focus can be heard clearly at the other. Famous whispering galleries 
include the National Statuary Hall of the U.S. Capitol in Washington, D.C. (see 
page 771), and the Mormon Tabernacle in Salt Lake City, Utah.

10.2 Exercises

F⁄ F¤

Figure 10
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23. 24.

25–28 ■ Use a graphing device to graph the ellipse.

25. 26.

27. 6x 2 � y 2 � 36 28. x 2 � 2y 2 � 8

29–40 ■ Find an equation for the ellipse that satisfies the given
conditions.

29. Foci , vertices 

30. Foci , vertices 

31. Length of major axis 4, length of minor axis 2, foci on 
y-axis

32. Length of major axis 6, length of minor axis 4, foci on 
x-axis

33. Foci , length of minor axis 6

34. Foci , length of major axis 12

35. Endpoints of major axis , distance between foci 6

36. Endpoints of minor axis , distance between foci 8

37. Length of major axis 10, foci on x-axis, ellipse passes
through the point 

38. Eccentricity , foci 

39. Eccentricity 0.8, foci 

40. Eccentricity , foci on y-axis, length of major axis 4

41–43 ■ Find the intersection points of the pair of ellipses.
Sketch the graphs of each pair of equations on the same coordi-
nate axes and label the points of intersection.

41. 42.

43.

44. The ancillary circle of an ellipse is the circle with radius
equal to half the length of the minor axis and center the

c100x2 � 25y2 � 100

x2 �
y2

9
� 1

µ x2

16
�

y2

9
� 1

x2

9
�

y2

16
� 1

e4x2 � y2 � 4

4x2 � 9y2 � 36

13/2

1�1.5, 0 210, �2 21
9

115, 2 2
10, �3 21�10, 0 21�5, 0 210, �2 2

10, �5 210, �3 2 1�5, 0 21�4, 0 2

x2 �
y2

12
� 1

x2

25
�

y2

20
� 1

(_1, 2)

0

y

x20

y

x16

(8, 6)

same as the ellipse (see the figure). The ancillary circle is
thus the largest circle that can fit within an ellipse.

(a) Find an equation for the ancillary circle of the ellipse 
x 2 � 4y 2 � 16.

(b) For the ellipse and ancillary circle of part (a), show that
if is a point on the ancillary circle, then is a
point on the ellipse.

45. (a) Use a graphing device to sketch the top half (the portion
in the first and second quadrants) of the family of el-
lipses x 2 � ky 2 � 100 for k � 4, 10, 25, and 50.

(b) What do the members of this family of ellipses have in
common? How do they differ?

46. If k � 0, the following equation represents an ellipse:

Show that all the ellipses represented by this equation have
the same foci, no matter what the value of k.

Applications

47. Perihelion and Aphelion The planets move around the
sun in elliptical orbits with the sun at one focus. The point
in the orbit at which the planet is closest to the sun is called
perihelion, and the point at which it is farthest is called
aphelion. These points are the vertices of the orbit. The
earth’s distance from the sun is 147,000,000 km at perihe-
lion and 153,000,000 km at aphelion. Find an equation for
the earth’s orbit. (Place the origin at the center of the orbit
with the sun on the x-axis.)

48. The Orbit of Pluto With an eccentricity of 0.25,
Pluto’s orbit is the most eccentric in the solar system. The
length of the minor axis of its orbit is approximately
10,000,000,000 km. Find the distance between Pluto and 
the sun at perihelion and at aphelion. (See Exercise 47.)

aphelion perihelion

x2

k
�

y2

4 � k
� 1

ancillary
circle

ellipse

12s, t 21s, t 2
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SECTION 10.2 Ellipses 761

49. Lunar Orbit For an object in an elliptical orbit around 
the moon, the points in the orbit that are closest to and 
farthest from the center of the moon are called perilune
and apolune, respectively. These are the vertices of the 
orbit. The center of the moon is at one focus of the orbit.
The Apollo 11 spacecraft was placed in a lunar orbit with
perilune at 68 mi and apolune at 195 mi above the surface 
of the moon. Assuming the moon is a sphere of radius
1075 mi, find an equation for the orbit of Apollo 11. (Place
the coordinate axes so that the origin is at the center of the
orbit and the foci are located on the x-axis.)

50. Plywood Ellipse A carpenter wishes to construct an el-
liptical table top from a sheet of plywood, 4 ft by 8 ft. He
will trace out the ellipse using the “thumbtack and string”
method illustrated in Figures 2 and 3. What length of string
should he use, and how far apart should the tacks be located,
if the ellipse is to be the largest possible that can be cut out
of the plywood sheet?

51. Sunburst Window A “sunburst” window above a door-
way is constructed in the shape of the top half of an ellipse,
as shown in the figure. The window is 20 in. tall at its high-
est point and 80 in. wide at the bottom. Find the height of
the window 25 in. from the center of the base.

80 in.

25 in.

h 20 in.

moon

68 mi

195 mi
periluneapolune

Discovery • Discussion

52. Drawing an Ellipse on a Blackboard Try drawing an
ellipse as accurately as possible on a blackboard. How
would a piece of string and two friends help this process?

53. Light Cone from a Flashlight A flashlight shines on 
a wall, as shown in the figure. What is the shape of the
boundary of the lighted area? Explain your answer.

54. How Wide Is an Ellipse at Its Foci? A latus rectum for
an ellipse is a line segment perpendicular to the major axis
at a focus, with endpoints on the ellipse, as shown. Show
that the length of a latus rectum is 2b 2/a for the ellipse

55. Is It an Ellipse? A piece of paper is wrapped around 
a cylindrical bottle, and then a compass is used to draw 
a circle on the paper, as shown in the figure. When the 
paper is laid flat, is the shape drawn on the paper an ellipse?
(You don’t need to prove your answer, but you may want to
do the experiment and see what you get.)

b

a

_b

_a

foci

latus rectum

y

x

x2

a2 �
y2

b2 � 1  with a � b
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SUGGESTED TIME 

AND EMPHASIS 

class. 

Optional material.

1
2

POINTS TO STRESS

1. The definition and geometry of hyperbolas.
2. Using the equation of a hyperbola to find relevant constants.
3. Graphing a hyperbola given its equation.

10.3 Hyperbolas

Although ellipses and hyperbolas have completely different shapes, their definitions
and equations are similar. Instead of using the sum of distances from two fixed foci,
as in the case of an ellipse, we use the difference to define a hyperbola.

762 CHAPTER 10 Analytic Geometry

Geometric Definition of a Hyperbola

A hyperbola is the set of all points in the plane, the difference of whose dis-
tances from two fixed points F1 and F2 is a constant. (See Figure 1.) These
two fixed points are the foci of the hyperbola.

As in the case of the ellipse, we get the simplest equation for the hyperbola by
placing the foci on the x-axis at , as shown in Figure 1. By definition, if 
lies on the hyperbola, then either or must
equal some positive constant, which we call 2a. Thus, we have

or

Proceeding as we did in the case of the ellipse (Section 10.2), we simplify this to

From triangle PF1F2 in Figure 1 we see that . It follows
that 2a � 2c, or a � c. Thus, c 2 � a 2 � 0, so we can set b 2 � c 2 � a 2. We then sim-
plify the last displayed equation to get

This is the equation of the hyperbola. If we replace x by �x or y by �y in this equa-
tion, it remains unchanged, so the hyperbola is symmetric about both the x- and 
y-axes and about the origin. The x-intercepts are �a, and the points and

are the vertices of the hyperbola. There is no y-intercept, because setting 
x � 0 in the equation of the hyperbola leads to �y 2 � b 2, which has no real solution.
Furthermore, the equation of the hyperbola implies that

so x 2/a 2 � 1; thus, x 2 � a 2, and hence x � a or x � �a. This means that the hyper-
bola consists of two parts, called its branches. The segment joining the two vertices
on the separate branches is the transverse axis of the hyperbola, and the origin is
called its center.

If we place the foci of the hyperbola on the y-axis rather than on the x-axis, then
this has the effect of reversing the roles of x and y in the derivation of the equation of
the hyperbola. This leads to a hyperbola with a vertical transverse axis.

x2

a2 �
y2

b2 � 1 � 1

1�a, 0 2 1a, 0 2
x2

a2 �
y2

b2 � 1

0 d1P, F1 2 � d1P, F2 2 0 � 2c

1c2 � a2 2x2 � a2y2 � a21c2 � a2 2
 21x � c 2 2 � y2 � 21x � c 2 2 � y2 � �2a

 d1P, F1 2 � d1P, F2 2 � �2a

d1P, F2 2 � d1P, F1 2d1P, F1 2 � d1P, F2 2 P1x, y 21�c, 0 2
x

y

0 F¤(c, 0)

P(x, y)

F⁄(_c, 0)

Figure 1

P is on the hyperbola if
.0 d1P, F1 2 � d1P, F2 2 0 � 2a
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Equations and Graphs of Hyperbolas

The main properties of hyperbolas are listed in the following box.

SECTION 10.3 Hyperbolas 763

Hyperbola with Center at the Origin

The graph of each of the following equations is a hyperbola with center at the origin and having the given properties.

EQUATION

VERTICES

TRANSVERSE AXIS Horizontal, length 2a Vertical, length 2a

ASYMPTOTES

FOCI , c 2 � a 2 � b 2 , c 2 � a 2 � b 2

GRAPH

x

yy=_    xb
a y=   xb

a

F¤(c, 0)

b

F⁄(_c, 0)

_b

a_a x

y

b

F⁄(0, c)

_b

F¤(0, _c)

a

_a

y=_    xa
b y=   xa

b

10, �c 21�c, 0 2 y � �
a

b
 xy � �

b
a

 x

10, �a 21�a, 0 2
y2

a2 �
x2

b2 � 1  1a � 0, b � 0 2x2

a2 �
y2

b2 � 1  1a � 0, b � 0 2

The asymptotes mentioned in this box are lines that the hyperbola approaches for
large values of x and y. To find the asymptotes in the first case in the box, we solve
the equation for y to get

As x gets large, a 2/x 2 gets closer to zero. In other words, as x �qwe have a 2/x 2 � 0.
So, for large x the value of y can be approximated as . This shows that
these lines are asymptotes of the hyperbola.

Asymptotes are an essential aid for graphing a hyperbola; they help us determine
its shape. A convenient way to find the asymptotes, for a hyperbola with horizontal
transverse axis, is to first plot the points , , , and . Then
sketch horizontal and vertical segments through these points to construct a rectangle,
as shown in Figure 2(a) on the next page. We call this rectangle the central box of
the hyperbola. The slopes of the diagonals of the central box are �b/a, so by extend-
ing them we obtain the asymptotes , as sketched in part (b) of the fig-
ure. Finally, we plot the vertices and use the asymptotes as a guide in sketching the 

y � �1b/a 2x
10, �b 210, b 21�a, 0 21a, 0 2

y � �1b/a 2x
 � �

b
a

 x B1 �
a2

x2

 y � �
b
a

 2x2 � a2

Asymptotes of rational functions are
discussed in Section 3.6.
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SAMPLE QUESTION

Text Question

Is the equation of a

horizontal or a vertical hyperbola?
How do you know?

Answer

It is horizontal because the x2 term
is positive.

ALTERNATE EXAMPLE 1
Find the vertices, foci, and
asymptotes of the hyperbola 
25x2 - 144y2 = 3600. 

ANSWER

y = ;
5

12
x

(;12, 0), (;13, 0),

x2

52 -
y2

62 = 1

IN-CLASS MATERIALS

Have students sketch a hyperbola “from scratch.” Hand out a sheet of paper with two foci, and hand out
rulers. Get the students to plot points where the difference of the distances between the points and the foci
is 1 inch. Have them keep plotting points until a hyperbolic shape emerges. 

hyperbola shown in part (c). (A similar procedure applies to graphing a hyperbola
that has a vertical transverse axis.)

Figure 2

Steps in graphing the hyperbola 
x2

a2 �
y2

b2 � 1

(a) Central box (b) Asymptotes (c) Hyperbola

x

y

b

_b

a_a x

y

b

_b

a_a0 x

y

b

_b

a_a

764 CHAPTER 10 Analytic Geometry

How to Sketch a Hyperbola

1. Sketch the Central Box. This is the rectangle centered at the origin,
with sides parallel to the axes, that crosses one axis at �a, the other at �b.

2. Sketch the Asymptotes. These are the lines obtained by extending 
the diagonals of the central box.

3. Plot the Vertices. These are the two x-intercepts or the two y-intercepts.

4. Sketch the Hyperbola. Start at a vertex and sketch a branch of the 
hyperbola, approaching the asymptotes. Sketch the other branch in the 
same way.

Example 1 A Hyperbola with Horizontal

Transverse Axis

A hyperbola has the equation

(a) Find the vertices, foci, and asymptotes, and sketch the graph.

(b) Draw the graph using a graphing calculator.

Solution

(a) First we divide both sides of the equation by 144 to put it into standard form:

x2

16
�

y2

9
� 1

9x2 � 16y2 � 144
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Because the x 2-term is positive, the hyperbola has a horizontal transverse 
axis; its vertices and foci are on the x-axis. Since a 2 � 16 and b 2 � 9, we get 
a � 4, b � 3, and . Thus, we have

VERTICES (�4, 0)

FOCI (�5, 0)

ASYMPTOTES

After sketching the central box and asymptotes, we complete the sketch of 
the hyperbola as in Figure 3(a).

(b) To draw the graph using a graphing calculator, we need to solve for y.

Subtract 9x2

Divide by �16 and factor 9

Take square roots

To obtain the graph of the hyperbola, we graph the functions

as shown in Figure 3(b).

■

Example 2 A Hyperbola with Vertical Transverse Axis

Find the vertices, foci, and asymptotes of the hyperbola, and sketch its graph.

Solution We begin by writing the equation in the standard form for a hyperbola.

Divide by �9 y2 �
x2

9
� 1

 x2 � 9y2 � �9

x2 � 9y2 � 9 � 0

x

yy = – 3
4

(5, 0)

3

(_5, 0)

_3

4_4

(a) (b)

10_10

x y = 3
4

x

_6

6

_
y = –3œ (x2/16) – 1

(x2/16) – 1y = 3œ

y � 321x2/16 2 � 1  and  y � �321x2/16 2 � 1

 y � �3 B
x2

16
� 1

 y2 � 9 a x2

16
� 1 b �16y2 � �9x2 � 144

 9x2 � 16y2 � 144

y � � 
3
4 x

c � 116 � 9 � 5

SECTION 10.3 Hyperbolas 765

Figure 3

9x 2 � 16y 2 � 144

Note that the equation of a hyperbola
does not define y as a function of x (see
page 164). That’s why we need to graph
two functions to graph a hyperbola.
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DRILL QUESTION

Find the vertices, foci, and asymp-
totes of the hyperbola given by

. Then graph it.

Answer

Vertices (0, ), foci (0, )
asymptotes 

ALTERNATE EXAMPLE 3 
Find the equation of the hyperbola
in standard form with vertices
(±2, 0) and foci (±3, 0). 

ANSWER

EXAMPLE
A horizontal hyperbola:

Vertices ( , 0), asymptotes 

foci a;A37

2
, 0b

y = ;
1

312
 x,

;3

x2

9
- 2y2 = 1

x2

4
-

y2

5
= 1

y = ;2x
;15;2

y2

4
- x2 = 1

IN-CLASS MATERIALS

As noted in Section 10.1, one can use dental floss and a modeling compound (such as clay or Play-Doh®)
to make a half-cone and slice it. Have the students attempt to do so to get a hyperbola. Notice that the slice
does not have to be straight up and down, as shown in the prologue to the chapter. As long as the slice
would cut the other half of the cone, the resultant curve is a hyperbola.

Because the y 2-term is positive, the hyperbola has a vertical transverse axis; its foci
and vertices are on the y-axis. Since a 2 � 1 and b 2 � 9, we get a � 1, b � 3, and

. Thus, we have

VERTICES 10, �12
FOCI 10, � 2
ASYMPTOTES

We sketch the central box and asymptotes, then complete the graph, as shown in
Figure 4(a).

We can also draw the graph using a graphing calculator, as shown in Figure 4(b).

Figure 4

x 2 � 9y 2 � 9 � 0 ■

Example 3 Finding the Equation of a Hyperbola

from Its Vertices and Foci

Find the equation of the hyperbola with vertices and foci . Sketch
the graph.

Solution Since the vertices are on the x-axis, the hyperbola has a horizontal
transverse axis. Its equation is of the form

We have a � 3 and c � 4. To find b, we use the relation a 2 � b 2 � c 2:

Thus, the equation of the hyperbola is

x2

9
�

y2

7
� 1

 b � 17

 b2 � 42 � 32 � 7

 32 � b2 � 42

x2

32 �
y2

b2 � 1

1�4, 0 21�3, 0 2

(a) (b)

5_5
x

y

3

1

F¤Ó0, _œ∑10Ô

F⁄Ó0, œ∑10Ô 2

_2

y = – œ 1 + x2/9

y = œ 1 + x2/9

y � � 
1
3 x

110

c � 11 � 9 � 110

766 CHAPTER 10 Analytic Geometry

Paths of Comets

The path of a comet is an ellipse, a
parabola, or a hyperbola with the
sun at a focus. This fact can be
proved using calculus and New-
ton’s laws of motion.* If the path is
a parabola or a hyperbola, the
comet will never return. If the path
is an ellipse, it can be determined
precisely when and where the
comet can be seen again. Halley’s
comet has an elliptical path and re-
turns every 75 years; it was last
seen in 1987. The brightest comet
of the 20th century was comet
Hale-Bopp, seen in 1997. Its orbit
is a very eccentric ellipse; it is ex-
pected to return to the inner solar
system around the year 4377.

*James Stewart, Calculus, 5th ed. (Pa-
cific Grove, CA: Brooks/Cole, 2003),
pp. 912–914.

y

x

5

0

_5

2_2

x

y
2

5_5 0
_2
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ALTERNATE EXAMPLE 4
Find the equation and the foci of
the hyperbola with vertices (0, ±4)
and asymptotes y = 4x. 

