3.1.2 Answers

1.
$$f(x) = 4 - x - 3x^2$$

Degree 2
Leading term $-3x^2$
Leading coefficient -3
Constant term 4
As $x \to -\infty$, $f(x) \to -\infty$
As $x \to \infty$, $f(x) \to -\infty$

3.
$$q(r) = 1 - 16r^4$$

Degree 4
Leading term $-16r^4$
Leading coefficient -16
Constant term 1
As $r \to -\infty$, $q(r) \to -\infty$
As $r \to \infty$, $q(r) \to -\infty$

5.
$$f(x) = \sqrt{3}x^{17} + 22.5x^{10} - \pi x^7 + \frac{1}{3}$$

Degree 17
Leading term $\sqrt{3}x^{17}$
Leading coefficient $\sqrt{3}$
Constant term $\frac{1}{3}$
As $x \to -\infty$, $f(x) \to -\infty$
As $x \to \infty$, $f(x) \to \infty$

7.
$$P(x) = (x-1)(x-2)(x-3)(x-4)$$

Degree 4
Leading term x^4
Leading coefficient 1
Constant term 24
As $x \to -\infty$, $P(x) \to \infty$
As $x \to \infty$, $P(x) \to \infty$

2.
$$g(x) = 3x^5 - 2x^2 + x + 1$$

Degree 5
Leading term $3x^5$
Leading coefficient 3
Constant term 1
As $x \to -\infty$, $g(x) \to -\infty$
As $x \to \infty$, $g(x) \to \infty$

4.
$$Z(b) = 42b - b^3$$

Degree 3
Leading term $-b^3$
Leading coefficient -1
Constant term 0
As $b \to -\infty$, $Z(b) \to \infty$
As $b \to \infty$, $Z(b) \to -\infty$

6.
$$s(t) = -4.9t^2 + v_0t + s_0$$

Degree 2
Leading term $-4.9t^2$
Leading coefficient -4.9
Constant term s_0
As $t \to -\infty$, $s(t) \to -\infty$
As $t \to \infty$, $s(t) \to -\infty$

8.
$$p(t) = -t^2(3-5t)(t^2+t+4)$$

Degree 5
Leading term $5t^5$
Leading coefficient 5
Constant term 0
As $t \to -\infty$, $p(t) \to -\infty$
As $t \to \infty$, $p(t) \to \infty$

9.
$$f(x) = -2x^3(x+1)(x+2)^2$$

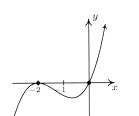
Degree 6
Leading term $-2x^6$
Leading coefficient -2
Constant term 0
As $x \to -\infty$, $f(x) \to -\infty$
As $x \to \infty$, $f(x) \to -\infty$

10.
$$G(t) = 4(t-2)^2 \left(t + \frac{1}{2}\right)$$

Degree 3
Leading term $4t^3$
Leading coefficient 4
Constant term 8
As $t \to -\infty$, $G(t) \to -\infty$
As $t \to \infty$, $G(t) \to \infty$

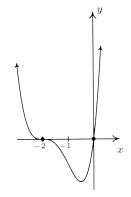
11.
$$a(x) = x(x+2)^2$$

 $x = 0$ multiplicity 1
 $x = -2$ multiplicity 2



12.
$$g(x) = x(x+2)^3$$

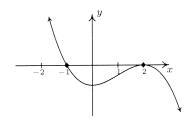
 $x = 0$ multiplicity 1
 $x = -2$ multiplicity 3

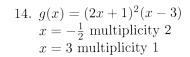


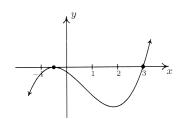
13.
$$f(x) = -2(x-2)^{2}(x+1)$$

$$x = 2 \text{ multiplicity } 2$$

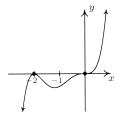
$$x = -1 \text{ multiplicity } 1$$



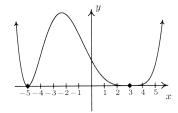




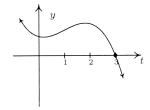
15. $F(x) = x^3(x+2)^2$ x = 0 multiplicity 3 x = -2 multiplicity 2



