

Objective

Students will...

- Be able to distinguish between removable and nonremovable discontinuities.
- Be able to define and use the intermediate value theorem.

Continuity

A function, say f, is <u>continuous at c</u> when these there conditions are f(x) met:

1. f(c) is defined (i.e. can be evaluated)

- 1. f(c) is defined (i.e. can be evaluated)
- 2. $\lim_{x\to c} f(x)$ exists. (left side $\lim_{x\to c} f(x) = right$ side $\lim_{x\to c} f(x) = right$
- $3. \lim_{x \to c} f(x) = f(c)$

Recall: We can show that a function has a limit at any given point by the existence of limit theorem:

 $\lim_{x\to c^-} f(x) = L = \lim_{x\to c^+} f(x), \text{ (the right and the left side limits are equal)}$

Types of Discontinuity

Always remember that not all discontinuities are created equal! In fact, just because a discontinuity exists at a certain point, this doesn't automatically indicate that the limit doesn't exist. Consider the following problems:

a.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x + 1)}{x - 1} = (x + 1)$$

Types of Discontinuity

Clearly, (a) has a limit, while (b) did not. Algebraically speaking, simple factoring and simplifying allowed us to find the limit for (a), while there was nothing that could have been done to find a limit for (b). This can be more easily seen looking at their graphs.

In general...

If the limit exists at a certain point of a function, say c, while the function is undefined at c, then the function is said to have a **removable discontinuity** at c.

If the limit does not exist at c, nor is defined at c, then the function is said to have a **nonremovable discontinuity** at c.

Removable vs Nonremovable Discontinuity

(a) Removable discontinuity

(b) Nonremovable discontinuity

Example

Find points of discontinuity, and determine if they are removable or nonremovable discontinuity(ies).

a.
$$f(x) = \frac{4}{x-6}$$

 $X-6=0$
 $X=6$
Non removable.

inuity, and determine if they are removable or tinuity(ies).

$$b. f(x) = \frac{x-5}{x^2-25}$$

$$-\frac{x+5}{(x+5)(x-5)}$$

$$= \frac{1}{x+5}$$

$$= \frac{1}{x+5}$$
Removable $x=5$, $x=5$, $x=5$, $x=5$.

Intermediate Value Theorem

There is a very simple but important theorem in Calculus regarding continuity.

Intermediate Value Theorem(IVT)- If f is continuous on the closed interval [a,c], and $f(a) \neq f(c)$, and k is any number between f(a) and f(c), then there is at least one number b in [a,c] such that f(b)=k.

In other words, in the interval [a,c], if $a \le b \le c$, then f(b) exists, such that $f(a) \le f(b) \le f(c)$.

Example

Use the Intermediate Value Theorem to show that the polynomial function $f(x) = x^3 + 2x - 1$ has a zero (x-intercept or root) in the interval [0, 1].

$$f(0)=-1$$
 By IVT, Since $f(0)<0$ and, $f(1)=-1$ $f(1)>0$, then

Must be some traine, c, in the interval (0,1), such that
$$f(c)=0.$$

ton 2=1 Example

 $=\sqrt{3}$ Use the Intermediate Value Theorem to show that the function

 $f(x) = -\frac{5}{x} + \tan \frac{\pi x}{10}$ has a zero (x-intercept or root) in the interval [1,4].

there must be some value, c, in the interval [1,4], such that f(t)=0.

TB 1.4 #7-23 (e.o.o), 25-28, 31, 33-53 (e.o.o), 83, 86