ANSWER

EXAMPLE
A vertical hyperbola:

Vertices (0, ±5), asymptotes

y = ;
5

4
 x, foci (0, ;141)

-
x2

16
+

y2

25
= 1

(0, -117)

(0, 117),
y2

16
- x2 = 1,

IN-CLASS MATERIALS

Discuss the reflection property of hyperbolas: Take a point between the branches, and aim a beam of light
at one of the foci. It will reflect off the hyperbola, and go in a path aimed directly at the other focus. This
reflection property is harder to model physically than those of the ellipse and the parabola.

The graph is shown in Figure 5.

SECTION 10.3 Hyperbolas 767

0 x

y

3

_3

_3 3

œ∑7

_œ∑7

Figure 5

x2

9
�

y2

7
� 1

x

y

1

F⁄

F¤

Figure 6

y2

4
� x2 � 1

Example 4 Finding the Equation of a Hyperbola 

from Its Vertices and Asymptotes

Find the equation and the foci of the hyperbola with vertices and asymp-
totes y � �2x. Sketch the graph.

Solution Since the vertices are on the y-axis, the hyperbola has a vertical trans-
verse axis with a � 2. From the asymptote equation we see that a/b � 2. Since 
a � 2, we get 2/b � 2, and so b � 1. Thus, the equation of the hyperbola is

To find the foci, we calculate c 2 � a 2 � b 2 � 22 � 12 � 5, so . Thus, the
foci are . The graph is shown in Figure 6. ■

Like parabolas and ellipses, hyperbolas have an interesting reflection property.
Light aimed at one focus of a hyperbolic mirror is reflected toward the other focus, as
shown in Figure 7. This property is used in the construction of Cassegrain-type tele-
scopes. A hyperbolic mirror is placed in the telescope tube so that light reflected from
the primary parabolic reflector is aimed at one focus of the hyperbolic mirror. The light
is then refocused at a more accessible point below the primary reflector (Figure 8).

Figure 7 Figure 8

Reflection property of hyperbolas Cassegrain-type telescope

F⁄

F¤

Hyperbolic
reflector

Parabolic reflector

F⁄F¤

10, �15 2 c � 15

y2

4
� x2 � 1

10, �2 2
■

x

y

2_2

5

0

_5
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The LORAN (LOng RAnge Navigation) system was used until the early 1990s; it
has now been superseded by the GPS system (see page 656). In the LORAN system,
hyperbolas are used onboard a ship to determine its location. In Figure 9 radio sta-
tions at A and B transmit signals simultaneously for reception by the ship at P. The
onboard computer converts the time difference in reception of these signals into a dis-
tance difference . From the definition of a hyperbola this locates
the ship on one branch of a hyperbola with foci at A and B (sketched in black in the
figure). The same procedure is carried out with two other radio stations at C and D,
and this locates the ship on a second hyperbola (shown in red in the figure). (In prac-
tice, only three stations are needed because one station can be used as a focus for both
hyperbolas.) The coordinates of the intersection point of these two hyperbolas, which
can be calculated precisely by the computer, give the location of P.

10.3 Exercises

A

B
C

D

P

d1P, A 2 � d1P, B 2

768 CHAPTER 10 Analytic Geometry

1–4 ■ Match the equation with the graphs labeled I–IV. Give
reasons for your answers.

1. 2.

3. 16y 2 � x 2 � 144 4. 9x 2 � 25y 2 � 225

I II

III IV

x

y

2

1

4
1

x

y

x

y

1

1

y

x2

2

y2 �
x2

9
� 1

x2

4
� y2 � 1

5–16 ■ Find the vertices, foci, and asymptotes of the hyperbola,
and sketch its graph.

5. 6.

7. 8.

9. x 2 � y 2 � 1 10. 9x 2 � 4y 2 � 36

11. 25y 2 � 9x 2 � 225 12. x 2 � y 2 � 4 � 0

13. x 2 � 4y 2 � 8 � 0 14. x 2 � 2y 2 � 3

15. 4y 2 � x 2 � 1 16. 9x 2 � 16y 2 � 1

17–22 ■ Find the equation for the hyperbola whose graph is
shown.

17.

0 x

y

1

F¤(4, 0)F⁄(_4, 0)
1

x2

2
� y2 � 1y2 �

x2

25
� 1

y2

9
�

x2

16
� 1

x2

4
�

y2

16
� 1

Figure 9

LORAN system for finding
the location of a ship
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SECTION 10.3 Hyperbolas 769

18. 19.

20.

21. 22.

23–26 ■ Use a graphing device to graph the hyperbola.

23. x 2 � 2y 2 � 8 24. 3y 2 � 4x 2 � 24

25. 26.

27–38 ■ Find an equation for the hyperbola that satisfies the
given conditions.

27. Foci , vertices 

28. Foci , vertices 

29. Foci , vertices 

30. Foci , vertices 

31. Vertices , asymptotes y � �5x

32. Vertices , asymptotes 

33. Foci , asymptotes y � � 
1
2 x10, �8 2 y � � 

1
3 x10, �6 21�1, 0 2 1�2, 0 21�6, 0 2 10, �1 210, �2 2 10, �8 210, �10 2 1�3, 0 21�5, 0 2

x2

100
�

y2

64
� 1

y2

2
�

x2

6
� 1

y=3x

y=_3x

0 x

y

3

1

y=_   x1
2 y=   x1

2

x

y

_5 5

(4, 4)

2œ∑3

2
x

y

0 x

y

_4

4

(3, _5)
20 x

y

_12

12 F⁄(0, 13)

F¤(0, _13)

34. Vertices , hyperbola passes through 

35. Asymptotes y � �x, hyperbola passes through 

36. Foci , hyperbola passes through 

37. Foci , length of transverse axis 6

38. Foci , length of transverse axis 1

39. (a) Show that the asymptotes of the hyperbola x 2 � y 2 � 5
are perpendicular to each other.

(b) Find an equation for the hyperbola with foci 
and with asymptotes perpendicular to each other.

40. The hyperbolas

are said to be conjugate to each other.

(a) Show that the hyperbolas

are conjugate to each other, and sketch their graphs on
the same coordinate axes.

(b) What do the hyperbolas of part (a) have in common?

(c) Show that any pair of conjugate hyperbolas have the 
relationship you discovered in part (b).

41. In the derivation of the equation of the hyperbola at the 
beginning of this section, we said that the equation

simplifies to

Supply the steps needed to show this.

42. (a) For the hyperbola

determine the values of a, b, and c, and find the coordi-
nates of the foci F1 and F2.

(b) Show that the point lies on this hyperbola.

(c) Find and .

(d) Verify that the difference between and 
is 2a.

43. Hyperbolas are called confocal if they have the same foci.

(a) Show that the hyperbolas

are confocal.

y2

k
�

x2

16 � k
� 1    with 0 � k � 16

d1P, F2 2d1P, F1 2d1P, F2 2d1P, F1 2 P15, 16
3 2

x2

9
�

y2

16
� 1

1c2 � a2 2x2 � a2y2 � a21c2 � a2 2
21x � c 2 2 � y2 � 21x � c 2 2 � y2 � �2a

x2 � 4y2 � 16 � 0  and  4y2 � x2 � 16 � 0

x2

a2 �
y2

b2 � 1  and  
x2

a2 �
y2

b2 � �1

1�c, 0 2
10, �1 21�5, 0 2 14, 1 21�3, 0 2 15, 3 21�5, 9 210, �6 2
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(b) Use a graphing device to draw the top branches of 
the family of hyperbolas in part (a) for k � 1, 4, 8,
and 12. How does the shape of the graph change as k
increases?

Applications

44. Navigation In the figure, the LORAN stations at A and B
are 500 mi apart, and the ship at P receives station A’s sig-
nal 2640 microseconds (ms) before it receives the signal
from B.

(a) Assuming that radio signals travel at 980 ft/ms, find

(b) Find an equation for the branch of the hyperbola indi-
cated in red in the figure. (Use miles as the unit of 
distance.)

(c) If A is due north of B, and if P is due east of A, how far
is P from A?

45. Comet Trajectories Some comets, such as Halley’s
comet, are a permanent part of the solar system, traveling 
in elliptical orbits around the sun. Others pass through the
solar system only once, following a hyperbolic path with the
sun at a focus. The figure shows the path of such a comet.
Find an equation for the path, assuming that the closest the
comet comes to the sun is 2 	 109 mi and that the path the
comet was taking before it neared the solar system is at a
right angle to the path it continues on after leaving the solar
system.

x

y

2 	 10ª mi

x (mi)

y (mi)

P
A

B

0

250

_250

d1P, A 2 � d1P, B 2

46. Ripples in Pool Two stones are dropped simultaneously
in a calm pool of water. The crests of the resulting waves
form equally spaced concentric circles, as shown in the
figures. The waves interact with each other to create certain
interference patterns.

(a) Explain why the red dots lie on an ellipse.

(b) Explain why the blue dots lie on a hyperbola.

Discovery • Discussion

47. Hyperbolas in the Real World Several examples of the
uses of hyperbolas are given in the text. Find other situa-
tions in real life where hyperbolas occur. Consult a scientific
encyclopedia in the reference section of your library, or
search the Internet.

48. Light from a Lamp The light from a lamp forms a
lighted area on a wall, as shown in the figure. Why is the
boundary of this lighted area a hyperbola? How can one
hold a flashlight so that its beam forms a hyperbola on the
ground?
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Conics in Architecture

In ancient times architecture was part of mathematics, so architects had to 
be mathematicians. Many of the structures they built—pyramids, temples,
amphitheaters, and irrigation projects—still stand. In modern times architects
employ even more sophisticated mathematical principles. The photographs 
below show some structures that employ conic sections in their design.

D I S C O V E R Y
P R O J E C T

Roman Amphitheater in Alexandria, Egypt
(circle)
Nik Wheeler/Corbis

Ceiling of Statuary Hall in the U.S. Capitol
(ellipse)
Architect of the Capitol

Roof of the Skydome in Toronto, Canada
(parabola)
Walter Schmid/Stone/Getty Images

Roof of Washington Dulles Airport
(hyperbola and parabola)
Richard T. Nowitz /Corbis

McDonnell Planetarium, St. Louis, MO
(hyperbola)
Courtesy of Chamber of Commerce, St. Louis, MO

Attic in La Pedrera, Barcelona, Spain
(parabola)
O. Alamany and Vincens/Corbis

Architects have different reasons for using conics in their designs. For example,
the Spanish architect Antoni Gaudi used parabolas in the attic of La Pedrera 
(see photo above). He reasoned that since a rope suspended between two points
with an equally distributed load (like in a suspension bridge) has the shape of 
a parabola, an inverted parabola would provide the best support for a flat 
roof.

Constructing Conics

The equations of the conics are helpful in manufacturing small objects, because
a computer-controlled cutting tool can accurately trace a curve given by an 
equation. But in a building project, how can we construct a portion of a
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parabola, ellipse, or hyperbola that spans the ceiling or walls of a building? The
geometric properties of the conics provide practical ways of constructing them.
For example, if you were building a circular tower, you would choose a center
point, then make sure that the walls of the tower are a fixed distance from that
point. Elliptical walls can be constructed using a string anchored at two points,
as shown in Figure 1.

To construct a parabola, we can use the apparatus shown in Figure 2. A piece 
of string of length a is anchored at F and A. The T-square, also of length a, slides
along the straight bar L. A pencil at P holds the string taut against the T-square.
As the T-square slides to the right the pencil traces out a curve.

From the figure we see that

The string is of length a

The T-square is of length a

It follows that . Subtracting from
each side, we get

The last equation says that the distance from F to P is equal to the distance 
from P to the line L. Thus, the curve is a parabola with focus F and directrix L.

In building projects it’s easier to construct a straight line than a curve. So in
some buildings, such as in the Kobe Tower (see problem 4), a curved surface is
produced by using many straight lines. We can also produce a curve using
straight lines, such as the parabola shown in Figure 3.

Figure 3

Tangent lines to a parabola

d1F, P 2 � d1L, P 2
d1P, A 2d1F, P 2 � d1P, A 2 � d1L, P 2 � d1P, A 2d1L, P 2 � d1P, A 2 � a

d1F, P 2 � d1P, A 2 � a

Parabola

L

F

a
P

A

Figure 2

Constructing a parabola
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Circle

C

P

F1

P

F2

Ellipse

Figure 1

Constructing a circle and an
ellipse
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SECTION 10.3 Hyperbolas 773

Each line is tangent to the parabola; that is, the line meets the parabola at 
exactly one point and does not cross the parabola. The line tangent to the
parabola y � x 2 at the point is

You are asked to show this in problem 6. The parabola is called the envelope of
all such lines.

1. The photographs on page 771 show six examples of buildings that contain
conic sections. Search the Internet to find other examples of structures that
employ parabolas, ellipses, or hyperbolas in their design. Find at least one
example for each type of conic.

2. In this problem we construct a hyperbola. The wooden bar in the figure can
pivot at F1. A string shorter than the bar is anchored at F2 and at A, the other
end of the bar. A pencil at P holds the string taut against the bar as it moves
counterclockwise around F1.

(a) Show that the curve traced out by the pencil is one branch of a hyperbola
with foci at F1 and F2.

(b) How should the apparatus be reconfigured to draw the other branch of
the hyperbola?

3. The following method can be used to construct a parabola that fits in a 
given rectangle. The parabola will be approximated by many short line 
segments.

First, draw a rectangle. Divide the rectangle in half by a vertical line 
segment and label the top endpoint V. Next, divide the length and width of
each half rectangle into an equal number of parts to form grid lines, as shown
in the figure on the next page. Draw lines from V to the endpoints of horizon-
tal grid line 1, and mark the points where these lines cross the vertical grid
lines labeled 1. Next, draw lines from V to the endpoints of horizontal grid
line 2, and mark the points where these lines cross the vertical grid lines la-
beled 2. Continue in this way until you have used all the horizontal grid lines.

Pivot
point

Hyperbola

F1 F2

P

A

y � 2ax � a2

1a, a2 2
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Now, use line segments to connect the points you have marked to obtain an
approximation to the desired parabola. Apply this procedure to draw a
parabola that fits into a 6 ft by 10 ft rectangle on a lawn.

4. In this problem we construct hyperbolic shapes using straight lines. Punch
equally spaced holes into the edges of two large plastic lids. Connect corre-
sponding holes with strings of equal lengths as shown in the figure. Holding
the strings taut, twist one lid against the other. An imaginary surface passing
through the strings has hyperbolic cross sections. (An architectural example
of this is the Kobe Tower in Japan shown in the photograph.) What happens
to the vertices of the hyperbolic cross sections as the lids are twisted more?

5. In this problem we show that the line tangent to the parabola y � x 2 at the
point has the equation .

(a) Let m be the slope of the tangent line at . Show that the equation
of the tangent line is .

(b) Use the fact that the tangent line intersects the parabola at only one point
to show that is the only solution of the system.

(c) Eliminate y from the system in part (b) to get a quadratic equation in x.
Show that the discriminant of this quadratic is . Since the 
system in (b) has exactly one solution, the discriminant must equal 0.
Find m.

(d) Substitute the value for m you found in part (c) into the equation in part
(a) and simpify to get the equation of the tangent line.

1m � 2a 2 2
e y � a2 � m1x � a 2

y � x2

1a, a2 2 y � a2 � m1x � a 21a, a2 2y � 2ax � a21a, a  2 2

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V
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Tangent
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SUGGESTED TIME 

AND EMPHASIS

1 class. 
Optional material. May be 
covered in conjunction with
Sections 10.1–10.3.

POINTS TO STRESS

1. Completing the square in a general equation of a conic in order to apply the techniques of Section 2.5
to graph the conic.

2. Identifying conic sections by the constants in the general equation.
3. Understanding degenerate conic sections.

SECTION 10.4 Shifted Conics 775

6. In this problem we prove that when a cylinder is cut by a plane an ellipse 
is formed. An architectural example of this is the Tycho Brahe Planetarium 
in Copenhagen (see the photograph). In the figure a cylinder is cut by a 
plane resulting in the red curve. Two spheres with the same radius as the
cylinder slide inside the cylinder so that they just touch the plane at F1 and
F2. Choose an arbitrary point P on the curve and let Q1 and Q2 be the two
points on the cylinder where a vertical line through P touches the “equator”
of each sphere.

(a) Show that PF1 � PQ1 and PF2 � PQ2. [Hint: Use the fact that all tan-
gents to a sphere from a given point outside the sphere are of the same
length.]

(b) Explain why PQ1 � PQ2 is the same for all points P on the curve.

(c) Show that PF1 � PF2 is the same for all points P on the curve.

(d) Conclude that the curve is an ellipse with foci F1 and F2.

10.4 Shifted Conics

In the preceding sections we studied parabolas with vertices at the origin and ellipses
and hyperbolas with centers at the origin. We restricted ourselves to these cases be-
cause these equations have the simplest form. In this section we consider conics
whose vertices and centers are not necessarily at the origin, and we determine how
this affects their equations.

In Section 2.4 we studied transformations of functions that have the effect of shift-
ing their graphs. In general, for any equation in x and y, if we replace x by x � h or
by x � h, the graph of the new equation is simply the old graph shifted horizontally;
if y is replaced by y � k or by y � k, the graph is shifted vertically. The following box
gives the details.

Q1

Q2

P

F2

F1

Bo
b 

Kr
is

t/
Co

rb
is
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SAMPLE QUESTION

Text Question

Identify the conic section with
equation 9x2 - 36x + 4y2 = 0.

Answer

Ellipse

EXAMPLE
A non-degenerate ellipse:

ALTERNATE EXAMPLE 1
For the graph of the ellipse

determine the coordinates of the
foci. 

ANSWER
(-5, 3 - 215)(-5, 3 + 215),

(x - 5) 2 

16 
+

(y - 3) 2 

36 
= 1

(x - 3) 2 

4 
+

(y + 5) 2 

25 
= 1

+ 324 = 0 3
+ 40y25x2 + 4y2 - 150x

Shifted Ellipses

Let’s apply horizontal and vertical shifting to the ellipse with equation

whose graph is shown in Figure 1. If we shift it so that its center is at the point 
instead of at the origin, then its equation becomes

Example 1 Sketching the Graph of a Shifted Ellipse

Sketch the graph of the ellipse

and determine the coordinates of the foci.

