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Objective

Students will...

- Be able to define what a tangent line is.

- Be able to make connections between
tangent lines to the rate of change (slope).

- Be able to define derivative and find it.

- Be able to understand the relationship
between differentiability and continuity.



The Tangent Line Problem

Calculus is said to have grown out of 4 major problems. First of these
problems involve the tangent line. Recall that a tangent line is a line that
represents the slope at a certain point. See examples below:
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For any circle, the tangent line is always perpendicular to the radius.
However, for a curve this isn’t an easy thing to find. In order to find the
tangent line, we need to use the secant line, which is a line created by

connectln% two points on the curve. (Think average rate of change!)
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Derivative

To find the slope of any point on a function is known as finding its
derivative at that point. It is also known as differentiating a function at a
certain point. So now, we can define what a derivative is at x:
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f'(x) isread as “f prime of x.”

Notice the different notation for derivatives.
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Again, derivative is simply finding slope, or & rate of change.



Examples
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Find the derivative of f(x) = x°® + 2x
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Find the derivative of f(x) = x* + 1 2
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Find the derivative of f(t) = f Then, find the tafigent to the graph at
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Differentiability and Continuity

Recall that limit only exists if the right side and the left side limits match.
It turns out, this is also true for differentiability (derivatives).

A function, say f, is differentiable if and only if,
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hat being said, a function is not differentiable at these instances:
Cusp (sharp turn, or corners) A \/ C'//\

Holes

Vertical asymptotes

Vertical line
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Jump discontinuities.
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Differentiability and Continuity

Somethings to keep in mind regarding derivatives and continuity...

1. When a function is not continuous at x = ¢, itis also not
differentiable at x = c.

2. |If the function is differentiable at x = ¢, it is also continuous there.

However, the converse is NOT necessarily true!!

1. If function is not differentiable at x = ¢, it is also not continuous
there.

2. If the function is continuous at x = ¢, it is also differentiable there .



Homework Due 9/9

TB 2.1-#5, 7,9, 37-40, 59, 81-86, 99-103



