

Objective

Students will...

- Be able to define what a tangent line is.
- Be able to make connections between tangent lines to the rate of change (slope).
- Be able to define derivative and find it.
- Be able to understand the relationship between differentiability and continuity.

The Tangent Line Problem

Calculus is said to have grown out of 4 major problems. First of these problems involve the <u>tangent line</u>. Recall that a tangent line is <u>a line that</u> <u>represents the slope at a certain point</u>. See examples below:

Tangent line to a circle Figure 2.1

From Secant to Tangent

For any circle, the tangent line is always <u>perpendicular to the radius</u>. However, for a curve this isn't an easy thing to find. In order to find the tangent line, we need to use the <u>secant line</u>, which is a line created by connecting two points on the curve. (Think average rate of change!)

Derivative

To find the slope of any point on a function is known as finding its derivative at that point. It is also known as differentiating a function at a certain point. So now, we can define what a derivative is at x:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, provided the limit exists.

f'(x) is read as "f prime of x."

Notice the different notation for derivatives.

$$f'(x)$$
, $\frac{dy}{dx}$, y' , $\frac{d}{dx}[f(x)]$, $D_x[y]$.

Again, derivative is simply finding slope, or

Examples
$$f(x+h) = 2(x+h) - 3$$
Find the derivative of $f(x) = 2x - 3$

$$f(x+h) - f(x) = 2x + 2h - 3 - 2x + 2h - 3$$

$$h \to 0$$

Find the derivative of $f(t) = \frac{2}{t}$. Then, find the tangent to the graph at

point (1,2) Lim (2+1 - 2(+1)) 2t- (2t+2h) -2 h→0 (h = t(t+h)) = t(t+h)

$$r = -\frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

(y-2=-2(X-1)

Differentiability and Continuity

Recall that limit only exists if the right side and the left side limits match. It turns out, this is also true for differentiability (derivatives).

A function, say
$$f$$
, is differentiable if and only if,
$$\lim_{h\to 0^-}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0^+}\frac{f(x+h)-f(x)}{h}$$

That being said, a function is not differentiable at these instances:

- Cusp (sharp turn, or corners)

- 2. Holes
 3. Vertical asymptotes
 4. Vertical line
 5. Jump discontinuities.

Example

Differentiability and Continuity

Somethings to keep in mind regarding derivatives and continuity...

- 1. When a function is <u>not</u> continuous at x = c, it is also <u>not</u> <u>differentiable</u> at x = c.
- 2. If the function is **differentiable** at x = c, it is also **continuous** there.

However, the converse is NOT necessarily true!!

- 1. If function is <u>not</u> differentiable at x = c, it is also <u>not</u> continuous there.
- 2. If the function is continuous at x=c, it is also differentiable there .

Homework Due 9/9

TB 2.1- #5, 7, 9, 37-40, 59, 81-86, 99-103