Solution The ellipse

Shifted ellipse
1x � 1 2 2

4
�
1y � 2 2 2

9
� 1

1x � 1 2 2
4

�
1y � 2 2 2

9
� 1

y

x

b

a(0, 0)

+     =1y™
b™

x

™a™

b

a

(h, k)

h

k

(x-h, y-k)

(x, y)

=1
(y-k)™

b™
(x-h)™

a™ +

Figure 1

Shifted ellipse

1x � h 2 2
a2 �

1y � k 2 2
b2 � 1

1h, k 2
x2

a2 �
y2

b2 � 1

776 CHAPTER 10 Analytic Geometry

Shifting Graphs of Equations

If h and k are positive real numbers, then replacing x by x � h or by x � h
and replacing y by y � k or by y � k has the following effect(s) on the graph
of any equation in x and y.

Replacement How the graph is shifted

1. x replaced by x � h Right h units

2. x replaced by x � h Left h units

3. y replaced by y � k Upward k units

4. y replaced by y � k Downward k units

y

x5
0

-5

-10
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ALTERNATE EXAMPLE 2
Determine the vertex, focus, and
directrix of the parabola. 
x2 - 4x = 36y - 112 

ANSWER

(2, 3), (2, 12), y = -6

IN-CLASS MATERIALS

Class time can be saved if this section is covered along with Sections 10.1–10.3. For example, after
discussing parabolas, immediately do an example of a shifted parabola. Teach ellipses and hyperbolas
similarly.

is shifted so that its center is at . It is obtained from the ellipse

Ellipse with center at origin

by shifting it left 1 unit and upward 2 units. The endpoints of the minor and 
major axes of the unshifted ellipse are , , , . We apply the
required shifts to these points to obtain the corresponding points on the shifted 
ellipse:

This helps us sketch the graph in Figure 2.
To find the foci of the shifted ellipse, we first find the foci of the ellipse with

center at the origin. Since a 2 � 9 and b 2 � 4, we have c 2 � 9 � 4 � 5, so .
So the foci are . Shifting left 1 unit and upward 2 units, we get

Thus, the foci of the shifted ellipse are

■

Shifted Parabolas

Applying shifts to parabolas leads to the equations and graphs shown in Figure 3.

Figure 3

Shifted parabolas

Example 2 Graphing a Shifted Parabola

Determine the vertex, focus, and directrix and sketch the graph of the parabola.

x2 � 4x � 8y � 28

(a) (x-h)™=4p(y-k)
p>0

(b) (x-h)™=4p(y-k)
p<0

(c) (y-k)™=4p(x-h)
p>0

(d) (y-k)™=4p(x-h)
p<0

x

y

0
(h, k) x

y

0

(h, k)

x

y

0

(h, k)

x

y

0

(h, k)

A�1,  2 � 15B  and  A�1,  2 � 15B
A0,  �15B �  A0 � 1,  �15 � 2B � A�1,  2 � 15B A0,  15B �  A0 � 1,  15 � 2B � A�1,  2 � 15BA0,  �15B c � 15

 10,  �3 2  �  10 � 1,  �3 � 2 2 � 1�1,  �1 2 10,  3 2  �  10 � 1,  3 � 2 2 � 1�1,  5 2 1�2,  0 2  �  1�2 � 1,  0 � 2 2 � 1�3,  2 2 12,  0 2  �  12 � 1,  0 � 2 2 � 11,  2 2
10, �3 210, 3 21�2, 0 212, 0 2

x2

4
�

y2

9
� 1

1�1,  2 2
SECTION 10.4 Shifted Conics 777

0 x

y

(_1, 5)

(1, 2)(_3, 2)

(_1, _1)

3

2

(_1, 2)

Figure 21x � 1 2 2
4

�
1y � 2 2 2

9
� 1

DRILL QUESTION

Graph the conic section with
equation
4x2 - 16x + 9y2 - 20 = 0.

Answer

3
(x - 2)2

9
+

y2

4
= 1

3 4(x - 2)2 + 9y2 = 36

4x2 - 16x + 9y2 - 20 = 0

y

x0 432

2

1

-2
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ALTERNATE EXAMPLE 3 
Find the center, vertices, foci,
and asymptotes of the given
hyperbola. 
4x2 - 32x - 16y2 - 32y = 16

ANSWER

y = -
1

2
x + 1

(8, -1), y =
1

2
x - 3, 

(4 + 215, -1)(0, -1), 

(4, -1), (4 - 215, -1),

IN-CLASS MATERIALS

Help the class recognize the difference between the formulas of conic sections by pointing out that the
equation of a parabola has degree 2 in only one variable (which variable it is determines which type of
parabola it is). Equations of ellipses and hyperbolas have degree 2 in both variables; for ellipses the
second-degree terms have the same sign, and for hyperbolas they have opposite signs.

Solution We complete the square in x to put this equation into one of the forms
in Figure 3.

Add 4 to complete the square

Shifted parabola

This parabola opens upward with vertex at . It is obtained from the parabola

Parabola with vertex at origin

by shifting right 2 units and upward 3 units. Since 4p � 8, we have p � 2, so the
focus is 2 units above the vertex and the directrix is 2 units below the vertex. Thus,
the focus is and the directrix is y � 1. The graph is shown in Figure 4. ■

Shifted Hyperbolas

Applying shifts to hyperbolas leads to the equations and graphs shown in Figure 5.

Example 3 Graphing a Shifted Hyperbola

A shifted conic has the equation

(a) Complete the square in x and y to show that the equation represents a
hyperbola.

(b) Find the center, vertices, foci, and asymptotes of the hyperbola and sketch 
its graph.

(c) Draw the graph using a graphing calculator.

Solution

(a) We complete the squares in both x and y:

Complete the squares

Divide this by 144

Shifted hyperbola

Comparing this to Figure 5(a), we see that this is the equation of a shifted 
hyperbola.

 
1x � 4 2 2

16
�
1y � 1 2 2

9
� 1

 91x � 4 2 2 � 161y � 1 2 2 � 144

 91x2 � 8x � 16 2 � 161y2 � 2y � 1 2 � 16 � 9 # 16 � 16 # 1
 91x2 � 8x 2 � 161y2 � 2y 2 � 16

9x2 � 72x � 16y2 � 32y � 16

x

y

0

(h, k)

x

y

0

(h, k)

=1
(x-h)™

a™
(y-k)™

b™
-(a) =1

( y-k)™
b™

(x-h)™
a™

+-(b)

12,  5 2
x2 � 8y

12,  3 2 1x � 2 2 2 � 81y � 3 2 1x � 2 2 2 � 8y � 24

 x2 � 4x � 4 � 8y � 28 � 4

778 CHAPTER 10 Analytic Geometry

0 x

y

(2, 3)

F(2, 5)

y=1

Figure 4

x 2 � 4x � 8y � 28

Figure 5

Shifted hyperbolas
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EXAMPLE
A degenerate hyperbola:
x2 - y2 - 4x - 2y + 3 = 0
3 (x - 2)2 - (y + 1)2 = 0

y

x
0

2

1

1 3
-1

-2

-3

(b) The shifted hyperbola has center and a horizontal transverse axis.

CENTER

Its graph will have the same shape as the unshifted hyperbola

Hyperbola with center at origin

Since a 2 � 16 and b 2 � 9, we have a � 4, b � 3, and 
. Thus, the foci lie 5 units to the left and to the right of the center,

and the vertices lie 4 units to either side of the center.

FOCI

VERTICES

The asymptotes of the unshifted hyperbola are , so the asymptotes of
the shifted hyperbola are found as follows.

ASYMPTOTES

To help us sketch the hyperbola, we draw the central box; it extends 4 units left
and right from the center and 3 units upward and downward from the center.
We then draw the asymptotes and complete the graph of the shifted hyperbola
as shown in Figure 6(a).

Figure 6

9x 2 � 72x � 16y 2 � 32y � 16

(c) To draw the graph using a graphing calculator, we need to solve for y. The
given equation is a quadratic equation in y, so we use the quadratic formula to
solve for y. Writing the equation in the form

16y2 � 32y � 9x 2 � 72x � 16 � 0

(a) (b)

13_5

_7

5

0
x

y

(4, 2)

(4, _4)

(4, _1)
F¤(9, _1)F⁄(_1, _1)

(0, _1) (8, _1)

y=_   x+23
4y=   x-43

4

œ∑∑∑∑∑∑∑y = –1 + 0.75 x2 – 8x

œ∑∑∑∑∑∑∑y = –1 – 0.75 x2 – 8x

y � 3
4 x � 4  and  y � � 

3
4 x � 2

 y � 1 � � 
3
4 x 
 3

 y � 1 � � 
3
4 1x � 4 2
y � � 

3
4 x

10,  �1 2 and 18,  �1 21�1,  �1 2  and 19,  �1 2
116 � 9 � 5

c � 2a2 � b2 �

x2

16
�

y2

9
� 1

14,  �1 214,  �1 2
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ALTERNATE EXAMPLE 4
The graph of the equation 
49x2 - y2 + 196x + 28y = 0 
is equivalent to a pair of
intersecting lines. Find the
equations of these lines. 

ANSWER
y = 7x + 28, y = -7x

IN-CLASS MATERIALS

The text’s guide to the general equation of a shifted conic is important, but students should not memorize
it blindly. Point out that if they’ve learned the previous section, these rules of thumb should make perfect
sense. Have them look at the three general formulas they have learned, generalizing them to allow for a
shift:

y = 4p (x - h)2

(x - h) 2 

a2 -
(y - k) 2 

b2 = 1

(x - h) 2 

a2 +
(y - k) 2 

b2 = 1

we get

Quadratic formula

Expand

Simplify

To obtain the graph of the hyperbola, we graph the functions

as shown in Figure 6(b). ■

The General Equation of a Shifted Conic

If we expand and simplify the equations of any of the shifted conics illustrated in 
Figures 1, 3, and 5, then we will always obtain an equation of the form

where A and C are not both 0. Conversely, if we begin with an equation of this form,
then we can complete the square in x and y to see which type of conic section the
equation represents. In some cases, the graph of the equation turns out to be just a 
pair of lines, a single point, or there may be no graph at all. These cases are called 
degenerate conics. If the equation is not degenerate, then we can tell whether it rep-
resents a parabola, an ellipse, or a hyperbola simply by examining the signs of A and
C, as described in the following box.

Ax2 � Cy2 � Dx � Ey � F � 0

y � �1 � 0.75 2x2 � 8x  and  y � �1 � 0.75 2x2 � 8x

 � �1 � 3
42x2 � 8x

Factor 576 from un-
der the radical �

�32 � 242x2 � 8x

32

 � 
�32 � 2576x2 � 4608x

32

 y �
�32 � 2322 � 4116 2 1�9x2 � 72x � 16 2

2116 2
780 CHAPTER 10 Analytic Geometry

Johannes Kepler (1571–1630)
was the first to give a correct de-
scription of the motion of the plan-
ets. The cosmology of his time
postulated complicated systems of
circles moving on circles to de-
scribe these motions. Kepler
sought a simpler and more harmo-
nious description. As the official
astronomer at the imperial court in
Prague, he studied the astronomi-
cal observations of the Danish as-
tronomer Tycho Brahe, whose data
were the most accurate available at
the time. After numerous attempts
to find a theory, Kepler made the
momentous discovery that the or-
bits of the planets are elliptical. His
three great laws of planetary mo-
tion are

1. The orbit of each planet is an
ellipse with the sun at one 
focus.

2. The line segment that joins 
the sun to a planet sweeps out
equal areas in equal time 
(see the figure).

3. The square of the period of
revolution of a planet is 
proportional to the cube of the
length of the major axis of 
its orbit.

His formulation of these laws is
perhaps the most impressive de-
duction from empirical data in the
history of science.

General Equation of a Shifted Conic

The graph of the equation

where A and C are not both 0, is a conic or a degenerate conic. In the 
nondegenerate cases, the graph is

1. a parabola if A or C is 0

2. an ellipse if A and C have the same sign (or a circle if A � C)

3. a hyperbola if A and C have opposite signs

Ax2 � Cy2 � Dx � Ey � F � 0

Example 4 An Equation That Leads to a Degenerate Conic

Sketch the graph of the equation

Solution Because the coefficients of x 2 and y 2 are of opposite sign, this equation
looks as if it should represent a hyperbola (like the equation of Example 3). To see

9x2 � y2 � 18x � 6y � 0
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whether this is in fact the case, we complete the squares:

Group terms and factor 9

Complete the square

Factor

Divide by 9

For this to fit the form of the equation of a hyperbola, we would need a nonzero
constant to the right of the equal sign. In fact, further analysis shows that this is the
equation of a pair of intersecting lines:

Take square roots

These lines are graphed in Figure 7. ■

Because the equation in Example 4 looked at first glance like the equation of a hy-
perbola but, in fact, turned out to represent simply a pair of lines, we refer to its graph
as a degenerate hyperbola. Degenerate ellipses and parabolas can also arise when we
complete the square(s) in an equation that seems to represent a conic. For example, the
equation

looks as if it should represent an ellipse, because the coefficients of x 2 and y 2 have
the same sign. But completing the squares leads to

which has no solution at all (since the sum of two squares cannot be negative). This
equation is therefore degenerate.

10.4 Exercises

1x � 1 2 2 �
1y � 1 2 2

4
� � 

1

4

4x2 � y2 � 8x � 2y � 6 � 0

 y � 3x � 6    y � �3x

 y � 31x � 1 2 � 3  or   y � �31x � 1 2 � 3

 y � 3 � � 31x � 1 2 1y � 3 2 2 � 91x � 1 2 2
 1x � 1 2 2 �

1y � 3 2 2
9

� 0

 91x � 1 2 2 � 1y � 3 2 2 � 0

 91x2 � 2x � 1 2 � 1y2 � 6y � 9 2 � 0 � 9 # 1 � 9

 91x2 � 2x 2 � 1y2 � 6y 2 � 0

SECTION 10.4 Shifted Conics 781

Figure 7

9x2 � y2 � 18x � 6y � 0

0 x

y

6

_2

1–4 ■ Find the center, foci, and vertices of the ellipse, and 
determine the lengths of the major and minor axes. Then sketch
the graph.

1. 2.

3. 4.

5–8 ■ Find the vertex, focus, and directrix of the parabola, and
sketch the graph.

5. 6. 1y � 5 2 2 � �6x � 121x � 3 2 2 � 81y � 1 2

1x � 2 2 2
4

� y2 � 1
x2

9
�
1y � 5 2 2

25
� 1

1x � 3 2 2
16

� 1y � 3 2 2 � 1
1x � 2 2 2

9
�
1y � 1 2 2

4
� 1

7. 8. y 2 � 16x � 8

9–12 ■ Find the center, foci, vertices, and asymptotes of the 
hyperbola. Then sketch the graph.

9.

10.

11.

12.
1y � 1 2 2

25
� 1x � 3 2 2 � 1

y2 �
1x � 1 2 2

4
� 1

1x � 8 2 2 � 1y � 6 2 2 � 1

1x � 1 2 2
9

�
1y � 3 2 2

16
� 1

�4Ax � 1
2B2 � y
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0 x

y

_6

directrix
y=_12

5

782 CHAPTER 10 Analytic Geometry

13–18 ■ Find an equation for the conic whose graph is shown.

13. 14.

15. 16.

17. 18.

19–30 ■ Complete the square to determine whether the equa-
tion represents an ellipse, a parabola, a hyperbola, or a degener-
ate conic. If the graph is an ellipse, find the center, foci, vertices,
and lengths of the major and minor axes. If it is a parabola, find
the vertex, focus, and directrix. If it is a hyperbola, find the cen-
ter, foci, vertices, and asymptotes. Then sketch the graph of the
equation. If the equation has no graph, explain why.

19. 9x 2 � 36x � 4y 2 � 0 20.

21. x 2 � 4y 2 � 2x � 16y � 20

22. x 2 � 6x � 12y � 9 � 0

23. 4x 2 � 25y 2 � 24x � 250y � 561 � 0

24. 2x 2 � y 2 � 2y � 1

25. 16x 2 � 9y 2 � 96x � 288 � 0

26. 4x 2 � 4x � 8y � 9 � 0

27. 28.

29. 3x 2 � 4y 2 � 6x � 24y � 39 � 0

30. x 2 � 4y 2 � 20x � 40y � 300 � 0

x2 � y2 � 101x � y 2 � 1x2 � 16 � 41y2 � 2x 2

y2 � 41x � 2y 2

0 x

y

4

2
_4

6
0 x

y

1

asymptote
y=x+1

0 x

y

_3

2

F(8, 0)

4

0 x

y

10

_2 20 x

y

4

31–34 ■ Use a graphing device to graph the conic.

31. 2x 2 � 4x � y � 5 � 0

32. 4x 2 � 9y 2 � 36y � 0

33. 9x 2 � 36 � y 2 � 36x � 6y

34. x 2 � 4y 2 � 4x � 8y � 0

35. Determine what the value of F must be if the graph of the
equation

is (a) an ellipse, (b) a single point, or (c) the empty set.

36. Find an equation for the ellipse that shares a vertex and a 
focus with the parabola x 2 � y � 100 and has its other 
focus at the origin.

37. This exercise deals with confocal parabolas, that is,
families of parabolas that have the same focus.

(a) Draw graphs of the family of parabolas

for .

(b) Show that each parabola in this family has its focus at
the origin.

(c) Describe the effect on the graph of moving the vertex
closer to the origin.

Applications

38. Path of a Cannonball A cannon fires a cannonball as
shown in the figure. The path of the cannonball is a parabola
with vertex at the highest point of the path. If the cannon-
ball lands 1600 ft from the cannon and the highest point it
reaches is 3200 ft above the ground, find an equation for 
the path of the cannonball. Place the origin at the location 
of the cannon.