17. $Q(x) = (x+5)^2(x-3)^4$ x = -5 multiplicity 2 x = 3 multiplicity 4



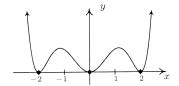
19. $H(t) = (3-t)(t^2+1)$ x = 3 multiplicity 1



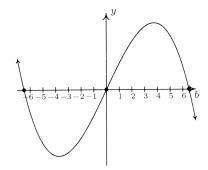
- 16. P(x) = (x-1)(x-2)(x-3)(x-4)x = 1 multiplicity 1 x = 2 multiplicity 1
 - x = 3 multiplicity 1 x = 4 multiplicity 1



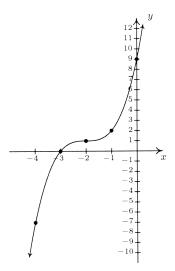
- 18. $f(x) = x^2(x-2)^2(x+2)^2$ x = -2 multiplicity 2 x = 0 multiplicity 2
 - x = 2 multiplicity 2



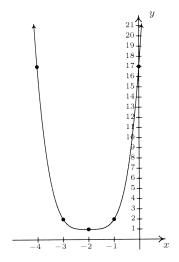
- 20. $Z(b) = b(42 b^2)$ $b = -\sqrt{42}$ multiplicity 1 b = 0 multiplicity 1
 - $b = \sqrt{42}$ multiplicity 1



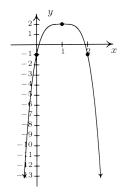
21. $g(x) = (x+2)^3 + 1$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$



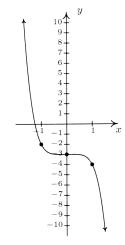
22. $g(x) = (x+2)^4 + 1$ domain: $(-\infty, \infty)$ range: $[1, \infty)$



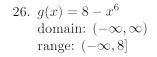
23. $g(x) = 2 - 3(x - 1)^4$ domain: $(-\infty, \infty)$ range: $(-\infty, 2]$

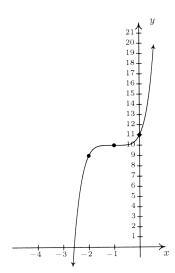


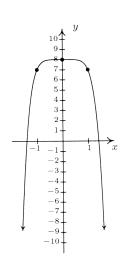
24. $g(x) = -x^5 - 3$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$



25. $g(x) = (x+1)^5 + 10$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$







- 27. We have f(-4) = -23, f(-3) = 5, f(0) = 5, f(1) = -3, f(2) = -5 and f(3) = 5 so the Intermediate Value Theorem tells us that $f(x) = x^3 9x + 5$ has real zeros in the intervals [-4, -3], [0, 1] and [2, 3].
- 28. $V(x) = x(8.5-2x)(11-2x) = 4x^3-39x^2+93.5x$, 0 < x < 4.25. Volume is maximized when $x \approx 1.58$, so the dimensions of the box with maximum volume are: height ≈ 1.58 inches, width ≈ 5.34 inches, and depth ≈ 7.84 inches. The maximum volume is ≈ 66.15 cubic inches.
- 29. The calculator gives the location of the absolute maximum (rounded to three decimal places) as $x\approx 6.305$ and $y\approx 1115.417$. Since x represents the number of TVs sold in hundreds, x=6.305 corresponds to 630.5 TVs. Since we can't sell half of a TV, we compare $R(6.30)\approx 1115.415$ and $R(6.31)\approx 1115.416$, so selling 631 TVs results in a (slightly) higher revenue. Since y represents the revenue in thousands of dollars, the maximum revenue is \$1,115,416.
- 30. $P(x) = R(x) C(x) = -5x^3 + 35x^2 45x 25, 0 \le x \le 10.07.$
- 31. The calculator gives the location of the absolute maximum (rounded to three decimal places) as $x \approx 3.897$ and $y \approx 35.255$. Since x represents the number of TVs sold in hundreds, x = 3.897 corresponds to 389.7 TVs. Since we can't sell 0.7 of a TV, we compare $P(3.89) \approx 35.254$ and $P(3.90) \approx 35.255$, so selling 390 TVs results in a (slightly) higher revenue. Since y represents the revenue in thousands of dollars, the maximum revenue is \$35,255.
- 32. Making and selling 71 PortaBoys yields a maximized profit of \$5910.67.