

Objective

Students will...

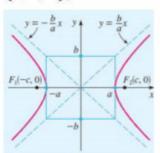
 Be able to derive the equation of standard hyperbolas, given the vertices and foci, and/or the asymptotes.

Equations and Graphs of Hyperbolas

Using the distance formula, we can see that parabolas have the following equations: for a > 0 and b > 0 (not a > b)

Horizontal

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$


Vertices: $(\pm a, 0)$

Covertices: $(0, \pm b)$

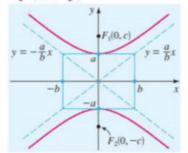
Transverse Axis: Horizontal length 2a

Asymptotes: $y = \pm \frac{b}{a}x$

Foci: $(\pm c, 0)$, $c^2 = a^2 + b^2$

Vertical

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

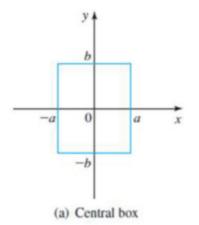

$$(0,\pm a)$$

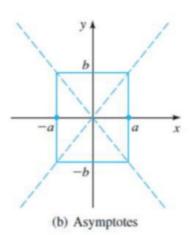
$$(\pm b, 0)$$

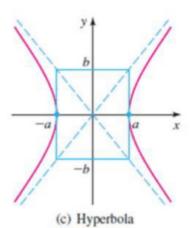
Vertical length 2a

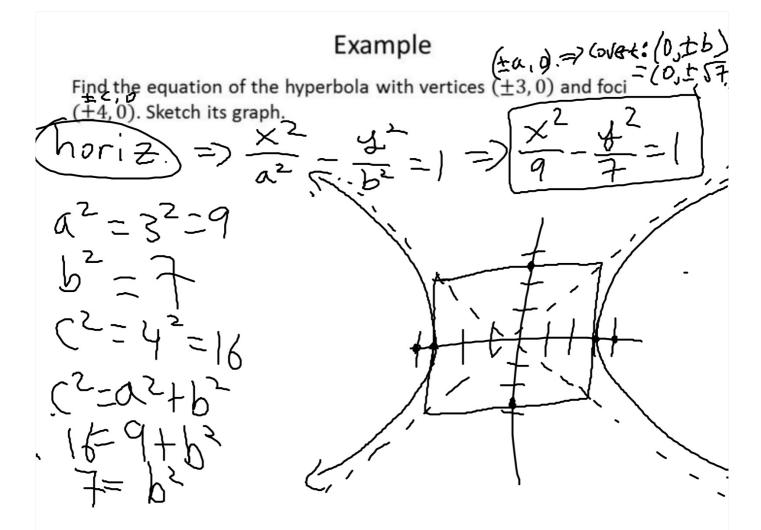
$$y = \pm \frac{a}{b}x$$

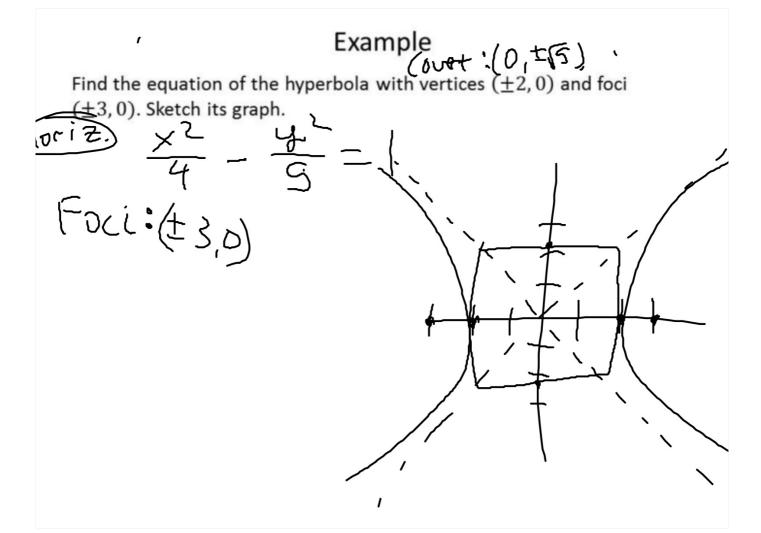
$$(0,\pm c), c^2 = a^2 + b^2$$

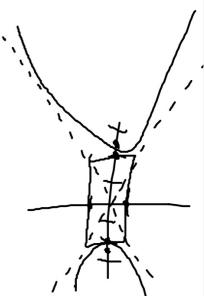



Sketching the Hyperbola


Here is a guidelines you can use to graph the hyperbola.


- 1. Sketch the central box, using the vertices and the covertices.
- 2. Sketch the asymptotes. These are the diagonals of the central box.
- 3. Plot the foci
- 4. Sketch the hyperbola.

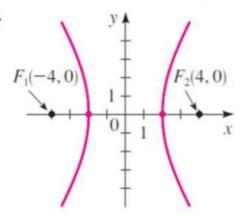

Ex.

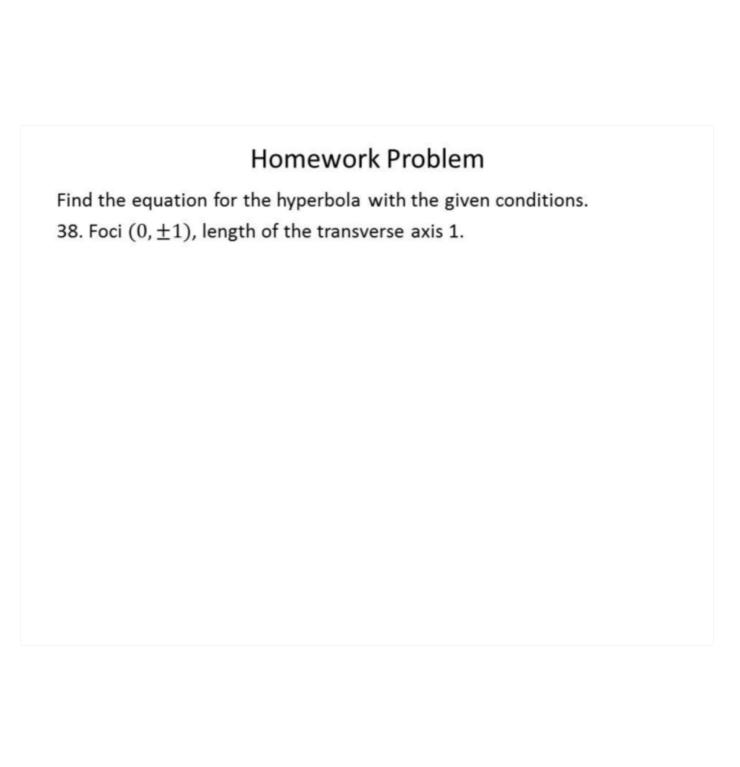


Example

Find the equation and the foci of the hyperbola with vertices
$$(0, \pm 2)$$
 and (± 1) asymptotes $y = \pm 2x$. Sketch the graph.

Ver $+ i(ab)$
 $y = \pm 2x$
 $y = \pm$




Find the equation of the hyperbola with vertices $(0, \pm 6)$, given that it passes through the point (5, -9) $\Rightarrow \frac{(-9)^2}{30} \cdot \frac{(5)^2}{3^2} = \frac{1}{36}$ 3 = 36

Homework Problem

Find the equation for the hyperbola whose graph is shown.

17.

TB pgs. 768-769 #17, 19, 21, 27, 29, 31, 32, 34, 37, 38