39. Orbit of a Satellite A satellite is in an elliptical orbit
around the earth with the center of the earth at one focus.
The height of the satellite above the earth varies between
140 mi and 440 mi. Assume the earth is a sphere with radius

(feet)

y
(feet)

3200

1600 x 

p � �2, � 
3
2, �1, � 

1
2, 

1
2, 1, 32, 2

x2 � 4p1y � p 2

4x2 � y2 � 41x � 2y 2 � F � 0
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SUGGESTED TIME 

AND EMPHASIS

class. 
Optional material.

POINTS TO STRESS

1. Rotation of axes formulas.
2. Graphing a general quadratic

equation, including middle
terms.

1
2 -1

IN-CLASS MATERIALS

Point out the progression of the past few sections. Write out Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.
When the course started we studied lines, which was just the case where A = B = C = 0. When we
discussed circles, that was the case where A = C, B = D = E = 0. Shifting the center of a circle allowed
D and E to take on nonzero values. Our study of conic sections removed the restriction that A = C, so this
section really is the last step in a logical progression.

SECTION 10.5 Rotation of Axes 783

(b) Find equations of two different hyperbolas that have
these properties.

(c) Explain why only one parabola satisfies these proper-
ties. Find its equation.

(d) Sketch the conics you found in parts (a), (b), and (c) on
the same coordinate axes (for the hyperbolas, sketch the
top branches only).

(e) How are the ellipses and hyperbolas related to the
parabola?

0 x

y

1

3960 mi. Find an equation for the path of the satellite with
the origin at the center of the earth.

Discovery • Discussion

40. A Family of Confocal Conics Conics that share a focus
are called confocal. Consider the family of conics that have
a focus at and a vertex at the origin (see the figure).

(a) Find equations of two different ellipses that have these
properties.

10, 1 2

440 mi 140 mi

10.5 Rotation of Axes

In Section 10.4 we studied conics with equations of the form

We saw that the graph is always an ellipse, parabola, or hyperbola with horizontal or
vertical axes (except in the degenerate cases). In this section we study the most gen-
eral second-degree equation

We will see that the graph of an equation of this form is also a conic. In fact, by 
rotating the coordinate axes through an appropriate angle, we can eliminate the 
term Bxy and then use our knowledge of conic sections to analyze the graph.

Rotation of Axes

In Figure 1 the x- and y-axes have been rotated through an acute angle f about the
origin to produce a new pair of axes, which we call the X- and Y-axes. A point P that
has coordinates in the old system has coordinates in the new system. If
we let r denote the distance of P from the origin and let u be the angle that the seg-
ment OP makes with the new X-axis, then we can see from Figure 2 on the next page
(by considering the two right triangles in the figure) that

 x � r cos1u � f 2   y � r sin1u � f 2X � r cos u      Y � r sin u

1X, Y 21x, y 2

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Ax2 � Cy2 � Dx � Ey � F � 0

0

P(x, y)
P(X, Y)

y

x

Y

X

ƒ

Figure 1
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ALTERNATE EXAMPLE 1
If the coordinate axes are rotated

through an angle of , find the

XY coordinates of the point with
xy coordinates (1, 4).

ANSWER

ALTERNATE EXAMPLE 2
Rotate the coordinate axes
through 45o to show that xy = 4 is
a hyperbola.

ANSWER
Rotation as in the text gives

X 2

8
-

Y 2

8
= 1.

a1 + 413

2
,  4 - 13

2
b

p

3

Using the addition formula for cosine, we see that

Similarly, we can apply the addition formula for sine to the expression for y to obtain
y � X sin f � Y cos f. By treating these equations for x and y as a system of linear
equations in the variables X and Y (see Exercise 33), we obtain expressions for X and
Y in terms of x and y, as detailed in the following box.

 � X cos f � Y sin f

 � 1r cos u 2  cos f � 1r sin u 2  sin f

 � r 1cos u cos f � sin u sin f 2 x � r cos1u � f 2
784 CHAPTER 10 Analytic Geometry

y

0

P

x

Y

X

ƒ
¨

y
r

X

Y

x

Figure 2

Rotation of Axes Formulas

Suppose the x- and y-axes in a coordinate plane are rotated through the acute
angle f to produce the X- and Y-axes, as shown in Figure 1. Then the coordi-
nates and of a point in the xy- and the XY-planes are related as
follows:

 y � X sin f � Y cos f   Y � �x sin f � y cos f

 x � X cos f � Y sin f   X � x cos f � y sin f

1X, Y 21x, y 2

Example 1 Rotation of Axes

If the coordinate axes are rotated through 30�, find the XY-coordinates of the
point with xy-coordinates .

Solution Using the Rotation of Axes Formulas with x � 2, y � �4, and 
f � 30�, we get

The XY-coordinates are . ■

Example 2 Rotating a Hyperbola

Rotate the coordinate axes through 45� to show that the graph of the equation 
xy � 2 is a hyperbola.

Solution We use the Rotation of Axes Formulas with f � 45� to obtain

 y � X sin 45° � Y cos 45° �
X

12
�

Y

12

 x � X cos 45° � Y sin 45° �
X

12
�

Y

12

1�2 � 13,  �1 � 213 2 Y � �2 sin 30° � 1�4 2  cos 30° � �2 a 1

2
b � 4 a 13

2
b � �1 � 213

 X � 2 cos 30° � 1�4 2  sin 30° � 2 a 13

2
b � 4 a 1

2
b � 13 � 2

12,  �4 2

57050_10_ch10_p742-819.qxd  08/04/2008  11:48 AM  Page 784



CHAPTER 10 Analytic Geometry 785

Substituting these expressions into the original equation gives

We recognize this as a hyperbola with vertices in the XY-coordinate system.
Its asymptotes are Y � �X, which correspond to the coordinate axes in the 
xy-system (see Figure 3).

■

General Equation of a Conic

The method of Example 2 can be used to transform any equation of the form

into an equation in X and Y that doesn’t contain an XY-term by choosing an appro-
priate angle of rotation. To find the angle that works, we rotate the axes through an
angle f and substitute for x and y using the Rotation of Axes Formulas:

If we expand this and collect like terms, we obtain an equation of the form

where

 C¿ � A sin2f � B sin f cos f � C cos2f

 B¿ � 21C � A 2  sin f cos f � B1cos2f � sin2f 2 A¿ � A cos2f � B sin f cos f � C sin2f

A¿X 2 � B¿XY � C¿Y 2 � D¿X � E¿Y � F¿ � 0

 � E1X sin f � Y cos f 2 � F � 0

 � C1X sin f � Y cos f 2 2 � D1X cos f � Y sin f 2 A1X cos f � Y sin f 2 2 � B1X cos f � Y sin f 2 1X sin f � Y cos f 2
Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

y

x0

X
Y

45*

Figure 3

xy � 2

1�2,  0 2 
X 2

4
�

Y 2

4
� 1

 
X 2

2
�

Y 2

2
� 2

 a X

12
�

Y

12
b a X

12
�

Y

12
b � 2

SECTION 10.5 Rotation of Axes 785
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ALTERNATE EXAMPLE 3
Use rotation of axes to eliminate
the xy-term in the equation

ANSWER
Rotation angle: 

Transformation equations:

New equation:
4X 2 + 16Y 2 = 16

y =
1

2
X +

13

2
Y

x =
13

2
X -

1

2
Y

f =
p

6

 cot 2f =
123

7x2 - 613xy + 13y2 = 16.

IN-CLASS MATERIALS

This is a very good section to teach with the aid of a CAS, or even a good place to introduce such a device.
A great deal of the work in graphing an arbitrary conic section is multiplying out long algebraic expres-
sions, which a CAS can do easily.

To eliminate the XY-term, we would like to choose f so that B� � 0, that is,

Double-angle 
formulas for sine 
and cosine

Divide by B sin 2f

The preceding calculation proves the following theorem.

 cot 2f �
A � C

B

 B cos 2f � 1A � C 2  sin 2f

 1C � A 2  sin 2f � B cos 2f � 0

 21C � A 2  sin f cos f � B1cos2f � sin2f 2 � 0

 F¿ � F

 E¿ � �D sin f � E cos f

 D¿ � D cos f � E sin f

786 CHAPTER 10 Analytic Geometry

Simplifying the General Conic Equation

To eliminate the xy-term in the general conic equation

rotate the axes through the acute angle f that satisfies

cot 2f �
A � C

B

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

Double-angle formulas

cos 2f � cos2f � sin2f

sin 2f � 2 sin f cos f

Example 3 Eliminating the xy-Term

Use a rotation of axes to eliminate the xy-term in the equation

Identify and sketch the curve.

Solution To eliminate the xy-term, we rotate the axes through an angle f that
satisfies

Thus, 2f � 60� and hence f � 30�. With this value of f, we get

Rotation of Axes Formulas

Substituting these values for x and y into the given equation leads to

613 a X13

2
�

Y

2
b 2

� 6 a X13

2
�

Y

2
b a X

2
�

Y13

2
b � 413 a X

2
�

Y13

2
b 2

� 2113

cos f �
13
2

, sin f � 1
2 y � X a 1

2
b � Y a 13

2
b

 x � X a 13

2
b � Y a 1

2
b

cot 2f �
A � C

B
�

613 � 413

6
�
13

3

613x2 � 6xy � 413y2 � 2113
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ALTERNATE EXAMPLE 4
A conic has the equation

(a) Identify and sketch the graph.
(b) Draw the graph using a

graphing device.

ANSWERS
(a) As shown in Alternate

Example 3, this is a conic
rotated by 30º with equation
4X 2 + 16Y 2 = 16. The
sketch will be the ellipse

with axes

rotated by 30o.
(b)

x2

4
+ y2 = 1

7x2 - 613xy + 13y2 = 16.

y

x

X

Y

_2

_2

2

2
30*

Expanding and collecting like terms, we get

Divide by 

This is the equation of an ellipse in the XY-coordinate system. The foci lie on the 
Y-axis. Because a2 � 7 and b2 � 3, the length of the major axis is , and the
length of the minor axis is . The ellipse is sketched in Figure 4. ■

In the preceding example we were able to determine fwithout difficulty, since we
remembered that . In general, finding f is not quite so easy. The next
example illustrates how the following half-angle formulas, which are valid for 
0 � f � p/2, are useful in determining f (see Section 7.3):

Example 4 Graphing a Rotated Conic

A conic has the equation

(a) Use a rotation of axes to eliminate the xy-term.

(b) Identify and sketch the graph.

(c) Draw the graph using a graphing calculator.

Solution

(a) To eliminate the xy-term, we rotate the axes through an angle f that satisfies

In Figure 5 we sketch a triangle with . We see that

so, using the half-angle formulas, we get

The Rotation of Axes Formulas then give

Substituting into the given equation, we have

� 36A35  
X � 4

5YB2 � 15A45  
X � 3

5YB � 20A35  
X � 4

5YB � 25 � 0

 64A45  
X � 3

5  
YB2 � 96A45  

X � 3
5  
YB A35  

X � 4
5  
YB

x � 4
5  
X � 3

5  
Y  and  y � 3

5  
X � 4

5  
Y

sin f � B
1 � 7

25

2
� B

9

25
�

3

5

cos f � B
1 � 7

25

2
� B

16

25
�

4

5

cos 2f � 7
25

cot 2f � 7
24

cot 2f �
A � C

B
�

64 � 36

96
�

7

24

64x2 � 96xy � 36y2 � 15x � 20y � 25 � 0

cos f � B
1 � cos 2f

2
   sin f � B

1 � cos 2f

2

cot 60° � 13/3

213
217

2113 
X 2

3
�

Y 2

7
� 1

 713X 2 � 313Y 2 � 2113

SECTION 10.5 Rotation of Axes 787

7

2425

2ƒ

Figure 5

y

x

X

Y

30*

Figure 4

613x2 � 6xy � 413y2 � 2113
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EXAMPLE
The rotated parabola x2 + 2xy + y2 + 2x - 4y = 0: . Now we have 

.

After substituting, and a lot of algebra, we get . Completing the square,

(for sketching purposes).y =
2 12 

3
ax -

12 

8
b2

-
12 

48
L 0.9( x - 0.2) 2

8x2 - 212 x - 612y = 0

x = 12X - 12Y, y = 12X + 12Y

cot (2f) = 0 Q 2f =
p

2
 Q  f = p

Expanding and collecting like terms, we get

Simplify

Divide by 4

(b) We recognize this as the equation of a parabola that opens along the negative 
Y-axis and has vertex in XY-coordinates. Since , we have

, so the focus is and the directrix is . Using

we sketch the graph in Figure 6(a).

(c) To draw the graph using a graphing calculator, we need to solve for y. The
given equation is a quadratic equation in y, so we can use the quadratic formula
to solve for y. Writing the equation in the form

we get

Expand

Simplify

Simplify � 
�24x � 5 � 5215x � 10

18

 � 
�96x � 20 � 20215x � 10

72

 � 
�196x � 20 2 � 26000x � 4000

72

Quadratic
formula y �

�196x � 20 2 � 2196x � 20 2 2 � 4136 2 164x2 � 15x � 25 2
2136 2

36y2 � 196x � 20 2y � 164x2 � 15x � 25 2 � 0

y

x

X

Y

ƒÅ37*

(0, 1)

(a) (b)

2_2

_2

2

y = (–24x – 5 – 5 15x + 10)/18

y = (–24x – 5 + 5 15x + 10)/18

f � cos�1 
 
4
5 � 37°

Y � 17
16A0,  

15
16Bp � � 

1
16

4p � � 
1
410,  1 2

 X 2 � � 
1
4 1Y � 1 2 �4X 2 � Y � 1

 100X 2 � 25Y � 25 � 0

788 CHAPTER 10 Analytic Geometry

Figure 6

15x � 20y � 25 � 064x2 � 96xy � 36y2 �

x

y

1

_1 0
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To obtain the graph of the parabola, we graph the functions

as shown in Figure 6(b). ■

The Discriminant

In Examples 3 and 4 we were able to identify the type of conic by rotating the axes.
The next theorem gives rules for identifying the type of conic directly from the equa-
tion, without rotating axes.

y � A�24x � 5 � 5215x � 10B/18  and  y � A�24x � 5 � 5215x � 10B/18

SECTION 10.5 Rotation of Axes 789

Identifying Conics by the Discriminant

The graph of the equation

is either a conic or a degenerate conic. In the nondegenerate cases, the graph is

1. a parabola if B2 � 4AC � 0

2. an ellipse if B2 � 4AC � 0

3. a hyperbola if B2 � 4AC � 0

The quantity B2 � 4AC is called the discriminant of the equation.

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

■ Proof If we rotate the axes through an angle f, we get an equation of the form

where A�, B�, C�, . . . are given by the formulas on pages 785–786. A straightfor-
ward calculation shows that

Thus, the expression B 2 � 4AC remains unchanged for any rotation. In particular,
if we choose a rotation that eliminates the xy-term , we get

In this case, B 2 � 4AC � �4A�C�. So B 2 � 4AC � 0 if either A� or C� is zero; 
B 2 � 4AC � 0 if A� and C� have the same sign; and B 2 � 4AC � 0 if A� and C�
have opposite signs. According to the box on page 780, these cases correspond to 
the graph of the last displayed equation being a parabola, an ellipse, or a hyperbola,
respectively. ■

In the proof we indicated that the discriminant is unchanged by any rotation; for
this reason, the discriminant is said to be invariant under rotation.

A¿X 
2 � C¿Y 

2 � D¿X � E¿Y � F¿ � 0

1B¿ � 0 2
1B¿ 2 2 � 4A¿C¿ � B2 � 4AC

A¿X 2 � B¿XY � C¿Y 2 � D¿X � E¿Y � F¿ � 0
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ALTERNATE EXAMPLE 5
A conic has the equation

(a) Use the discriminant to
identify the conic.

(b) Confirm your answer to part
(a) by graphing the conic with
a graphing calculator.

ANSWERS
(a) B2 - 4AC = 196 > 0, so the

conic is a hyperbola.
(b)

SAMPLE QUESTION

Text Question

If you are presented with the
equation of a conic such as 3x2 +
5xy - 2y2 + x - y + 4 = 0, how
would you go about finding if it is
an ellipse, parabola, or hyperbola?

Answer

Evaluate the discriminant.

DRILL QUESTION
Consider the equation 
3x2 + 5xy - 2y2 + x - y + 4 = 0.
What shape is its graph?

Answer

It is a hyperbola.

17x2 - 48xy + 31y2 + 49 = 0.

Example 5 Identifying a Conic by the Discriminant

A conic has the equation

(a) Use the discriminant to identify the conic.

(b) Confirm your answer to part (a) by graphing the conic with a graphing 
calculator.

Solution

(a) Since A � 3, B � 5, and C � �2, the discriminant is

So the conic is a hyperbola.

(b) Using the quadratic formula, we solve for y to get

We graph these functions in Figure 7. The graph confirms that this is a
hyperbola. ■

10.5 Exercises

3_3

_5

55
y = (5x – 1 + œ49x2 – 2x + 33 )/4∑∑∑∑∑∑∑∑∑∑∑∑

y = (5x – 1 – œ49x2 – 2x + 33 )/4∑∑∑∑∑∑∑∑∑∑∑∑
Figure 7

y �
5x � 1 � 249x2 � 2x � 33

4

B2 � 4AC � 52 � 413 2 1�2 2 � 49 � 0

3x2 � 5xy � 2y2 � x � y � 4 � 0

790 CHAPTER 10 Analytic Geometry

1–6 ■ Determine the XY-coordinates of the given point if the
coordinate axes are rotated through the indicated angle.

1.

2.

3.

4.

5.

6. A12,  4 12B, f � 45°

10,  2 2 , f � 55°

12,  0 2 , f � 15°

A3,  �13B, f � 60°

1�2,  1 2 , f � 30°

11,  1 2 , f � 45°

7–12 ■ Determine the equation of the given conic in 
XY-coordinates when the coordinate axes are rotated through 
the indicated angle.

7. x 2 � 3y 2 �4, f � 60�

8.

9.

10.

11.

12. xy � x � y, f � p/4

x2 � 2 13 xy � y2 � 4, f � 30°

x2 � 2y2 � 16, f � sin�1 
 
3
5

x2 � y2 � 2y, f � cos�1 
 
3
5

y � 1x � 1 2 2, f � 45°

2010_20 _10

20

10

_20

_10

x

y
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IN-CLASS MATERIALS

If the students are going to be moving on to linear algebra in the future, Exercise 35 is an excellent one to
go over in class. It addresses the idea of linear transformations, which will be a major topic in that course.

