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Objective

Students will...

- Be able to distinguish between removable
and nonremovable discontinuities.

- Be able to define and use the intermediate
value theorem.



Continuity
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A function, say f, is continuous at ¢ when these there andltuons are {i
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1. f(c) is defined (i.e. can be evaluated) oy
2. lim f (x) exists.(le%fc stda \Imik = vight Jide L;,,.,H.)
X=C

3. lim f(x) = f(c)

Recall: We can show that a function has a limit at any given point by the
existence of limit theorem:

ler?_ f(x) =L = lim _f(x), (the right and the left side limits are equal)



Types of Discontinuity

Always remember that not all discontinuities are created equal! In fact,
just because a discontinuity exists at a certain point, this doesn’t
automatically indicate that the limit doesn’t exist. Consider the following

problems:

T x—1x-1




Types of Discontinuity

Clearly, (a) has a limit, while (b) did not. Algebraically speaking, simple
factoring and simplifying allowed us to find the limit for (a), while there
was nothing that could have been done to find a limit for (b). This can be
more easily seen looking at their graphs.

In general...

If the limit exists at a certain point of a function, say ¢, while the function
is undefined at ¢, then the function is said to have a removable
discontinuity at c.

If the limit does not exist at ¢, nor is defined at ¢, then the function is
said to have a nonremovable discontinuity at c.



Removable vs Nonremovable Discontinuity

y y

N I 1 I
' ' R4 1,
: ' T uwe
| I 1 ]
- / ] . ' ]
NG 2
: S— : :b/dl)
: : : ( :
| I 1 ]
: | : ;
' I |’ i
{ ' e { * ane
a € h a c b

(a) Removable discontinuity (b) Nonrecmovable discontinuity



Example

Find points of discontinuity, and determine if they are removable or
nonremovable discontinuity(ies).
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Intermediate Value Theorem

There is a very simple but important theorem in Calculus regarding
continuity.

Intermediate Value Theorem(IVT)- If isn the closed
interval [a,c], and f(a) # f(c), and k is anynumber between f(a) and

f (), then there is at least one number b in [a, c¢] such that f(b) = k.

In other words, in the interval [a,c], ifa < b < ¢, then f(b) exists, such

that f(a) < f(b) < f(c).
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Example

Use the Intermediate Value Theorem to show that the polynomial
function f(x) = x® + 2x — 1 has a zero (x-intercept or root) in the
interval [0, 1].
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Use the Intermediate Value Theorem to show that the function

f(x) =- i + t"mE has a zero (x-intercept or root) in the interval [1,4].
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Homework 8/27

TB 1.4 #7-23 (e.0.0), 25-28, 31, 33-53 (e.0.0), 83, 86