SECTION 10.5 Rotation of Axes 791

13–26 ■ (a) Use the discriminant to determine whether the
graph of the equation is a parabola, an ellipse, or a hyperbola.
(b) Use a rotation of axes to eliminate the xy-term. (c) Sketch 
the graph.

13. xy � 8

14. xy � 4 � 0

15. x 2 � 2xy � y 2 � x � y � 0

16.

17.

18.

19. 11x 2 � 24xy � 4y 2 � 20 � 0

20. 25x 2 � 120xy � 144y 2 � 156x � 65y � 0

21.

22. 153x 2 � 192xy � 97y 2 � 225

23.

24.

25. 52x 2 � 72xy � 73y 2 � 40x � 30y � 75

26.

27–30 ■ (a) Use the discriminant to identify the conic. 
(b) Confirm your answer by graphing the conic using a graphing
device.

27. 2x 2 � 4xy � 2y 2 � 5x � 5 � 0

28. x 2 � 2xy � 3y 2 � 8

29. 6x 2 � 10xy � 3y 2 � 6y � 36

30. 9x 2 � 6xy � y 2 � 6x � 2y � 0

31. (a) Use rotation of axes to show that the following equation
represents a hyperbola:

(b) Find the XY- and xy-coordinates of the center, vertices,
and foci.

(c) Find the equations of the asymptotes in XY- and 
xy-coordinates.

32. (a) Use rotation of axes to show that the following equation
represents a parabola:

2 121x � y 2 2 � 7x � 9y

7x2 � 48xy � 7y2 � 200x � 150y � 600 � 0

17x � 24y 2 2 � 600x � 175y � 25

9x2 � 24xy � 16y2 � 1001x � y � 1 22 13 x2 � 6xy � 13 x � 3y � 0

13 x2 � 3xy � 3

21x2 � 10 13 xy � 31y2 � 144

x2 � 2 13 xy � y2 � 2 � 0

13x2 � 6 13 xy � 7y2 � 16

(b) Find the XY- and xy-coordinates of the vertex and focus.

(c) Find the equation of the directrix in XY- and 
xy-coordinates.

33. Solve the equations:

for X and Y in terms of x and y. [Hint: To begin, multiply the
first equation by cos f and the second by sin f, and then
add the two equations to solve for X.]

34. Show that the graph of the equation

is part of a parabola by rotating the axes through an angle of
45�. [Hint: First convert the equation to one that does not 
involve radicals.]

Discovery • Discussion

35. Matrix Form of Rotation of Axes Formulas

Let Z, Z�, and R be the matrices

Show that the Rotation of Axes Formulas can be written as

36. Algebraic Invariants A quantity is invariant under rota-
tion if it does not change when the axes are rotated. It was
stated in the text that for the general equation of a conic, the
quantity B 2 � 4AC is invariant under rotation.

(a) Use the formulas for A�, B�, and C� on page 785 to
prove that the quantity B 2 � 4AC is invariant under 
rotation; that is, show that

(b) Prove that A � C is invariant under rotation.

(c) Is the quantity F invariant under rotation?

37. Geometric Invariants Do you expect that the distance
between two points is invariant under rotation? Prove your
answer by comparing the distance and 
where P� and Q� are the images of P and Q under a rotation
of axes.

d1P¿, Q¿ 2d1P, Q 2

B2 � 4AC � B¿2 � 4A¿C¿

Z � RZ¿  and  Z¿ � R�1Z

R � c cos f �sin f

sin f cos f
d

Z � c x
y
d   Z¿ � cX

Y
d

1x � 1y � 1

y � X sin f � Y cos f

x � X cos f � Y sin f
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Computer Graphics II

In the Discovery Project on page 700 we saw how matrix multiplication is 
used in computer graphics. We found matrices that reflect, expand, or shear an
image. We now consider matrices that rotate an image, as in the graphics 
shown here.

Rotating Points in the Plane

Recall that a point in the plane is represented by the 2 	 1 matrix . The
matrix that rotates this point about the origin through an angle f is

Rotation matrix

When the point is rotated clockwise about the origin through an angle 

f, it moves to a new location given by the matrix product P� � RP,

as shown in Figure 1.

For example, if f � 90�, the rotation matrix is

Rotation matrix 

Applying a 90� rotation to the point moves it to the point

See Figure 2.

Rotating Images in the Plane

If the rotation matrix is applied to every point in an image, then the entire image
is rotated. To rotate the house in Figure 3(a) through a 30� angle about the 

P¿ � RP � c0 �1

1 0
d  c1

2
d � c�2

1
d

P � c1
2
d

1f � 90° 2R � c cos 90° �sin 90°

sin 90° cos 90°
d � c0 �1

1 0
d

P¿ � RP � c cos f �sin f

sin f cos f
d  c x

y
d � c x cos f � y sin f

x sin f � y cos f
d

P¿ � c x¿
y¿
dP � c x

y
d

R � c cos f �sin f

sin f cos f
d

c x
y
d1x,  y 2

792 CHAPTER 10 Analytic Geometry

D I S C O V E R Y
P R O J E C T

P�(x�, y�)

P(x, y)

ƒ

0

y

x

Figure 1

Figure 2

P�(_2, 1)

P(1, 2)

90*

0 1

1

y

x

Compare this matrix with the rota-
tion of axes matrix in Exercise 35,
Section 10.5. Note that rotating a
point counterclockwise corresponds
to rotating the axes clockwise.

57050_10_ch10_p742-819.qxd  08/04/2008  11:48 AM  Page 792



CHAPTER 10 Analytic Geometry 793

SECTION 10.5 Rotation of Axes 793

origin, we multiply its data matrix (described on page 701) by the rotation ma-
trix that has f � 30�.

The new data matrix RD represents the rotated house in Figure 3(b).

The Discovery Project on page 702 describes a TI-83 program that draws the
image corresponding to a given data matrix. You may find it convenient to use
this program in some of the following activities.

1. Use a rotation matrix to find the new coordinates of the given point when it is
rotated through the given angle.

(a) (b)
(c) (d)

2. Find a data matrix for the line drawing in the figure shown in the margin.
Multiply the data matrix by a suitable rotation matrix to rotate the image
about the origin by f � 120�. Sketch the rotated image given by the new data
matrix.

3. Sketch the image represented by the data matrix D.

Find the rotation matrix R that corresponds to a 45� rotation, and the transfor-
mation matrix T that corresponds to an expansion by a factor of 2 in the 
x-direction (see page 701). How does multiplying the data matrix by RT
change the image? How about multiplying by TR? Calculate the products
RTD and TRD, and sketch the corresponding images to confirm your answers.

4. Let R be the rotation matrix for the angle f. Show that R�1 is the rotation
matrix for the angle �f.

D � c2 3 3 4 4 1 1 2 2

1 1 3 3 4 4 3 3 1
d

17,  3 2 , f � �60°1�2,  �2 2 , f � 135°

1�2,  1 2 , f � 60°11,  4 2 , f � 90°

1

10

y

x

(a)

1

10

y

x

(b)Figure 3

 � c1.73 0 �1.50 �0.77 1.96 3.46 2.60 1.60 0.73 1.73 2.60

1 0 2.60 5.33 4.60 2 1.50 3.23 2.73 1 1.50
d

 RD � c 13
2 � 

1
2

1
2

13
2

d  c2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

1

10

y

x
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5. To translate an image by , we add h to each x-coordinate and 
k to each y-coordinate of each point in the image (see the figure in the 
margin). This can be done by adding an appropriate matrix M to D, but the
dimension of M would change depending on the dimension of D. In practice,
translation is accomplished by matrix multiplication. To see how this is done,
we introduce homogeneous coordinates; that is, we represent the point

by a 3 	 1 matrix:

(a) Let T be the matrix

Show that T translates the point to the point by 
verifying the following matrix multiplication.

(b) Find T�1 and describe how T�1 translates points.

(c) Verify that multiplying by the following matrices has the indicated 

effects on a point represented by its homogeneous coordinates .

Reflection Expansion (or Shear in Rotation about the 
in x-axis contraction) x-direction origin by 

in x-direction the angle f

(d) Sketch the image represented (in homogeneous coordinates) by this data
matrix:

Find a matrix T that translates the image by and a matrix R
that rotates the image by 45�. Sketch the images represented by the data
matrices TD, RTD, and T�1RTD. Describe how an image is changed
when its data matrix is multiplied by T, by RT, and by T�1RT.

1�6,  �8 2
D � £3 5 5 7 7 9 9 7 7 5 5 3 3

7 7 5 5 7 7 9 9 11 11 9 9 7

1 1 1 1 1 1 1 1 1 1 1 1 1

§

£1 0 0

0 �1 0

0 0 1

§ £ c 0 0

0 1 0

0 0 1

§ £1 c 0

0 1 0

0 0 1

§ £ cos f �sin f 0

sin f cos f 0

0 0 1

§
£ xy

1

§1x, y 2

£1 0 h

0 1 k

0 0 1

§ £ x

y

1

§ � £ x � h

y � k

1

§
1x � h, y � h 21x, y 2

T � £1 0 h

0 1 k

0 0 1

§

1x, y 2 4 £ x

y

1

§
1x, y 2

1h, k 2
794 CHAPTER 10 Analytic Geometry

0

y

x

(x, y)

(x+h,  y+k)

h

k
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SUGGESTED TIME 

AND EMPHASIS 

1 class. 
Optional material.

POINTS TO STRESS

1. Expressing conic sections in
polar form.

2. Rotating conic sections in para-
metric form.

3. The eccentricity of a conic.

SAMPLE QUESTION

Text Question

State a reason that we would want to express a conic in polar form.

Answer

Answers will vary. One reason is that they are easier to rotate when expressed in polar form.

10.6 Polar Equations of Conics

Earlier in this chapter we defined a parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more
unified treatment of all three types of conics in terms of a focus and directrix. If we
place the focus at the origin, then a conic section has a simple polar equation. More-
over, in polar form, rotation of conics becomes a simple matter. Polar equations of 
ellipses are crucial in the derivation of Kepler’s Laws (see page 780).

SECTION 10.6 Polar Equations of Conics 795

Equivalent Description of Conics

Let F be a fixed point (the focus), / a fixed line (the directrix), and e a fixed
positive number (the eccentricity). The set of all points P such that the ratio
of the distance from P to F to the distance from P to / is the constant e is a
conic. That is, the set of all points P such that

is a conic. The conic is a parabola if e � 1, an ellipse if e � 1, or a hyperbola
if e � 1.

d1P, F 2
d1P, / 2 � e

■ Proof If e � 1, then , and so the given condition becomes the
definition of a parabola as given in Section 10.1.

Now, suppose e 
 1. Let’s place the focus F at the origin and the directrix paral-
lel to the y-axis and d units to the right. In this case the directrix has equation x � d
and is perpendicular to the polar axis. If the point P has polar coordinates , we
see from Figure 1 that and . Thus, the condition

, or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates,
we get

Expand and simplify

Divide by 1 � e2 and complete
the square

If e � 1, then dividing both sides of this equation by gives an
equation of the form

where

h �
�e2d

1 � e2   a2 �
e2d 211 � e2 2 2   b2 �

e2d 2

1 � e2

1x � h 2 2
a2 �

y2

b2 � 1

e2d 2/ 11 � e2 2 2
a x �

e2d

1 � e2 b 2

�
y2

1 � e2 �
e2d 211 � e2 2 2

 11 � e2 2x2 � 2de2x � y2 � e2d 2

 x2 � y2 � e21d � x 2 2
r � e1d � r cos u 2d1P, F 2 � e # d1P, / 2d1P, F 2 /d1P, / 2 � e

d1P, / 2 � d � r cos ud1P, F 2 � r
1r, u 2

d1P, F 2 � d1P, / 2

r ç ¨

y

x
F

� (directrix)

x=d

P

¨

r

d

Figure 1
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EXAMPLE
Identify and graph conic section.

is a parabola.

=
2

1 + cos au -
p

6
b

r =
6

3 + 3 cos au -
p

6
b

IN-CLASS MATERIALS

Notice the advantages of working with conics in polar form. They are easier to rotate, for example. It is
also easier to identify a conic as an ellipse, parabola, or hyperbola by inspection. After some practice,
we can even look at such an equation and have a good idea of what the graph will look like, again by
inspection.

This is the equation of an ellipse with center . In Section 10.2 we found that the
foci of an ellipse are a distance c from the center, where c2 � a2 � b2. In our case

Thus, , which confirms that the focus defined in the 
theorem is the same as the focus defined in Section 10.2. It also follows that

If e � 1, a similar proof shows that the conic is a hyperbola with e � c/a, where
c 2 � a 2 � b 2. ■

In the proof we saw that the polar equation of the conic in Figure 1 is
. Solving for r, we get

If the directrix is chosen to be to the left of the focus , then we get the 
equation . If the directrix is parallel to the polar axis

, then we get sin u instead of cos u in the equation. These obser-
vations are summarized in the following box and in Figure 2.
1y � d or y � �d 2

r � ed/ 11 � e cos u 2
1x � �d 2

r �
ed

1 � e cos u

r � e1d � r cos u 2

c � e2d/ 11 � e2 2 � �h

c2 � a2 � b2 �
e4d 2

11 � e2 2 2

1h,  0 2

796 CHAPTER 10 Analytic Geometry

(a)  r= ed
1+e ç ¨ (b)  r= ed

1-e ç ¨ (c)  r= ed
1+e ß ¨ (d)  r= ed

1-e ß ¨

y

xF

x=d
directrix

axis
F

x=_d
directrix

y

xaxis F

y=d             directrix
y

x

axis y=_d           directrix

F

y

x

axis

Figure 2

The form of the polar equation of a conic indicates the location of the directrix.

Polar Equations of Conics

A polar equation of the form

represents a conic with one focus at the origin and with eccentricity e. The
conic is

1. a parabola if e � 1

2. an ellipse if 0 � e � 1

3. a hyperbola if e � 1

r �
ed

1 � e cos u
  or  r �

ed

1 � e sin u

e �
c
a

_4

_2

2

4

_4 _2 2 4 x

y

0
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DRILL QUESTION

Identify the conic:

Answer

It is a hyperbola.

ALTERNATE EXAMPLE 1
Find a polar equation for the
parabola that has its focus at the
origin and whose directrix is the
line 

ANSWER

ALTERNATE EXAMPLE 2 
A conic is given by the polar
equation: 

Identify the conic. If the conic is
an ellipse or a hyperbola, find the
distances a and b. If the conic is a
parabola, find the focus and the
equation of the directrix. 

ANSWER
Ellipse, 15, 11.18

EXAMPLE
Identify and graph conic
section:

is a hyperbola, rotated 30º from
standard position, with
eccentricity 3.

r =
6

1 + 3 cos au -
p

6
b

r =
25

3 - 2 cos u 

r =
5

1 - sin (u)

y = -5.

r =
6

1 ; 3 cos u

_4

_2

2

4

_4 _2 2 4 x

y

0

To graph the polar equation of a conic, we first determine the location of the di-
rectrix from the form of the equation. The four cases that arise are shown in Figure 2.
(The figure shows only the parts of the graphs that are close to the focus at the origin.
The shape of the rest of the graph depends on whether the equation represents 
a parabola, an ellipse, or a hyperbola.) The axis of a conic is perpendicular to the 
directrix—specifically we have the following:

1. For a parabola, the axis of symmetry is perpendicular to the directrix.

2. For an ellipse, the major axis is perpendicular to the directrix.

3. For a hyperbola, the transverse axis is perpendicular to the directrix.

Example 1 Finding a Polar Equation 

for a Conic

Find a polar equation for the parabola that has its focus at the origin and whose 
directrix is the line y � �6.

Solution Using e � 1 and d � 6, and using part (d) of Figure 2, we see that the
polar equation of the parabola is

■

To graph a polar conic, it is helpful to plot the points for which u � 0, p/2, p,
and 3p/2. Using these points and a knowledge of the type of conic (which we obtain
from the eccentricity), we can easily get a rough idea of the shape and location of the
graph.

Example 2 Identifying and Sketching 

a Conic

A conic is given by the polar equation

(a) Show that the conic is an ellipse and sketch the graph.

(b) Find the center of the ellipse, and the lengths of the major and minor axes.

Solution

(a) Dividing the numerator and denominator by 3, we have

Since , the equation represents an ellipse. For a rough graph we plot
the points for which u � 0, p/2, p, 3p/2 (see Figure 3 on the next page).

(b) Comparing the equation to those in Figure 2, we see that the major axis is 
horizontal. Thus, the endpoints of the major axis are and . V212,  p 2V1110,  0 2

e � 2
3 � 1

r �
10
3

1 � 2
3 cos u

r �
10

3 � 2 cos u

r �
6

1 � sin u

SECTION 10.6 Polar Equations of Conics 797
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EXAMPLE
Identify and graph conic section.

is an ellipse.

ALTERNATE EXAMPLE 3
A conic is given by the polar
equation:

Identify the conic. If the conic is
an ellipse or a hyperbola, find the
distances a and b. If the conic is a
parabola, find the focus and the
equation of the directrix. 

ANSWER
Hyperbola, 3, 5.20

r =
36

4 + 8 sin u

=
1

1 +
1

2
 cos au -

p

6
b

r =
6

6 + 3 cos au -
p

6
b

The distance between the vertices V1 and V2 is 12; thus, the length of the ma-
jor axis is 2a � 12, and so a � 6. To determine the length of the minor axis, we
need to find b. From page 796 we have , so

Thus, , and the length of the minor axis is
. ■

Example 3 Identifying and Sketching a Conic

A conic is given by the polar equation

(a) Show that the conic is a hyperbola and sketch the graph.

(b) Find the center of the hyperbola and sketch the asymptotes.

Solution

(a) Dividing the numerator and denominator by 2, we have

Since e � 2 � 1, the equation represents a hyperbola. For a rough graph we
plot the points for which u � 0, p/2, p, 3p/2 (see Figure 4).

(b) Comparing the equation to those in Figure 2, we see that the transverse axis is
vertical. Thus, the endpoints of the transverse axis (the vertices of the hyper-
bola) are and . So the center of the 
hyperbola is , the midpoint of V1V2.

To sketch the asymptotes, we need to find a and b. The distance between V1

and V2 is 4; thus, the length of the transverse axis is 2a � 4, and so a � 2. To
find b, we first find c. From page 796 we have c � ae � 2 �2 � 4, so

b2 � c2 � a2 � 42 � 22 � 12

C14,  p/2 2
V21�6,  3p/2 2 � V216,  p/2 2V112,  p/2 2

r �
6

1 � 2 sin u

r �
12

2 � 4 sin u

2b � 4 15 � 8.94
b � 120 � 2 15 � 4.47

b2 � a2 � c2 � 62 � 42 � 20

c � ae � 6A23B � 4

798 CHAPTER 10 Analytic Geometry

u r

0 10

p/2
p 2

3p/2 10
3

10
3

00
V⁄VV (10, 0)

VV¤¤VVVV ππ))

focusfocus

2œ∑œœ Å4.47

!! 1010
33

!! 1010
33

π
4

3π
4

5π
4

7π
4

Figure 3

r �
10

3 � 2 cos u

u r

0 6
p/2 2
p 6

3p/2 �6

(6, 0)
focus

0(6, π)

V¤ !_6,      @3π
2

V⁄ !2,    @π
2

π
6

5π
6

5π
4

7π
4

Figure 4

r �
12

2 � 4 sin u

So the center of the ellipse is at , the midpoint of V1V2.C14,  0 2

_2

_1

1

2

_2 _1 1 x

y

0
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ALTERNATE EXAMPLE 4
Suppose the ellipse

is rotated

through the angle about the

origin. Find a polar equation for
the resulting ellipse. 

ANSWER

IN-CLASS MATERIALS

It is good to go through an exam-
ple like Example 4 with the class,
having them use their calculators
to vary the eccentricity e of a
given conic section, and see how
it affects the graph. Most graphic
calculators have a mode for graph-
ing polar functions as well.

r =
8

4 - 3 cos au -  
p

4
b

p

4

r =
8

4 - 3 cos u

IN-CLASS MATERIALS

We have called a circle a “degenerate ellipse.” The text notes that when e is close to zero, the resultant
ellipse is close to circular. Examine the equation of a conic when e = 0 to see how it is undefined for
that value of e.

Thus, . Knowing a and b allows us to sketch the cen-
tral box, from which we obtain the asymptotes shown in Figure 4. ■

When we rotate conic sections, it is much more convenient to use polar equations
than Cartesian equations. We use the fact that the graph of is the graph
of rotated counterclockwise about the origin through an angle a (see 
Exercise 55 in Section 8.2).

Example 4 Rotating an Ellipse

Suppose the ellipse of Example 2 is rotated through an angle p/4 about the origin.
Find a polar equation for the resulting ellipse, and draw its graph.

Solution We get the equation of the rotated ellipse by replacing u with u � p/4
in the equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse
has been rotated about the focus at the origin. ■

In Figure 6 we use a computer to sketch a number of conics to demonstrate the ef-
fect of varying the eccentricity e. Notice that when e is close to 0, the ellipse is nearly
circular and becomes more elongated as e increases. When e � 1, of course, the conic
is a parabola. As e increases beyond 1, the conic is an ever steeper hyperbola.

Figure 6

10.6 Exercises

e=0.86e=0.5 e=1 e=1.4 e=4

r �
10

3 � 2 cos1u � p/4 2

r � f1u 2 r � f1u � a 2
b � 112 � 2 13 � 3.46

SECTION 10.6 Polar Equations of Conics 799

11

_6

_5 15

r= 10
3-2 ç(¨ _ π/4)

r= 10
3-2 ç ¨

Figure 5

1–8 ■ Write a polar equation of a conic that has its focus at the
origin and satisfies the given conditions.

1. Ellipse, eccentricity , directrix x � 3

2. Hyperbola, eccentricity , directrix x � �3

3. Parabola, directrix y � 2

4
3

2
3

4. Ellipse, eccentricity , directrix y � �4

5. Hyperbola, eccentricity 4, directrix r � 5 sec u

6. Ellipse, eccentricity 0.6, directrix r � 2 csc u

7. Parabola, vertex at 

8. Ellipse, eccentricity 0.4, vertex at 12,  0 215,  p/2 2
1
2
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9–14 ■ Match the polar equations with the graphs labeled 
I–VI. Give reasons for your answer.

9. 10. r �
2

2 � cos u
r �

6

1 � cos u

11. 12.

13. 14. r �
12

2 � 3 cos u
r �

12

3 � 2 sin u

r �
5

3 � 3 sin u
r �

3

1 � 2 sin u

π
2

3π
2

π
1

I

IV

II

V

III

VI

1

π
2

3π
2

π

π
2

3π
2

π
1

π
2

3π
2

π
5 10

π
2

π

3π
2

7 15

π
2

3π
2

π
1

r
r

r r

r

r

15–22 ■ (a) Find the eccentricity and identify the conic. 
(b) Sketch the conic and label the vertices.

15. 16.

17. 18.

19. 20.

21. 22.

23. (a) Find the eccentricity and directrix of the conic
and graph the conic and its 

directrix.

(b) If this conic is rotated about the origin through an angle
p/3, write the resulting equation and draw its graph.

r � 1/ 14 � 3 cos u 2
r �

8

3 � cos u
r �

7

2 � 5 sin u

r �
5

2 � 3 sin u
r �

6

2 � sin u

r �
10

3 � 2 sin u
r �

2

1 � cos u

r �
8

3 � 3 cos u
r �

4

1 � 3 cos u

24. Graph the parabola and its directrix.
Also graph the curve obtained by rotating this parabola
about its focus through an angle p/6.

25. Graph the conics with e � 0.4, 0.6, 0.8,
and 1.0 on a common screen. How does the value of e affect
the shape of the curve?

26. (a) Graph the conics 

for e � 1 and various values of d. How does the value
of d affect the shape of the conic?

(b) Graph these conics for d � 1 and various values of e.
How does the value of e affect the shape of the conic?

r �
ed11 � e sin u 2

r � e/ 11 � e cos u 2
r � 5/ 12 � 2 sin u 2
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CHAPTER 10 Analytic Geometry 801

SUGGESTED TIME 

AND EMPHASIS 

1 class. 
Recommended material.

POINTS TO STRESS

1. Definition of parametric
equations.

2. Sketching parametric curves.
3. Eliminating the parameter.
4. Polar equations in parametric

form.

SAMPLE QUESTION

Text Question

What is the difference between a function and a parametric curve?

Answer

Many answers are possible. The graph of a function can be made into a parametric curve, but not
necessarily the other way around. A function has to pass the vertical line test and a parametric curve
does not.

SECTION 10.7 Plane Curves and Parametric Equations 801

Applications

27. Orbit of the Earth The polar equation of an ellipse can
be expressed in terms of its eccentricity e and the length a
of its major axis.

(a) Show that the polar equation of an ellipse with directrix
x � �d can be written in the form

[Hint: Use the relation given in the
proof on page 795.]

(b) Find an approximate polar equation for the elliptical 
orbit of the earth around the sun (at one focus) given
that the eccentricity is about 0.017 and the length of the
major axis is about 2.99 	 108 km.

28. Perihelion and Aphelion The planets move around the
sun in elliptical orbits with the sun at one focus. The posi-
tions of a planet that are closest to, and farthest from, the
sun are called its perihelion and aphelion, respectively.

aphelionperihelion
sun

planet

¨

r

a2 � e2d 2/ 11 � e2 2 2r �
a11 � e2 2

1 � e cos u

(a) Use Exercise 27(a) to show that the perihelion distance
from a planet to the sun is and the aphelion
distance is .

(b) Use the data of Exercise 27(b) to find the distances
from the earth to the sun at perihelion and at aphelion.

29. Orbit of Pluto The distance from the planet Pluto to the
sun is 4.43 	 109 km at perihelion and 7.37 	 109 km at
aphelion. Use Exercise 28 to find the eccentricity of 
Pluto’s orbit.

Discovery • Discussion

30. Distance to a Focus When we found polar equations for
the conics, we placed one focus at the pole. It’s easy to find
the distance from that focus to any point on the conic. 
Explain how the polar equation gives us this distance.

31. Polar Equations of Orbits When a satellite orbits the
earth, its path is an ellipse with one focus at the center of the
earth. Why do scientists use polar (rather than rectangular)
coordinates to track the position of satellites? [Hint: Your
answer to Exercise 30 is relevant here.]

a11 � e 2 a11 � e 2

10.7 Plane Curves and Parametric Equations

So far we’ve described a curve by giving an equation (in rectangular or polar coordi-
nates) that the coordinates of all the points on the curve must satisfy. But not all
curves in the plane can be described in this way. In this section we study parametric
equations, which are a general method for describing any curve.

Plane Curves

We can think of a curve as the path of a point moving in the plane; the x- and 
y-coordinates of the point are then functions of time. This idea leads to the following
definition.

Plane Curves and Parametric Equations

If f and g are functions defined on an interval I, then the set of points
is a plane curve. The equations

where t � I, are parametric equations for the curve, with parameter t.

x � f 1t 2   y � g1t 21f 1t 2 , g1t 22
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ALTERNATE EXAMPLE 1
For the curve defined by the
parametric equations x = t2 - 7t
and y = t - 3 eliminate the
parameter t and obtain a single
equation for the curve in variables
x and y. 

ANSWER
x = y2 - y - 12t

Example 1 Sketching a Plane Curve

Sketch the curve defined by the parametric equations

Solution For every value of t, we get a point on the curve. For example, if t � 0,
then x � 0 and y � �1, so the corresponding point is . In Figure 1 we plot
the points determined by the values of t shown in the following table.

Figure 1

As t increases, a particle whose position is given by the parametric equations moves
along the curve in the direction of the arrows. ■

If we replace t by �t in Example 1, we obtain the parametric equations

The graph of these parametric equations (see Figure 2) is the same as the curve in Fig-
ure 1, but traced out in the opposite direction. On the other hand, if we replace t by 2t
in Example 1, we obtain the parametric equations

The graph of these parametric equations (see Figure 3) is again the same, but is traced
out “twice as fast.” Thus, a parametrization contains more information than just the
shape of the curve; it also indicates how the curve is being traced out.

Figure 2 Figure 3

x � t 2 � 3t, y � �t � 1 x � 4t 2 � 6t, y � 2t � 1

t = −1

t = 0

t = 2

t = 1

y

x
1

5 10

t = 2

t = −5

t = 1
t = 0

t = −4
t = −3

t = −2

t = −1

y

x
1

5 10

x � 4t2 � 6t   y � 2t � 1

x � t2 � 3t   y � �t � 1

y

x
1

5 10

t = −2

t = 5

t = −1

t = 4
t = 3

t = 2

t = 1

t = 0

1x, y 2 10, �1 2
x � t2 � 3t   y � t � 1

802 CHAPTER 10 Analytic Geometry

t x y

�2 10 �3
�1 4 �2

0 0 �1
1 �2 0
2 �2 1
3 0 2
4 4 3
5 10 4

Maria Gaetana Agnesi (1718–
1799) is famous for having written
Instituzioni Analitiche, considered
to be the first calculus textbook.

Maria was born into a wealthy
family in Milan, Italy, the oldest
of 21 children. She was a child
prodigy, mastering many languages
at an early age, including Latin,
Greek, and Hebrew.At the age of 20
she published a series of essays on
philosophy and natural science.Af-
ter Maria’s mother died, she took
on the task of educating her broth-
ers. In 1748 Agnesi published her
famous textbook, which she origi-
nally wrote as a text for tutoring her
brothers. The book compiled and
explained the mathematical knowl-
edge of the day. It contains many
carefully chosen examples, one of
which is the curve now known as
the “witch of Agnesi” (see page
809). One review calls her book an
“exposition by examples rather
than by theory.” The book gained
Agnesi immediate recognition.
Pope Benedict XIV appointed her
to a position at the University of
Bologna, writing “we have had the
idea that you should be awarded the
well-known chair of mathematics,
by which it comes of itself that you
should not thank us but we you.”
This appointment was an extremely
high honor for a woman, since very
few women then were even allowed

(continued)
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CHAPTER 10 Analytic Geometry 803

DRILL QUESTION

Sketch the parametric curve
x(t) = sin t y(t) = t2, 

Is the point on this curve?

Answer

is not on the curve.

ALTERNATE EXAMPLE 3
Eliminate the parameter t to
obtain a single equation for the
curve x = 5 cos t, y = 5 sin t in
the variables x and y. 

ANSWER

ALTERNATE EXAMPLE 4
For the graph of a curve defined
by the parametric equations 
x = sin t and y = 7 - cos 2t find
a single equation and its domain.

ANSWER 
y = 6 + x2, x H 3 -1, 14 

x2 + y2 = 25

a1, 
p

4
b

a1, 
p

4
b

0 … t … p.

IN-CLASS MATERIALS

Give an example of a curve such as x(t) = cos (et), y(t) = sin . This curve essentially fills the square
in that the curve gets arbitrarily close to any point in the square. (It is not what

mathematicians call a “space filling curve” because it does not actually hit every point in the square.) It
can be simulated using a graphing calculator with the approximations and . The
range should be sufficient to convey this property to the students. Next, describe the family
of functions x(t) = a cos (et), y(t) = b sin If the students are following well, perhaps consider the
family x(t) = cos (at), y(t) = sin . The students might be tempted to conclude that all these curves
behave the same way, but they do not for some values of a, such as .a = 213

(13t)
(13t). 

0 … t … 200
23 L 1.7321e L 2.7183

-1 … x … 1, -1 … y … 1
(13t)

Eliminating the Parameter

Often a curve given by parametric equations can also be represented by a single rect-
angular equation in x and y. The process of finding this equation is called eliminating
the parameter. One way to do this is to solve for t in one equation, then substitute into
the other.

Example 2 Eliminating the Parameter

Eliminate the parameter in the parametric equations of Example 1.

Solution First we solve for t in the simpler equation, then we substitute into the
other equation. From the equation y � t � 1, we get t � y � 1. Substituting into
the equation for x, we get

Thus, the curve in Example 1 has the rectangular equation x � y 2 � y � 2, so it is a
parabola. ■

Eliminating the parameter often helps us identify the shape of a curve, as we see
in the next two examples.

Example 3 Eliminating the Parameter

Describe and graph the curve represented by the parametric equations

Solution To identify the curve, we eliminate the parameter. Since 
cos2 t � sin2 t � 1 and since x � cos t and y � sin t for every point on 
the curve, we have

This means that all points on the curve satisfy the equation x 2 � y 2 � 1, so the
graph is a circle of radius 1 centered at the origin. As t increases from 0 to 2p, the
point given by the parametric equations starts at and moves counterclockwise
once around the circle, as shown in Figure 4. Notice that the parameter t can be 
interpreted as the angle shown in the figure. ■

Example 4 Sketching a Parametric Curve

Eliminate the parameter and sketch the graph of the parametric equations

Solution To eliminate the parameter, we first use the trigonometric identity 
cos2 t � 1 � sin2 t to change the second equation:

Now we can substitute sin t � x from the first equation to get

y � 1 � x2

y � 2 � cos2t � 2 � 11 � sin2t 2 � 1 � sin2t

x � sin t   y � 2 � cos2t

11, 0 2
x2 � y2 � 1cos t 2 2 � 1sin t 2 2 � 1

1x, y 2
x � cos t   y � sin t   0 � t � 2p

x � t2 � 3t � 1y � 1 2 2 � 31y � 1 2 � y2 � y � 2

SECTION 10.7 Plane Curves and Parametric Equations 803

3π
2t=

π
2t=

0 x
t

t=0

(1, 0)

(ç t, ß t)

t=2π

t=π

y

Figure 4

to attend university. Just two years
later, Agnesi’s father died and she
left mathematics completely. She
became a nun and devoted the rest
of her life and her wealth to caring
for sick and dying women, herself
dying in poverty at a poorhouse of
which she had once been director.

0

2

4

6
8

10

0.2 0.4 0.6 0.8 1 x

y
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ALTERNATE EXAMPLE 5
Find a single equation for the
curve in the variables x and y for
the line of slope 9 that passes
through the point (4, 36). 

ANSWER
y = 9x

IN-CLASS MATERIALS

Discuss the process of going from a parametric curve to a relation between x and y. The
figure at right is meant to help students see the way that parametrized curves are sketched
out over time. First sketch (x (t), y (t)), starting at the initial point (the origin), and moving
up and to the right. (Try to keep your speed constant.) Stop when the cycle is about to
repeat. Then, to the right of the figure, graph the motion in the y-direction only. Then,
below the figure, graph the motion in the x-direction. That graph is sideways because the 
x-axis is horizontal.

and so the point moves along the parabola y � 1 � x 2. However, since 
�1 � sin t � 1, we have �1 � x � 1, so the parametric equations represent only
the part of the parabola between x � �1 and x � 1. Since sin t is periodic, the point

moves back and forth infinitely often along the parabola
between the points and as shown in Figure 5. ■

Finding Parametric Equations for a Curve

It is often possible to find parametric equations for a curve by using some geometric
properties that define the curve, as in the next two examples.

Example 5 Finding Parametric Equations for a Graph

Find parametric equations for the line of slope 3 that passes through the point .

Solution Let’s start at the point and move up and to the right along this
line. Because the line has slope 3, for every 1 unit we move to the right, we must
move up 3 units. In other words, if we increase the x-coordinate by t units, we must
correspondingly increase the y-coordinate by 3t units. This leads to the parametric
equations

To confirm that these equations give the desired line, we eliminate the parameter.
We solve for t in the first equation and substitute into the second to get

Thus, the slope-intercept form of the equation of this line is y � 3x, which is a 
line of slope 3 that does pass through as required. The graph is shown in 
Figure 6. ■

Example 6 Parametric Equations for the Cycloid

As a circle rolls along a straight line, the curve traced out by a fixed point P on the
circumference of the circle is called a cycloid (see Figure 7). If the circle has radius
a and rolls along the x-axis, with one position of the point P being at the origin, find
parametric equations for the cycloid.

Figure 7

Solution Figure 8 shows the circle and the point P after the circle has rolled
through an angle u (in radians). The distance that the circle has rolled must
be the same as the length of the arc PT, which, by the arc length formula, is au (see
Section 6.1). This means that the center of the circle is .C1au, a 2d1O, T 2

P

P

P

12, 6 2
y � 6 � 31x � 2 2 � 3x

x � 2 � t   y � 6 � 3t

12, 6 2 12, 6 2

11, 2 21�1, 2 21x, y 2 � 1sin t, 2 � cos2t 2
1x, y 2

804 CHAPTER 10 Analytic Geometry

y

x
0

6 t

3t

2

Figure 6

x0

y
(1, 2)(_1, 2)

Figure 5

y

x t

y

x

t
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EXAMPLE
Construction of an ellipse with
center (-1, -2) and axis lengths 
2 and 3: We start with the circle 
x = cos u, y = sin u. We stretch it
into shape: x = 2 cos u, y = 3 sin u.
Then we move it into position: 
x = 2cos u - 1, y = 3 sin u - 2.

ALTERNATE EXAMPLE 7
Use a graphing device to draw
the following parametric curves.
Compare the two curves.

(a)

(b)

ANSWERS

The first curve is a circle. The
second one stretches the x- and 
y-coordinates by different factors,
resulting in an ellipse.

 y = 4 sin t
 x = 2 cos t

 y =  sin t
 x =  cos t

IN-CLASS MATERIALS

Show how reversing the functions x(t) and y(t) yields the inverse of a given relation. For example,

is the sine function, so is the general arcsine function. Display an inverse 

for f (x) = x3 + x + 2 graphically using parametric equations. Explain the difficulties with the algebraic
approach.

e x(t) = sin t

y(t) = t
e x(t) = t

y(t) = sin t

1

10

-1

-1

4

20

-4

-2

Let the coordinates of P be . Then from Figure 8 (which illustrates the case
0 � u � p/2), we see that

so parametric equations for the cycloid are

■

The cycloid has a number of interesting physical properties. It is the “curve of
quickest descent” in the following sense. Let’s choose two points P and Q that are not
directly above each other, and join them with a wire. Suppose we allow a bead to slide
down the wire under the influence of gravity (ignoring friction). Of all possible
shapes that the wire can be bent into, the bead will slide from P to Q the fastest when
the shape is half of an arch of an inverted cycloid (see Figure 9). The cycloid is also
the “curve of equal descent” in the sense that no matter where we place a bead B on
a cycloid-shaped wire, it takes the same time to slide to the bottom (see Figure 10).
These rather surprising properties of the cycloid were proved (using calculus) in the
17th century by several mathematicians and physicists, including Johann Bernoulli,
Blaise Pascal, and Christiaan Huygens.

Figure 9 Figure 10

Using Graphing Devices to Graph Parametric Curves

Most graphing calculators and computer graphing programs can be used to graph
parametric equations. Such devices are particularly useful when sketching compli-
cated curves like the one shown in Figure 11.

Example 7 Graphing Parametric Curves

Use a graphing device to draw the following parametric curves. Discuss their simi-
larities and differences.

(a) x � sin 2t (b) x � sin 3t
y � 2 cos t y � 2 cos t

Solution In both parts (a) and (b), the graph will lie inside the rectangle given 
by �1 � x � 1, �2 � y � 2, since both the sine and the cosine of any number will
be between �1 and 1. Thus, we may use the viewing rectangle by

.3�2.5, 2.5 4 3�1.5, 1.5 4

B

B

B

P

Q
cycloid

x � a1u � sin u 2   y � a11 � cos u 2
 y � d1T, C 2 � d1Q, C 2 � a � a cos u � a11 � cos u 2 x � d1O, T 2 � d1P, Q 2 � au � a sin u � a1u � sin u 2

1x, y 2
SECTION 10.7 Plane Curves and Parametric Equations 805

8

_8

_6.5 6.5

Figure 11

x � t � 2 sin 2t, y � t � 2 cos 5t

P

x0

y

T

C (a¨, a)a ¨

x
y

a¨

Q

Figure 8
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ALTERNATE EXAMPLE 8a
Express the equation in parametric
form: 

ANSWER

y = 3 ln (t) # sin (t)

x = 3 ln (t) # cos (t),

r = 3 ln u

IN-CLASS MATERIALS

Have the students get into groups, and have each group try to come up with the most interesting looking parametric curve. After displaying their
best ones, perhaps show them the following examples:

(a) Since 2 cos t is periodic with period 2p (see Section 5.3), and since sin 2t has
period p, letting t vary over the interval 0 � t � 2p gives us the complete
graph, which is shown in Figure 12(a).

(b) Again, letting t take on values between 0 and 2p gives the complete graph
shown in Figure 12(b).

Both graphs are closed curves, which means they form loops with the same
starting and ending point; also, both graphs cross over themselves. However, the
graph in Figure 12(a) has two loops, like a figure eight, whereas the graph in
Figure 12(b) has three loops. ■

The curves graphed in Example 7 are called Lissajous figures. A Lissajous figure
is the graph of a pair of parametric equations of the form

where A, B, v1, and v2 are real constants. Since sin v1t and cos v2t are both between
�1 and 1, a Lissajous figure will lie inside the rectangle determined by �A � x � A,
�B � y � B. This fact can be used to choose a viewing rectangle when graphing a
Lissajous figure, as in Example 7.

Recall from Section 8.1 that rectangular coordinates and polar coordinates
are related by the equations x � r cos u, y � r sin u. Thus, we can graph the 

polar equation by changing it to parametric form as follows:

Since 

Replacing u by the standard parametric variable t, we have the following result.

 y � r sin u � f 1u 2  sin u

r � f 1u 2 x � r cos u � f 1u 2  cos u

r � f1u 21r, u 2 1x, y 2

x � A sin v1t   y � B cos v2t

806 CHAPTER 10 Analytic Geometry

(a)  x=ß 2t, y=2 ç t

2.5

_2.5

_1.5 1.5

(b)  x=ß 3t, y=2 ç t

2.5

_2.5

_1.5 1.5

Figure 12

Polar Equations in Parametric Form

The graph of the polar equation is the same as the graph of the 
parametric equations

x � f 1t 2  cos t   y � f 1t 2  sin t

r � f 1u 2

Example 8 Parametric Form of a Polar Equation

Consider the polar equation r � u, 1 � u � 10p.

(a) Express the equation in parametric form.

(b) Draw a graph of the parametric equations from part (a).

Solution

(a) The given polar equation is equivalent to the parametric equations

(b) Since 10p� 31.42, we use the viewing rectangle by ,
and we let t vary from 1 to 10p. The resulting graph shown in Figure 13 is 
a spiral. ■

3�32, 32 43�32, 32 4x � t cos t   y � t sin t

32

_32

_32 32

Figure 13

x � t cos t, y � t sin t
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SECTION 10.7 Plane Curves and Parametric Equations 807

1–22 ■ A pair of parametric equations is given.

(a) Sketch the curve represented by the parametric equations.

(b) Find a rectangular-coordinate equation for the curve by
eliminating the parameter.

1. x � 2t, y � t � 6

2. x � 6t � 4, y � 3t, t � 0

3. x � t 2, y � t � 2, 2 � t � 4

4. x � 2t � 1,

5. , y � 1 � t

6. x � t 2, y � t 4 � 1

7.

8.

9. x � 4t 2, y � 8t 3

10.

11. x � 2 sin t, y � 2 cos t, 0 � t � p

12. x � 2 cos t, y � 3 sin t, 0 � t � 2p

13. x � sin2 t, y � sin4 t 14. x � sin2 t, y � cos t

15. x � cos t, y � cos 2t

16. x � cos 2t, y � sin 2t

17 x � sec t, y � tan t, 0 � t � p/2

18 x � cot t, y � csc t, 0 � t � p

19 x � tan t, y � cot t, 0 � t � p/2

20. x � sec t, y � tan2t, 0 � t � p/2

21. x � cos2t, y � sin2t

22. x � cos3t, y � sin3t, 0 � t � 2p

23–26 ■ Find parametric equations for the line with the given
properties.

23. Slope , passing through 

24. Slope �2, passing through 

25. Passing through and 

26. Passing through and the origin

27. Find parametric equations for the circle x 2 � y 2 � a 2.

28. Find parametric equations for the ellipse

x2

a2 �
y2

b2 � 1

112, 7 2 17, 8 216, 7 2 1�10, �20 214, �1 21
2

x � 0 t 0 , y � 0 1 � 0 t 0 0
x � t � 1, y �

t

t � 1

x �
1

t
, y � t � 1

x � 1t

y � At � 1
2B2

29. Show by eliminating the parameter u that the following
parametric equations represent a hyperbola:

30. Show that the following parametric equations represent a
part of the hyperbola of Exercise 29:

31–34 ■ Sketch the curve given by the parametric equations.

31. x � t cos t, y � t sin t, t � 0

32. x � sin t, y � sin 2t

33.

34. x � cot t, y � 2 sin2 t, 0 � t � p

35. If a projectile is fired with an initial speed of √0 ft/s at 
an angle a above the horizontal, then its position after 
t seconds is given by the parametric equations

(where x and y are measured in feet). Show that the path of
the projectile is a parabola by eliminating the parameter t.

36. Referring to Exercise 35, suppose a gun fires a bullet into
the air with an initial speed of 2048 ft/s at an angle of 30� to
the horizontal.

(a) After how many seconds will the bullet hit the ground?

(b) How far from the gun will the bullet hit the ground?

(c) What is the maximum height attained by the bullet?

37–42 ■ Use a graphing device to draw the curve represented
by the parametric equations.

37. x � sin t, y � 2 cos 3t

38. x � 2 sin t, y � cos 4t

39. x � 3 sin 5t, y � 5 cos 3t

40. x � sin 4t, y � cos 3t

41.

42. x � 2 cos t � cos 2t, y � 2 sin t � sin 2t

43–46 ■ A polar equation is given.

(a) Express the polar equation in parametric form.

(b) Use a graphing device to graph the parametric equations
you found in part (a).

43. r � 2u/12, 0 � u � 4p 44. r � sin u � 2 cos u

45. 46. r � 2sin ur �
4

2 � cos u

x � sin1cos t 2 , y � cos1t3/2 2 , 0 � t � 2p

x � 1√0 cos a 2 t   y � 1√0 sin a 2 t � 16t2

x �
3t

1 � t3 , y �
3t2

1 � t3

x � a1t   y � b2t � 1

x � a tan u   y � b sec u

10.7 Exercises
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47–50 ■ Match the parametric equations with the graphs 
labeled I–IV. Give reasons for your answers.

47. x � t 3 � 2t, y � t 2 � t

48. x � sin 3t, y � sin 4t

49. x � t � sin 2t, y � t � sin 3t

50.

51. (a) In Example 6 suppose the point P that traces out the
curve lies not on the edge of the circle, but rather at a
fixed point inside the rim, at a distance b from the center
(with b � a). The curve traced out by P is called a cur-
tate cycloid (or trochoid). Show that parametric equa-
tions for the curtate cycloid are

(b) Sketch the graph using a � 3 and b � 2.

52. (a) In Exercise 51 if the point P lies outside the circle 
at a distance b from the center (with b � a), then the
curve traced out by P is called a prolate cycloid. 
Show that parametric equations for the prolate 
cycloid are the same as the equations for the curtate 
cycloid.

(b) Sketch the graph for the case where a � 1 and b � 2.

53. A circle C of radius b rolls on the inside of a larger circle of
radius a centered at the origin. Let P be a fixed point on the
smaller circle, with initial position at the point as1a, 0 2

x � au � b sin u   y � a � b cos u

0 x

y

0 x

yI II

0 x

y

0 x

yIII IV

x � sin1t � sin t 2 , y � cos1t � cos t 2

shown in the figure. The curve traced out by P is called a
hypocycloid.

(a) Show that parametric equations for the hypocycloid are

(b) If a � 4b, the hypocycloid is called an astroid. Show
that in this case the parametric equations can be 
reduced to

Sketch the curve. Eliminate the parameter to obtain an
equation for the astroid in rectangular coordinates.

54. If the circle C of Exercise 53 rolls on the outside of the
larger circle, the curve traced out by P is called an 
epicycloid. Find parametric equations for the epicycloid.

55. In the figure, the circle of radius a is stationary and, for
every u, the point P is the midpoint of the segment QR. The
curve traced out by P for 0 � u � p is called the longbow
curve. Find parametric equations for this curve.

P

Q

¨
x0

y

a

2a R
y=2a

x � a cos3u   y � a sin3u

 y � 1a � b 2  sin u � b sin a a � b

b
  u b

 x � 1a � b 2  cos u � b cos a a � b

b
  u b

b

C

P (a, 0)¨
x0

y
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56. Two circles of radius a and b are centered at the origin, as
shown in the figure. As the angle u increases, the point P
traces out a curve that lies between the circles.

(a) Find parametric equations for the curve, using u as the
parameter.

(b) Graph the curve using a graphing device, with a � 3
and b � 2.

(c) Eliminate the parameter and identify the curve.

57. Two circles of radius a and b are centered at the origin, as
shown in the figure.

(a) Find parametric equations for the curve traced out by
the point P, using the angle u as the parameter. (Note
that the line segment AB is always tangent to the larger
circle.)

(b) Graph the curve using a graphing device, with a � 3
and b � 2.

58. A curve, called a witch of Maria Agnesi, consists of all
points P determined as shown in the figure.

(a) Show that parametric equations for this curve can be
written as

x � 2a cot u   y � 2a sin2u

¨
x0

y

a
b P

A

B

¨
x0

y

a
b P

(b) Graph the curve using a graphing device, with a � 3.

59. Eliminate the parameter u in the parametric equations for
the cycloid (Example 6) to obtain a rectangular coordinate
equation for the section of the curve given by 0 � u � p.

Applications

60. The Rotary Engine The Mazda RX-8 uses an 
unconventional engine (invented by Felix Wankel in 1954)
in which the pistons are replaced by a triangular rotor that
turns in a special housing as shown in the figure. The 
vertices of the rotor maintain contact with the housing at all
times, while the center of the triangle traces out a circle of
radius r, turning the drive shaft. The shape of the housing is
given by the parametric equations below (where R is the 
distance between the vertices and center of the rotor).

(a) Suppose that the drive shaft has radius r � 1. Graph 
the curve given by the parametric equations for the 
following values of R: 0.5, 1, 3, 5.

(b) Which of the four values of R given in part (a) seems to
best model the engine housing illustrated in the figure?

x � r cos 3u � R cos u   y � r sin 3u � R sin u

¨

x0

y

a

y=2a

PA

C
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61. Spiral Path of a Dog A dog is tied to a circular tree 
trunk of radius 1 ft by a long leash. He has managed to wrap
the entire leash around the tree while playing in the yard,
and finds himself at the point in the figure. Seeing a
squirrel, he runs around the tree counterclockwise, keeping
the leash taut while chasing the intruder.

(a) Show that parametric equations for the dog’s path
(called an involute of a circle) are

[Hint: Note that the leash is always tangent to the tree,
so OT is perpendicular to TD.]

(b) Graph the path of the dog for 0 � u � 4p.

Discovery • Discussion

62. More Information in Parametric Equations In this
section we stated that parametric equations contain more 

D

T

O
¨

x

y

1

1

1

x � cos u � u sin u   y � sin u � u cos u

11, 0 2
information than just the shape of a curve. Write a short 
paragraph explaining this statement. Use the following 
example and your answers to parts (a) and (b) below in your 
explanation.

The position of a particle is given by the parametric 
equations

where t represents time. We know that the shape of the path
of the particle is a circle.

(a) How long does it take the particle to go once around the
circle? Find parametric equations if the particle moves
twice as fast around the circle.

(b) Does the particle travel clockwise or counterclockwise
around the circle? Find parametric equations if the 
particle moves in the opposite direction around the
circle.

63. Different Ways of Tracing Out a Curve The curves C,
D, E, and F are defined parametrically as follows, where the
parameter t takes on all real values unless otherwise stated:

(a) Show that the points on all four of these curves satisfy
the same rectangular coordinate equation.

(b) Draw the graph of each curve and explain how the
curves differ from one another.

 F: x � 3t, y � 32t

 E: x � sin t, y � sin2
 t

 D: x � 1t, y � t, t � 0

 C: x � t, y � t2

x � sin t   y � cos t

10 Review

Concept Check

1. (a) Give the geometric definition of a parabola. What are
the focus and directrix of the parabola?

(b) Sketch the parabola x2 � 4py for the case p � 0. Iden-
tify on your diagram the vertex, focus, and directrix.
What happens if p � 0?

(c) Sketch the parabola y2 � 4px, together with its vertex,
focus, and directrix, for the case p � 0. What happens if
p � 0?

2. (a) Give the geometric definition of an ellipse. What are the
foci of the ellipse?

(b) For the ellipse with equation

where a � b � 0, what are the coordinates of the ver-
tices and the foci? What are the major and minor axes?
Illustrate with a graph.

(c) Give an expression for the eccentricity of the ellipse in
part (b).

(d) State the equation of an ellipse with foci on the y-axis.

x2

a2 �
y2

b2 � 1
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3. (a) Give the geometric definition of a hyperbola. What are
the foci of the hyperbola?

(b) For the hyperbola with equation

what are the coordinates of the vertices and foci? 
What are the equations of the asymptotes? What is the
transverse axis? Illustrate with a graph.

(c) State the equation of a hyperbola with foci on the 
y-axis.

(d) What steps would you take to sketch a hyperbola with a
given equation?

4. Suppose h and k are positive numbers. What is the effect on
the graph of an equation in x and y if

(a) x is replaced by x � h? By x � h?

(b) y is replaced by y � k? By y � k?

5. How can you tell whether the following nondegenerate
conic is a parabola, an ellipse, or a hyperbola?

Ax2 � Cy2 � Dx � Ey � F � 0

x2

a2 �
y2

b2 � 1

6. Suppose the x- and y-axes are rotated through an acute angle
f to produce the X- and Y-axes. Write equations that relate
the coordinates and of a point in the xy-plane
and XY-plane, respectively.

7. (a) How do you eliminate the xy-term in this equation?

(b) What is the discriminant of the conic in part (a)? 
How can you use the discriminant to determine 
whether the conic is a parabola, an ellipse, or a 
hyperbola?

8. (a) Write polar equations that represent a conic with 
eccentricity e.

(b) For what values of e is the conic an ellipse? 
A hyperbola? A parabola?

9. A curve is given by the parametric equations
.

(a) How do you sketch the curve?

(b) How do you eliminate the parameter?

x � f 1t 2 , y � g1t 2

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0

1X, Y 21x, y 2

Exercises

1–8 ■ Find the vertex, focus, and directrix of the parabola, and
sketch the graph.

1. y 2 � 4x 2.

3. x 2 � 8y � 0 4. 2x � y 2 � 0

5. x � y 2 � 4y � 2 � 0 6. 2x 2 � 6x � 5y � 10 � 0

7. 8.

9–16 ■ Find the center, vertices, foci, and the lengths of the
major and minor axes of the ellipse, and sketch the graph.

9. 10.

11. x 2 � 4y 2 � 16 12. 9x 2 � 4y 2 � 1

13. 14.

15. 4x 2 � 9y 2 � 36y 16.

17–24 ■ Find the center, vertices, foci, and asymptotes of the
hyperbola, and sketch the graph.

17. 18.

19. x 2 � 2y 2 � 16 20. x 2 � 4y 2 � 16 � 0

x2

49
�

y2

32
� 1� 

x2

9
�

y2

16
� 1

2x2 � y2 � 2 � 41x � y 2
1x � 2 2 2

25
�
1y � 3 2 2

16
� 1

1x � 3 2 2
9

�
y2

16
� 1

x2

49
�

y2

9
� 1

x2

9
�

y2

25
� 1

x2 � 31x � y 21
2 x2 � 2x � 2y � 4

x � 1
12 y2

21. 22.

23. 9y 2 � 18y � x 2 � 6x � 18 24. y 2 � x 2 � 6y

25–30 ■ Find an equation for the conic whose graph is shown.

25.

26.

0 x

y

5

_12
_5

12

0 x

y

2 F(2, 0)

1x � 2 2 2
8

�
1y � 2 2 2

8
� 1

1x � 4 2 2
16

�
y2

16
� 1
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27.

28.

29.

30.

31–42 ■ Determine the type of curve represented by the 
equation. Find the foci and vertices (if any), and sketch the
graph.

31.

32.

33. x 2 � y 2 � 144 � 0

x2

12
�

y2

144
�

y

12

x2

12
� y � 1

0 x

y

1

1 2

0 x

y

2

4

0 x

y

V(4, 4)

4

8

0 x

y

F(0, 5)4

_4

34. x 2 � 6x � 9y 2

35.

36.

37. x � y 2 � 16y

38. 2x 2 � 4 � 4x � y 2

39. 2x 2 � 12x � y 2 � 6y � 26 � 0

40. 36x 2 � 4y 2 � 36x � 8y � 31

41. 9x 2 � 8y 2 � 15x � 8y � 27 � 0

42. x 2 � 4y 2 � 4x � 8

43–50 ■ Find an equation for the conic section with the given
properties.

43. The parabola with focus and directrix y � �1

44. The ellipse with center , foci and ,
and major axis of length 10

45. The hyperbola with vertices and asymptotes

46. The hyperbola with center , foci and
, and vertices and 

47. The ellipse with foci and , and with one 
vertex on the x-axis

48. The parabola with vertex and directrix the y-axis

49. The ellipse with vertices and , and 
passing through the point 

50. The parabola with vertex and horizontal axis of
symmetry, and crossing the y-axis at y � 2

51. The path of the earth around the sun is an ellipse with the
sun at one focus. The ellipse has major axis 186,000,000 mi
and eccentricity 0.017. Find the distance between the earth
and the sun when the earth is (a) closest to the sun and 
(b) farthest from the sun.

52. A ship is located 40 mi from a straight shoreline. LORAN
stations A and B are located on the shoreline, 300 mi apart.
From the LORAN signals, the captain determines that his
ship is 80 mi closer to A than to B. Find the location of the

186,000,000 mi

V1�1, 0 2P11, 8 2 V217, �8 2V117, 12 2V15, 5 2
F211, 3 2F111, 1 2 V212, 2 2V112, 6 2F212, 7 2 F112, 1 2C12, 4 2y � � 

1
2 x

V10, �2 2
F210, 8 2F110, 0 2C10, 4 2F10, 1 2

3x2 � 61x � y 2 � 10

4x2 � y2 � 81x � y 2
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ship. (Place A and B on the y-axis with the x-axis halfway
between them. Find the x- and y-coordinates of the ship.)

53. (a) Draw graphs of the following family of ellipses for 
k � 1, 2, 4, and 8.

(b) Prove that all the ellipses in part (a) have the same foci.

54. (a) Draw graphs of the following family of parabolas for
, 1, 2, and 4.

(b) Find the foci of the parabolas in part (a).

(c) How does the location of the focus change as 
k increases?

55–58 ■ An equation of a conic is given.

(a) Use the discriminant to determine whether the graph of the
equation is a parabola, an ellipse, or a hyperbola.

(b) Use a rotation of axes to eliminate the xy-term.

(c) Sketch the graph.

55. x 2 � 4xy � y 2 � 1

56. 5x 2 � 6xy � 5y 2 � 8x � 8y � 8 � 0

57.

58. 9x 2 � 24xy � 16y 2 � 25

59–62 ■ Use a graphing device to graph the conic. Identify the
type of conic from the graph.

59. 5x 2 � 3y 2 � 60

60. 9x 2 � 12y 2 � 36 � 0

61. 6x � y 2 � 12y � 30

62. 52x 2 � 72xy � 73y 2 � 100

7x2 � 6 13 xy � 13y2 � 4 13 x � 4y � 0

y � kx2

k � 1
2

x2

16 � k2 �
y2

k2 � 1

300 mi

40 mi

A

B

63–66 ■ A polar equation of a conic is given.

(a) Find the eccentricity and identify the conic.

(b) Sketch the conic and label the vertices.

63.

64.

65.

66.

67–70 ■ A pair of parametric equations is given.

(a) Sketch the curve represented by the parametric equations.

(b) Find a rectangular-coordinate equation for the curve by
eliminating the parameter.

67. x � 1 � t 2, y � 1 � t

68. x � t 2 � 1, y � t 2 � 1

69. x � 1 � cos t, y � 1 � sin t, 0 � t � p/2

70.

71–72 ■ Use a graphing device to draw the parametric curve.

71. x � cos 2t, y � sin 3t

72.

73. In the figure the point P is the midpoint of the segment QR
and 0 � u � p/2. Using u as the parameter, find a para-
metric representation for the curve traced out by P.

P

¨
x0

y

1
R

Q

1

x � sin1t � cos 2t 2 , y � cos1t � sin 3t 2

x �
1

t
� 2, y �

2

t2, 0 � t � 2

r �
12

1 � 4 cos u

r �
4

1 � 2 sin u

r �
2

3 � 2 sin u

r �
1

1 � cos u
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10 Test

1. Find the focus and directrix of the parabola x 2 � �12y, and sketch its graph.

2. Find the vertices, foci, and the lengths of the major and minor axes for the ellipse 

. Then sketch its graph.

3. Find the vertices, foci, and asymptotes of the hyperbola . Then sketch its
graph.

4–6 ■ Find an equation for the conic whose graph is shown.

4. 5.

6.

7–9 ■ Sketch the graph of the equation.

7. 16x 2 � 36y 2 � 96x � 36y � 9 � 0

8. 9x 2 � 8y 2 � 36x � 64y � 164

9. 2x � y 2 � 8y � 8 � 0

10. Find an equation for the hyperbola with foci and with asymptotes .

11. Find an equation for the parabola with focus and directrix the x-axis.

12. A parabolic reflector for a car headlight forms a bowl shape that is 6 in. wide at its 
opening and 3 in. deep, as shown in the figure at the left. How far from the vertex should
the filament of the bulb be placed if it is to be located at the focus?

12, 4 2 y � �3
4  
x10, �5 2

0 x

y

1

1 F(4, 0)

2

2

(4, 3)

0 x

y
(_4, 2)

1

_1 0 x

y

y2

9
�

x2

16
� 1

x2

16
�

y2

4
� 1

814 CHAPTER 10 Test

3 in.

6 in.
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13. (a) Use the discriminant to determine whether the graph of this equation is a parabola,
an ellipse, or a hyperbola:

(b) Use rotation of axes to eliminate the xy-term in the equation.

(c) Sketch the graph of the equation.

(d) Find the coordinates of the vertices of this conic (in the xy-coordinate system).

14. (a) Find the polar equation of the conic that has a focus at the origin, eccentricity ,
and directrix x � 2. Sketch the graph.

(b) What type of conic is represented by the following equation? Sketch its graph.

15. (a) Sketch the graph of the parametric curve

(b) Eliminate the parameter u in part (a) to obtain an equation for this curve in 
rectangular coordinates.

x � 3 sin u � 3   y � 2 cos u   0 � u � p

r �
3

2 � sin u

e � 1
2

5x2 � 4xy � 2y2 � 18

CHAPTER 10 Test 815
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Modeling motion is one of the most important ideas in both classical and modern
physics. Much of Isaac Newton’s work dealt with creating a mathematical model for
how objects move and interact—this was the main reason for his invention of calcu-
lus. Albert Einstein developed his Special Theory of Relativity in the early 1900s to
refine Newton’s laws of motion.

In this section we use coordinate geometry to model the motion of a projectile,
such as a ball thrown upward into the air, a bullet fired from a gun, or any other sort
of missile. A similar model was created by Galileo, but we have the advantage of us-
ing our modern mathematical notation to make describing the model much easier
than it was for Galileo!

Parametric Equations for the Path of a Projectile

Suppose that we fire a projectile into the air from ground level, with an initial speed
√0 and at an angle u upward from the ground. The initial velocity of the projectile is a
vector (see Section 8.4) with horizontal component √0 cos u and vertical component
√0 sin u, as shown in Figure 1.

If there were no gravity (and no air resistance), the projectile would just keep 
moving indefinitely at the same speed and in the same direction. Since distance �
speed 	 time, the projectile’s position at time t would therefore be given by the fol-
lowing parametric equations (assuming the origin of our coordinate system is placed
at the initial location of the projectile):

No gravity

But, of course, we know that gravity will pull the projectile back to ground level.
Using calculus, it can be shown that the effect of gravity can be accounted for by 
subtracting from the vertical position of the projectile. In this expression, g is  
the gravitational acceleration: g � 32 ft/s2 � 9.8 m/s2. Thus, we have the following 
parametric equations for the path of the projectile:

With gravity

Example The Path of a Cannonball

Find parametric equations that model the path of a cannonball fired into the air with
an initial speed of 150.0 m/s at a 30� angle of elevation. Sketch the path of the 
cannonball.

x � 1√0 cos u 2 t   y � 1√0 sin u 2 t � 1
2 gt2

1
2 gt2

x � 1√0 cos u 2 t   y � 1√0 sin u 2 t

x

y

0

√‚

¨
√‚ ç ¨

√‚ ß ¨

Figure 1

816

Focus on Modeling

The Path of a Projectile
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Solution Substituting the given initial speed and angle into the general paramet-
ric equations of the path of a projectile, we get

Substitute 
√0 � 150.0, u � 30�

Simplify

This path is graphed in Figure 2.

■

Range of a Projectile

How can we tell where and when the cannonball of the above example hits the
ground? Since ground level corresponds to y � 0, we substitute this value for y and
solve for t.

Set y � 0

Factor

Solve for t

The first solution, t � 0, is the time when the cannon was fired; the second solution
means that the cannonball hits the ground after 15.3 s of flight. To see where this hap-
pens, we substitute this value into the equation for x, the horizontal location of the
cannonball.

The cannonball travels almost 2 km before hitting the ground.
Figure 3 shows the paths of several projectiles, all fired with the same initial speed

but at different angles. From the graphs we see that if the firing angle is too high or
too low, the projectile doesn’t travel very far.

Let’s try to find the optimal firing angle—the angle that shoots the projectile as far
as possible. We’ll go through the same steps as we did in the preceding example, but

¨=85*
¨=75*
¨=60*
¨=45*
¨=30*
¨=15*
¨=5*

y

x0Figure 3

Paths of projectiles

x � 129.9115.3 2 � 1987.5 m

t � 0  or  t �
75.0

4.9
� 15.3

 0 � t175.0 � 4.9t 2 0 � 75.0t � 4.9t2

y

500 x
(meters)

Figure 2

Path of a cannonball

 y � 75.0t � 4.9t2 x � 129.9t

 y � 1150.0 sin 30° 2 t � 1
2 19.8 2 t2 x � 1150.0 cos 30° 2 t

The Path of a Projectile 817

Galileo Galilei (1564–1642) was
born in Pisa, Italy. He studied med-
icine, but later abandoned this in
favor of science and mathematics.
At the age of 25 he demonstrated
that light objects fall at the same
rate as heavier ones, by dropping
cannonballs of various sizes from
the Leaning Tower of Pisa. This
contradicted the then-accepted
view of Aristotle that heavier ob-
jects fall more quickly. He also
showed that the distance an object
falls is proportional to the square 
of the time it has been falling, and
from this was able to prove that the
path of a projectile is a parabola.

Galileo constructed the first tel-
escope, and using it, discovered the
moons of Jupiter. His advocacy of
the Copernican view that the earth
revolves around the sun (rather
than being stationary) led to his be-
ing called before the Inquisition.
By then an old man, he was forced
to recant his views, but he is said to
have muttered under his breath “the
earth nevertheless does move.”
Galileo revolutionized science by
expressing scientific principles in
the language of mathematics. He
said, “The great book of nature is
written in mathematical symbols.”

Th
e 
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an

ge
r C

ol
le

ct
io

n
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we’ll use the general parametric equations instead. First, we solve for the time when
the projectile hits the ground by substituting y � 0.

Substitute y � 0

Factor

Set second factor equal to 0

Solve for t

Now we substitute this into the equation for x to see how far the projectile has trav-
eled horizontally when it hits the ground.

Parametric equation for x

Substitute 

Simplify

Use identity sin 2u � 2 sin u cos u

We want to choose u so that x is as large as possible. The largest value that the sine
of any angle can have is 1, the sine of 90�. Thus, we want 2u� 90�, or u� 45�. So to
send the projectile as far as possible, it should be shot up at an angle of 45�. From the
last equation in the preceding display, we can see that it will then travel a distance 
x � √2

0 / g.

Problems

1. Trajectories are Parabolas From the graphs in Figure 3 the paths of projectiles 
appear to be parabolas that open downward. Eliminate the parameter t from the general
parametric equations to verify that these are indeed parabolas.

2. Path of a Baseball Suppose a baseball is thrown at 30 ft/s at a 60� angle to the 
horizontal, from a height of 4 ft above the ground.

(a) Find parametric equations for the path of the baseball, and sketch its graph.

(b) How far does the baseball travel, and when does it hit the ground?

3. Path of a Rocket Suppose that a rocket is fired at an angle of 5� from the vertical,
with an initial speed of 1000 ft/s.

(a) Find the length of time the rocket is in the air.

(b) Find the greatest height it reaches.

(c) Find the horizontal distance it has traveled when it hits the ground.

(d) Graph the rocket’s path.

4. Firing a Missile The initial speed of a missile is 330 m/s.

(a) At what angle should the missile be fired so that it hits a target 10 km away? (You
should find that there are two possible angles.) Graph the missile paths for both angles.

(b) For which angle is the target hit sooner?

 � 
√ 

2
0 sin 2u

g

 �
2√ 

2
0 sin u cos u

g

t � 12√0 sin u 2 /g � 1√0 cos u 2 a 2√0 sin u

g b x � 1√0 cos u 2 t
 t �

2√0 sin u

g

 0 � √0 sin u � 1
2 gt

 0 � t1√0 sin u � 1
2 gt 2 0 � 1√0 sin u 2 t � 1

2 gt2
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5. Maximum Height Show that the maximum height reached by a projectile as a func-
tion of its initial speed √0 and its firing angle u is

6. Shooting into the Wind Suppose that a projectile is fired into a headwind that
pushes it back so as to reduce its horizontal speed by a constant amount „. Find 
parametric equations for the path of the projectile.

7. Shooting into the Wind Using the parametric equations you derived in Problem 6,
draw graphs of the path of a projectile with initial speed √0 � 32 ft/s, fired into a 
headwind of „ � 24 ft/s, for the angles u � 5�, 15�, 30�, 40�, 45�, 55�, 60�, and 75�. Is it
still true that the greatest range is attained when firing at 45�? Draw some more graphs
for different angles, and use these graphs to estimate the optimal firing angle.

8. Simulating the Path of a Projectile The path of a projectile can be simulated on 
a graphing calculator. On the TI-83 use the “Path” graph style to graph the general 
parametric equations for the path of a projectile and watch as the circular cursor moves,
simulating the motion of the projectile. Selecting the size of the Tstep determines the
speed of the “projectile.”

(a) Simulate the path of a projectile. Experiment with various values of u. Use 
√0 � 10 ft/s and Tstep � 0.02. Part (a) of the figure below shows one such path.

(b) Simulate the path of two projectiles, fired simultaneously, one at u � 30� and the
other at u� 60�. This can be done on the TI-83 using Simul mode (“simultaneous”
mode). Use √0 � 10 ft/s and Tstep � 0.02. See part (b) of the figure. Where do
the projectiles land? Which lands first?

(c) Simulate the path of a ball thrown straight up . Experiment with values 
of √0 between 5 and 20 ft/s. Use the “Animate” graph style and Tstep � 0.02. 
Simulate the path of two balls thrown simultaneously at different speeds. To bet-
ter distinguish the two balls, place them at different x-coordinates (for example,
x � 1 and x � 2). See part (c) of the figure. How does doubling √0 change the 
maximum height the ball reaches?

1u � 90° 2

y �
√2

0 sin2
 u

2g

The Path of a Projectile 819
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